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ABSTRACT Automated Machine Learning (AutoML) frameworks are designed to select the optimal
combination of operators and hyperparameters. Classical AutoML-based Bayesian Optimization approaches
often integrate all operator search spaces into a single search space. However, a disadvantage of this
history-based strategy is that it can be less robust when initialized randomly than optimizing each operator
algorithm combination independently. To overcome this issue, a novel contesting procedure algorithm,
Divide And Conquer Optimization (DACOpt), is proposed to make AutoML more robust. DACOpt
partitions theAutoML search space into a reasonable number of sub-spaces based on algorithm similarity and
budget constraints. Furthermore, throughout the optimization process, DACOpt allocates resources to each
sub-space to ensure that (1) all areas of the search space are covered and (2)more resources are assigned to the
most promising sub-space. Two extensive sets of experiments on 117 benchmark datasets demonstrate that
DACOpt achieves significantly better results in 36% of AutoML benchmark datasets: 5% when to compared
to TPOT, 8% - to AutoSklearn, 15% - to H20 and 18% - to ATM.

INDEX TERMS Automated machine learning (AutoML) optimization, machine learning, divide and
conquer, Bayesian optimization, hyperparameter optimization, classification.

I. INTRODUCTION
Machine learning (ML) has achieved significant advances
in a variety of real-world applications [1]–[3]. To achieve
this goal, a practitioner needs to choose a well-performing
sequence of algorithms, a.k.a, the ML pipeline, for the
given problem and tune its hyperparameters to maximize
the performance. The algorithms utilized in the ML pipeline
are closely connected, with operators in each step having
a direct impact on the next step(s). For example, the data
pre-processing step aims to produce a new dataset, i.e.,
balanced, reduced-dimensions, etc., which may affect the
subsequent operator’s performance, such as e.g. the learning
model. As a result, deciding which ML pipeline to use is a
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difficult task that requires the experience of machine learning
professionals. In order to efficiently solve ML problems
without (or with minimal) human effort, Automated Machine
Learning (AutoML) is a promising paradigm for automati-
cally generating the optimal machine learning pipeline, i.e.,
the best sequence of algorithms with their hyperparameters
optimally adjusted. Technically, a typical AutoML frame-
work consists of three fundamental components [4]: a search
space, an optimizer, and an objective function. The search
space describes the feasible search domain. The optimizer
is used to discover the best combination of algorithms over
operators and their optimized hyperparameter that maximize
the objective function’s performance. Finally, the objective
function is a child program that evaluates the settings of the
ML pipeline, resulting in a real-valued performance measure,
e.g., accuracy, precision, recall rate. In other words, AutoML
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aims at automatically identifying an efficient ML pipeline
setting from the feasible search space.

In recent years, the AutoML community has increasingly
applied the Bayesian Optimization (BO) [5]–[7] approach
due to its high efficiency [8]–[13]. Therefore, in this
study, we targeted improving BO-based approaches for
solving the AutoML optimization problem. The AutoML
optimization (AO) problem is typically considered as a
single optimization problem in the BO-based method by
merging the optimization space for all algorithms of all
operators – this approach is typically refer to as integrated
approach [14]. The Combined Algorithm Selection and
Hyperparameter optimization (CASH) approach [8] is a
commonly used technique, where the AO problem is treated
as a Hyperparameter Optimization (HPO) problem. However,
HPO was initially developed to optimize hyperparameters
of a single algorithm, where the considered search space
is typically smaller, lower-dimensional, and less (even
non)-structured than the AutoML search space. Hence,
the HPO-based approach is not ideal for handling the
AO problem. In order to alleviate the above limitation,
we formulate the AO problem as a ML pipeline optimization
problem, which is proposed by [13]. This can be seen as a
generalization of the CASH approach, where the parameter
classes for operator’s algorithms, and hyperparameters in an
algorithm were clearly identified.

An alternative to the integrated approach, [15] proposes
the so-called CASH-oriented Multi-Armed Bandits (MAB)
approach to solve the model selection and hyperparam-
eter optimization problem for the classification problem
(i.e., selecting a classification algorithm and tuning the
hyperparameter, simultaneously), by applying HPO on each
classifier separately. However, this is might not possi-
ble to apply to AutoML scenarios since the number of
combinations of algorithms over operators can be up to
thousands. Fortunately, [13], [16]–[18] has pointed out
that operator algorithms can potentially be grouped and
that different groups of algorithms perform better on
different kinds of problems, e.g., a group of linear clas-
sification algorithms performs best on linear classification
tasks.

This study therefore intend to further improve BO
performance for the AO problems by applying the Divide and
Conquer (DAC) strategy: the AutoML search space is divided
into multiple sub-spaces based on their similarity,1 and each
sub-space is solved by a separate BO process (candidate)
independently. The budget is then allocated to each candidate
depending on their performance using a novel competing
mechanism. As a result, the most promising candidates have
a larger tuning budget than the least prospective candidates.
Therefore, the worst candidates will be ‘fired’ as soon as
ample evidence against them has been gathered, saving
computation time and resources for future assessments in
those search areas.

1See grouping approach proposed in [13].

Notably, since our approach handles the BO2 processes
independently, allows multiple optimization processes exe-
cuted simultaneously without affecting the performance.
In other words, our techniquewill achieve the same numerical
results in both parallel and sequential settings, with the
exception of different execution times.

A. OUR CONTRIBUTIONS
We summarize our main contributions are the following:
• We propose a novel contesting procedure, namely
DACOpt, to solve the AutoML optimization problem
efficiently, which is complementary to the existing BO
approaches.

• DACOpt efficiently allocates resources to each sub-
space to ensure that (1) all areas of the search space
are covered and (2) more resources are assigned to the
most promising sub-space. Additionally, we provide a
theoretical guarantee that our approach fixes the existing
gap between serial and parallel BO execution.

• Two independent empirical studies on a range of
AutoML optimization problems with 2 and 6 operators
on the total of 117 benchmark datasets demonstrate the
superiority of the proposed approaches.

B. REPRODUCIBILITY AND OPEN SCIENCE
The implementation of the proposed methods is published
in a git-repository3 and PyPi-repository.4 The experiment
scripts for the reproducibility of the reported results are
provided in a git-repository.5

The remainder of this paper is organized as follows.
Section II presents the relevant background knowledge
on AutoML optimization problem, Bayesian optimization,
Divide and Conquer techniques and early-stop strategies.
Our contributions are highlighted in Section III, whereas
Section IV lays out the experimental setup. Experimental
results are discussed in Section V. Finally, the paper is
summed up and further work is outlined in Section VI.

II. BACKGROUND
In this section, we first review the formalization of AutoML
optimization problem (Section II-A), the Bayesian optimiza-
tion approaches (Section II-B), the relevant techniques to the
proposed contesting procedure (Section II-C), and early-stop
strategies (Section II-D).

A. AutoML OPTIMIZATION PROBLEM
Given aML problemwith a datasetD, letM = (O1, . . . ,Oz)
denote the sequence of operators. Each Oi has a set of
available ML algorithms: Oi∈{1,...,z−1} = {∅,A1

i , . . . ,A
ni
i }

for all operators except the last and Oz = {A1
z , . . . ,A

nz
z }

for the last operator which defines the learning algorithm.

2BO (a.k.a., Sequential model-based optimization) was originally
intended as a sequential approach [5], [19].

3The library is published at https://github.com/ECOLE-ITN/DACOpt
4https://pypi.org/project/DACOpt
5https://github.com/ECOLE-ITN/DACOpt/tree/main/Experiments
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Further, let 3 = {{31
1, . . . , 3

n1
1 }, . . . , {3

1
z , . . . 3

nz
z }} be a set

of hyperparameter spaces of all algorithms for all operators.
The AutoML optimization problem is then to find the best
ML pipeline setting p(A1,λ,...,Az,λ)∗ that maximizes the chosen
accuracy metric f (e.g., the accuracy, precision or recall rate):

p(A1,λ,...,Az,λ)∗ = argmax
l,λ

f (p(A1,λ,...,Az,λ)l ,D) (1)

where (A1, . . . ,Az)l ∈ ×
z
i=1Oi are all possible choices of

algorithms for all pipeline operators, λ = {(λ1, . . . , λz)|λ1 ∈
3
j1
1 , . . . , λz ∈ 3

jz
z } are algorithms’ hyperparameters and

f
(
p(A1,λ,...,Az,λ)l ,D

)
is performance of the sequence oper-

ators and their corresponding hyperparameter choices when
trained on training set Dt and evaluated on validation set Dv,
where D = {Dt ,Dv}.

B. BAYESIAN OPTIMIZATION
The Bayesian optimization approach is widely used in many
AutoML studies, for example: [8], [9], [11]. In a nutshell,
BO uses a surrogate model P(f |H) to capture the settings
that have been examined thus far, H = {(pi,1i)ti=1},
where p denotes the pipeline setting under evaluation and
1 denotes the corresponding measured performance. P is
then used to predict the performance of a numerous set of
unseen pipeline configurations and choose the subsequent
configuration which maximizes the specified acquisition
function.

Expected improvement (EI) [20] is a common acquisition
function. It balances the trace-off between exploration and
exploitation via the expectation of the improvement function
over the best found value 1∗(t) at time step t as I (p) =
max{0, f̂ (p) − 1∗(t−1)}, where 1

∗

(t) = max(10, . . . ,1t−1)
and f̂ (p) denotes the predicted performance of the setting p
via surrogate model P . The EI is then defined as:

E[I (p)] =
∫
∞

0
I (p) dP (2)

Hence, the next setting is selected by maximizing the EI:

pnew = argmax
p∈M

E[I (p)] (3)

where M denotes the AutoML search space (see
Section II-A).

Past works [8], [9], [12], [19] have noted that the tree-based
surrogate models, e.g., Tree-structured Parzen Estimator
(TPE) [6] and Random Forest [5] have been successfully used
for the class of AO problems. Thus, in this study, we also
adopt TPE.

TPE uses a kernel density estimator [21] to model
the likelihood. Based on a predefined threshold γ , the
set of evaluated settings H is split into two sets: γ 6 of
well-performing settings l(p) and the remaining settings g(p)
labeled as badly-performing. In this way, maximizing the
ratio l(p)

g(p) is equivalent to maximizing the EI in Equation 2,

6γ = 25%, can be changed by user.

as shown theoretically in [6]. In other words, the next setting
pnew is chosen by maximizing the above-mentioned ratio.

C. CONTESTING PROCEDURE FOR AutoML OPTIMIZATION
AutoML aims at solving automatically and efficiently an
arbitrary ML problem. However, the No Free Lunch (NFL)
theorem [22] prescribes that there is no universal opti-
mal algorithm for all problems. As a result, in order to
maximize performance on an arbitrary problem, AutoML
must incorporate as many algorithm choices as possible.
Additionally, every algorithm has a set of hyperparameters.
Consequently, AutoML optimization typically is a high-
dimensional mixed-variables (continuous, discrete, nominal)
optimization problem. In order to handle such a challenge
by a BO approach, three facts are considered: (1) BO
performs better for low-dimensional problems [23], (2) AO
problems have low effective dimensionality [24], [25], (3)
the complexity of AO problem not only comes from its
dimensionality, but also the number of possible combinations
of algorithms within the ML pipeline [13].

Divide and Conquer (DAC) [26] is a well-known strategy
for handling large problems via decomposing the target prob-
lem into c small-scale and low-dimensional sub-problems.
Consider an AO problem p∗ = argmaxp∈M f (p), for
applying DAC, the approach has to first decompose the
AutoML search space into c sub-spaces, and then solve
each sub-space by an optimizer. Assuming that we can
split the AutoML search space M into c small-spaces
{M1, . . . ,Mc}, the DAC approach can be formulated as:

p∗ = (argmax
p∈M1

f (p), . . . , argmax
p∈Mc

f (p)) = (p∗1, . . . , p
∗
c ) (4)

where p∗i is the global optimum of sub-space Mi and p∗ is
the global optimum of the original search spaceM.

The existing DAC studies typically treat elements of the
input search space as the same level and decomposed by
complementing [27]. That is, variables corresponding to sub-
space Mi can change freely while the remaining |M−Mi|

dimensions are set to some fixed values. However, such
approaches cannot be used for the AutoML search space
where dimensions are hierarchical and, thus, dependent.
Therefore, there are two challenges for adapting DAC to
solve AutoML problems: (1) how to divide the AutoML
space M onto a set of c sub-spaces efficiently; (2) how to
optimize resources during the ‘conquer’ phase since some
sub-spaces’ performance might be significantly worse than
others. To answer the above questions, we propose (1) a
splitting approach based on the combination of groups of
operator algorithms [13], (2) adopting efficient early-stop
strategies that are based on the theoretical guarantees (see our
discussion in Section II-D) for optimizing resources for the
‘conquer’ phase.

Furthermore, since the number of algorithms (and
therefore, the number of sets of their parameters) is
smaller in the DAC-formulation of the AutoML problem
in Equation 4 compared to the original formulation in
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Equation 1, the proposed contesting procedure also concurrs
the assumption [24], [25] that AO problem has low effective
dimensionality.

D. EARLY-STOP STRATEGIES
In order to prevent over-fitting, the k-fold cross-validation
is usually added to Equation 1. For readability, let p
denote p(A1,λ,...,Az,λ). The robust AutoML problem is then
formulated as:

p∗ = argmax
p∈M

1
k

∑k

j=1
f
(
p,Dj

t ,Dj
v

)
(5)

where f
(
p,Dj

t ,D
j
v

)
is performance of the pipeline setting

p when trained and evaluated on the jth cross-validation
data fold Dj

t and Dj
v, correspondingly. As a consequence

of using cross-validation, every function evaluation becomes
k times more expensive. Early stop strategy, e.g., [19],
[28]–[32] allows limiting this issue, since it avoids wasting
time and resources on evaluating worse settings over all
k folds.

The important concept is to stop investigating a setting as
soon as sufficient information indicates that it is ineffective.
A setting will only be examined on a few folds in this manner;
an iterative elimination function will analyze its performance
on the evaluated folds in order to compare it to other evaluated
settings and determine how many folds should be utilized for
the considered setting.

The elimination function in racing procedure approaches
[29], [30] is based on a statistical test procedure, i.e.,
Friedman test [33], meanwhile bandit-based approaches [31],
[32] compares the setting performance directly to the
best-known setting. In a number of case studies, both
strategies performed well [14], [30], [32], where the task
of proposing new settings was commonly handled by a
Random search [25]. Unfortunately, the inconsistencies in
how settings are assessed may provide additional noise for
BO, making it less reliable in suggesting subsequent settings.
This means that such approaches should not be used directly
and should be adopted only at the level of search sub-
spaces, via the termination of unpromising sub-spaces (see
Section III-A).

III. PROPOSED APPROACH
We now discuss our proposed contesting procedure for
AutoML optimization problems based on the Divide And
Conquer strategy, which we call DACOpt.

A. ALGORITHM DESCRIPTION
We reformulate the AutoML optimization problem in Equa-
tions 1, 4 and 5 into the following:

p∗ = argmax
p∈M

(p∗1, . . . , p
∗
c ) (6)

s.t. p∗i = argmax
pi∈Mi

1
k

∑k

j=1
f
(
pi,Dj

t ,Dj
v

)
(7)

where Mi = (O(i)
1 , . . . ,O

(i)
z ) denotes the ith sub-space

∀i ∈ {1, . . . , c}, O(i)
l∈{1,...,z} = {A

1
l , . . . ,A

nl
l } denotes a set

of algorithms of the l th operator ∀|O(i)
l | ≤ |Ol |, and a set

of the corresponding hyperparameters of O(i)
l : 3(i)

l∈{1,...,z} =

{31
l , . . . , 3

nl
l } and f

(
pi,D(j)

t ,D
(j)
v

)
denotes performance of

the setting, similar to Equation 5.
The overall structure of the contesting procedure proposed

here is summarized in Figure 1. The process begins with a
Splitter function to be applied on the input AutoML search
spaceM to produce c possible sub-spaces. Here, we extends
the work of [13] with improvements (a detailed discussion on
this function is given in Appendix A). Then, c BO processes
are initialized (in the following discussion, the BO processes
shall be called candidates). The whole contest is controlled
by the Controller function, which allocates budgets to each
candidate per contest round based on the feedback from
the Elimination function that decides which candidates will
survive into the next round based on their performances so far.
As mentioned in Section II-D, we adopt two possible settings
for the early-stop functionality. Therefore, two versions
of DACOpt are provided, which differ mainly w.r.t. the
elimination criteria:

1) ELIMINATION CRITERIA BASED ON THE HIGHEST
PERFORMANCES
As discussed in Section II-B, the acquisition function
maximizes the best-found value 1∗(t) up to time step t . Due
to the fact that the goal of AutoML optimization is to find
the setting that achieves the highest performance on the
target ML problem, we consider the highest performance
as a suitable comparison criteria. Furthermore, the way of
computing the budget, step size, and the number of rounds
follow the approach in [31] and [32] with minor adjustments:
input parameters of our procedure include the maximum
number of sub-spaces to be split c, total optimizing budget B,
and the ratio of candidates discarded in each round η.7 The
number of rounds in the contest is then calculated as: Rmax =
dlogη(c)e. Each round has the same budget Br = B

Rmax
. That

is, each of m surviving candidates at the round can have
a budget of b = b

Br
m c. At the end of the round, the

Elimination function keeps dm
η
e candidates for the following

round. Therefore, the surviving candidate has η times the
budget from the previous round.

Our approach, elaborated in Algorithm 1. We require
the maximum sub-spaces to be split K and the ratio of
candidates discarded in each round, η, as input parameters.
This approach consists of the following steps:
• Initialize: Split the original search space into c (c ≤ K )
sub-spaces (line 3). Next, initialize c corresponding
Bayesian optimization candidates (lines 5-7). Next, the
number of contest rounds is calculated, Rmax =

dlogη(c)e (line 8-9).

7η = 3, can be changed by user.
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FIGURE 1. Workflow of the contesting procedure.

• Parameter for each round: Based on the number of
surviving candidates from the previous round, the
number of candidates cr for the current round r is
computed in line 18. The elimination function discards
candidates labelled as performing badly and returns a set
of cr good candidates (line 20). Here, we simply select
the top cr candidates based on their best-found values.
A reasonable budget for each candidate is computed
based on the remaining budget, remaining rounds, and
the number of surviving candidates (lines 23-25). All
the above steps (lines 18-25) are repeated every round,
except the first round. The first round, all candidates
survive and are given a budget of b = binit (line 12-16).

• Finally, using value b obtained in the previous step, all
surviving candidates continue their optimize processes
(line 27-33).

2) ELIMINATION CRITERIA BASED ON A STATISTICAL
PROCEDURE
As mentioned in Section II-D, our second option adopts
the approach of racing procedures to determine well and
badly performing candidates. This approach also requires
a maximum number of sub-spaces c and a level of
significance α. Since the effectiveness of BO is mostly seen

Algorithm 1 DACopt Based on the Highest Performance
1: Input:M: Search space, K : number of sub-spaces to be

splitted, f : objective function, B: maximal number of
evaluations, binit: number of evaluations for initial step in
each of k BO processes, η: ratio controls the proportion
of candidates discarded in each round

2: Output: p∗: the best pipeline setting, 1∗: the best value
3: {M1, . . . ,Mc}, c← splitter(M,K )

{divide the input search space into c sub-spaces, c ≤ K}

4: b0 = 0
{initialize the corresponding BO processes with 0 bud-
get.}
{BEGINNING OF INITIAL PHASE}

5: forMi ∈ {M1, . . .Mc} do
6: BOi,Hi← Bayesian Optimizer (Mi, f , b0)
7: end for

{BEGINNING OF CONTESTING PHASE}
8: Rmax ← dlogη(c)e FRmax : number of rounds
9: r = 0 {r : round number}

10: repeat
11: if r = 0 then
12: cr ← c
13: (BO1, . . . ,BOcr )← (BO1, . . .BOc)
14: FNote: at the first round cr = c, but the order of

candidates are shuffled.
15: b← binit
16: Fall candidates have an equal budget binit for the first

round
17: else
18: cr ←

⌈ cprevious
η

⌉
19: Fminimum number candidates in the current round
20: (BO1, . . . ,BOcr )← eli.

(
(BO,H)i∈{1,...,c}, cr

)
21: FH = {(pn,1n)evaluatedn=1 }

22: FSelect goodness candidates for the current round,
ordered by performance/rank

23: Br ←
⌊ B
Rmax−r

⌋
24: FBr :total budget for the current round
25: b←

⌊Br
cr

⌋
{budget per candidate}

26: end if
27: for BOi ∈ {BO1, . . . ,BOcr } do
28: BOi .AddBudget(b) {add budget b to the selected

candidate}
29: BOi,Hi← BOi .optimize()
30: FContinues BOi process until the added budget b

run out.
31: B← B− b
32: FUpdate the remaining budgets
33: end for
34: cprevious← cr
35: r ← r + 1
36: until r <= Rmax
37: Return p∗,1∗ = argmaxp,1 {H}i∈{1,...,c}
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in the later phases of optimization when it learns to produce
better settings, we only count the best-found value of the
initial sampling step to be considered for further statistical
tests. Unlike the first elimination criteria method, this method
does not compute the number of rounds or budget for each
round since it completely depends on the statistical results;
instead we use a step size λ8 to limit budget per round. At the
end of the round, a Friedman test [33] is performed to verify
whether there is significant difference between the pair of
candidates. If it is the case, a Holm post-hoc test [34]9 is
applied to compare the highest-ranked candidate to others.
Any candidate that fails the test is removed from the list
of surviving candidates. This loop is repeated until the best
candidate is found.

This approach also requires a maximum number of sub-
spaces K and a level of significance λ. This process,
summarized in Algorithm 2, consists of the following steps:
• Phase 1- Initialize: Using the same split function as
Algorithm 1, to produce k (k ≤ K ) sub-spaces (line 1).
All candidates are initialized with the minimum required
budget binit (line 3).

• The main operates in the contesting phase: maintain a
set of surviving candidates .10 A statistical test will be
performed at each round to determine if there is any
pair of candidates are significantly different (line 17).
If the null hypothesis is false, a post-hoc test is being
applied on each pair of candidates (line 18-19). Any
candidate that fails the test is removed from the survived
candidates (line 20-21). Next, a budget λ is added to each
candidate in the survived set. This procedure is repeated
until the total budget runs out.

Lastly, both options naturally support parallel implemen-
tation. We require the number of maximum available threads
τ, (τ ≥ 1), as an extra input parameter for the parallel
mode. The parallel mode will be discontinued when the
best sub-space is found. In both algorithms, parallel mode is
applied to execute the BO processes.

B. FIXING THE GAP BETWEEN SERIAL AND PARALLEL BO
Bayesian optimization, called otherwise the Sequential
model-based optimization (SMBO), is naturally sequential.
However, most modern optimizer-based BO approaches
include a parallelized version in addition to the original BO
method. AutoML-based BO is typically parallelized by either
assessing in parallel (1) cross-validation folds or (2) multiple
settings, e.g., [37]–[39]. While the first approach focuses
on parallelizing evaluations inside the objective function,
it does not affect BO, but it is efficient when k is less
than the available resources. The second approach might

8λ = 1, can be changed by user.
9Following the recommendations by [35], [36].
10Notes for the contesting phase: Since the effectiveness of BO is mainly

after the initial sampling step when it learns to produce better settings.
Thus, we only count the best-found value of the initial sampling step to be
considered further statistical tests. We only perform the statistical test when
the sample size exceeds 2.

Algorithm 2 DACOpt Based on the Statistical Test
1: Input: M: Search space, K : number of sub-search

spaces, f : objective function, B: maximal number of
evaluations, binit: minimum evaluations per sub-search
space, λ = 1: step size, α = 0.05: level of significance

2: Output: p∗: the best pipeline setting, 1∗: the best value
3: {M1, . . . ,Mc}, c← splitter(M,K )

{divide the input search space into c sub-spaces, c ≤ K}
{BEGINNING OF INITIAL PHASE}

4: forMi ∈ {M1, . . .Mc} do
5: BOi,Hi← Bayesian Optimizer (Mi, f , binit)
6: end for

{BEGINNING OF CONTESTING PHASE}
7: cr ← c {cr number of surviving candidates}
8: repeat
9: FPerforms a chosen statistical test with α to detect

there is at least one pair of candidates that are
significantly different

10: if cr < 3 then
11: stac←WilcoxonTest()
12: F Initial WilcoxonTest if cr < 3, this will be used in

line 17
13: else
14: stac← FriedmanTest()
15: FInitial FriedmanTest if cr ≥ 3, this will be used in

line 17
16: end if
17: if (¬stac({Hi}

survive
i=1 , α)) & cr > 1 then

18: i∗ = argmaxRanking({Hi}
survive
i=1 )

19: Fi∗: the highest ranked among the surviving candi-
dates based on a ranking test

20: FPerforms a Holm post-hoc test to detect candidates
significantly worse than i∗

21: cr ← number of surviving candidates
22: else if cr = 1 then
23: λ← B
24: FLast round when only 1 candidate, the remaining

budgets is assigned
25: end if
26: for BOi ∈ {BOi}

survive
i=1 do

27: BOi .AddBudget(λ) {add budget λ to the selected
candidate}

28: BOi,Hi← BOi .optimize()
{Continues BOi process.}

29: B← B− λ
{Update the remaining budgets}

30: end for
31: until B ≥ 0
32: Return p∗,1∗ = argmaxp,1 {H}i∈{1,...,c}

lead to inefficient solutions proposed by BO, in terms of
the number of function evaluations. Since the objective
function is expensive, we have to choose a configuration
that might perform best. In the following, we discuss how
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parallelized BO can lead to poorer results compared to serial
approaches.

Let us consider a noiseless function f : M ⊂

Rd
→ R and it’s real-valued surrogate model f̂ =

{P(pi,1i)ti=1} for time step t . At a new step t + 1,
a sampling approach (randomly) generates a set of solutions
{p̂1, . . . , p̂n}. Those later will be estimated by the surrogate
model f̂ and used to propose one setting pt+1 ∈ {p̂1, . . . , p̂n}
by maximizing the acquisition function in Eq. 3. The set
of m next settings from the time step t of the sequence
approach is {p/t+1 = argmaxp∈M E[I (pt )], . . . , p/t+m =
argmaxp∈M E[I (pt+m−1)]}. In contrast, the parallel approach
proposes a set of solutions {pq1t+1, . . . , p

qm
t+1} ∈ argmaxp∈M

E[I (pt )]. Let p = |f (p) − f̂ (p)| denote the difference
between the performance of the setting p on the true objective
function f and it’s surrogate f̂ . Clearly, the quality of BO in
suggesting new solution(s) is highly dependent on f̂ and the
statistical property of f̂ (i.e., uncertainty) at time t , which
significantly increases as more historical data is collected.

Thus,
∑m

j=1 p
/
t+j ≥

∑m
j=1 p

qj
t+1. Hence, the quality of m

additional time steps in the sequential method may be more
robust than those in the parallel technique. Thus, there is a
discrepancy between the current serial and parallel BOs.

For the reasons above, we use sequential BO to solve
each search sub-space. Fortunately, BO processes in our
proposed procedure are independent (see Figure 1). There-
fore, we introduce a partly-parallel approach instead of fully
parallel. Instead of proposing a set of future solutions from
a single search area like the fully parallel technique does,
in order to ensure the best performance of BO at every
iteration, DACOpt proposes a set of next setting solutions as
sequential approach from multiple independent search areas:
p/it+1 = argmaxp∈Mi

E[I (pt )],∀i ∈ {1, . . . , c}. Thus, p/it+1
in either serial or parallel situations are exactly the same. For
parallel computing, a parallel pool ofm available workers will
be repeated d cme times to finish c processes. The last iteration
of that parallel pool is partly parallel if (c mod m) > 0 and
fully parallel otherwise. As a result, our approach holds the
same effectiveness in both cases.

The key benefits of our DACOpt approach are as
follows:
• Based on the performance of the related BO process, the
budget adaptively redistributes to the search area. As a
result, the budget is distributed effectively.

• As a partly-parallel BO variant, the proposed approach
has parallel efficiency without harming BO perfor-
mance.

• BO performance and robustness can be increased
since each BO process optimizes a relatively small
low-dimensional search space independently.

IV. EXPERIMENTAL SETUP
In order to evaluate the robustness and general applicability
of our proposed approach, we compare it to other state-
of-the-art AutoML optimization approaches. We reproduce

TABLE 1. Proposed DACOpt approaches compared in this study.

TABLE 2. Parameter settings.

the experimental setup with the total of 117 benchmark
datasets on two scenarios with optimization of 2 operators
(Section IV-A) and 6 operators (Section IV-B). In both
scenarios, we compare the performance of BO-based
variants with the TPE surrogate model (BO4ML and
Hyperopt [6], [40], [41]) with the two proposed con-
testing procedures against those without such procedure
(see Table 1).
More precisely, our two scenarios reproduce the experi-

mental setups of [12] and [42], respectively. Furthermore,
we follow the parameter settings of those studies, including
datasets, search space, k-fold cross-validation setup, train/test
split, and performance metric – all parameter settings are
summarized in Table 2.

A. FIRST EXPERIMENTAL SETUP
The first experiment is based on a search space of resampling
(21 techniques) and classification (5 algorithms) operators,
for class-imbalanced problems on 44 binary datasets (see
Figure 3 for the description of these datasets). The overall
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structure of this experimental setup is summarized in
Figure 2. The process starts with data preprocessing, i.e.,
Label encoding, Scaling, on the input dataset. The 5-fold
cross-validation is applied at this step to overcome the over-
fitting problem. The outcome is then fed into the second phase
optimizing the search space of 2 operators: resampling and
classification operators.

1) SEARCH SPACE
This experiment used a search space of 2 operators with the
total of 64 hyperparameters (see also [12]):

• The first operator is the resampling operator, aiming
to resamples the imbalanced input dataset to have
a balanced dataset. The resampling operator includes
21 resampling approaches; they fall into 4 major
groups, such as No resampling, Over-resampling
(7 algorithms), Under-resampling (11 algorithms),
Combine-resampling (2 algorithms). The resampling
algorithms are implemented in the Python package
imbalanced-learn.11

• The final operator is the classification operator,
with 5 classification algorithms (i.e., Support Vector
Machines (SVM), Random Forest (RF), K-Nearest
Neighbors (KNN), Decision Trees (DTC), and Logistic
Regression (LR)). The classification algorithms are
implemented in the Python package Scikit-learn.12

2) PARAMETER SETTING
We used a budget of 500 function evaluations, with the
original experimental setup, data pre-processed and source
code provided by [13]. Number of candidates K set to 10, the
initial sample size for each candidates is 5. The 5-fold cross-
validation approach is used, and the averaged geometricmean
values over 10 repetitions are reported.

B. SECOND EXPERIMENTAL SETUP
The second experiment is based on Auto-Sklearn [9]
search space with up to 6 operators for classification
problems on 73 AutoML benchmark datasets (described in
Figure 4). In this experiment we compare our 4 proposed
approaches to the 6 well-known AutoML frameworks,
i.e., Auto-sklearn (BO and Random Search) [9], [43],
TPOT [44], ATM [45], H20 [46], and Hyperopt-sklearn
(HP-sklearn) [11]. All experiments ran over 10 indepen-
dent repetitions with a wall-time limit of 1 hour per
run on 8 CPU-cores. In this experiment, we used a
search space generated by Auto-sklearn [9]. We experiment
with our approaches as the same experimental setup with
73 AutoML benchmark datasets reported in [42]. The overall
structure of our AutoML framework is summarized in
Figure 5:

11https://github.com/scikit-learn-contrib/imbalanced-learn
12https://scikit-learn.org/

1) The process begins by downloading the corresponding
dataset from OpenML [47], [48] of the OpenML #Task
ID (input by user).

2) The necessary metadata is extracted from the input
dataset to generate a suitable search space χ by the
Auto-sklearn search space generator. Note that this
search space generator is based on two aspects: the
machine learning problem, i.e., binary classification,
multi-class classification, multi-label classification,
regression, multi-output regression, and the data rep-
resentation, i.e., either dense or sparse representation.
In practice, the generated search space for a single
ML problem is large and commonly having up to
153 hyperparameters and 6 operators, i.e., categori-
cal encoder, numerical transformer, imputation trans-
former, re-scaling, feature pre-processor, and learning
operator.

3) The search space χ is converted to our search spaceM,
which allows setting a hierarchical tree of similarity
of algorithms.13 In the meantime, the input dataset
is reprocessed and split into two independent sets
Dtrain and Dtest , with the original data prepossess
and train/test split techniques used in [42], i.e., 30%
for testing and the remaining for training. Next, the
4-fold cross-validation is applied on Dtrain to avoid
the over-fitting problem. The later optimization phase
takes those k-folds and search space M. For a fair
comparison, the optimization time only counts after
this downloading step.

4) We optimizes the search space M until the wall-
time reaches 1 hour and return the best-found pipeline
setting p∗, consisting of a sequence of operators and
their optimized hyperparameter settings.

5) Once the optimization process is done, the best-found
pipeline setting p∗ is used to initialize the cor-
responding machine learning model. It then learns
Dtrain and predicts Dtest . Lastly, the test accuracy is
calculated.

1) PARAMETER SETTING
For a fair comparison, we use computational resources
similar to [42] and [13]. For clarification, all experiments are
conducted using our available computation clusters, namely
The Distributed ASCI Supercomputer 5 (DAS5) [18], each
computation node (32 cores) parallelly runs 4 experiments,
i.e., fixing 8 cores for one experiment. All experiments
repeated 10 times with different random seeds, limited by a
soft-limit of 1 hour 14 and a hard-limit of 1.25 hours.15 The
performance of a single configuration is limited to 10minutes

13Here we based on the hierarchy used in [49] and [50] and discussed
in [16].

14Soft-limit: the timeout’ parameter set to optimizer.
15Hard-limit: The optimization process will be manually aborted after

1.25 hours for any unexpected technical reasons. In this way, the
configuration which achieved the highest performance is known as the best
configuration of the run.
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FIGURE 2. Flowchart of the experimental setup.

FIGURE 3. Overview of the characteristics of 44 imbalanced benchmark
datasets. The scatter plot shows the #Imbalance Ratio (IR) and the
number of instances (#Instances) on a logarithmic scale. The color
indicates the number of features (#Features). Figure best viewed in
color.

with 4-folds cross-validation on the training data, i.e., the
evaluation of a fold is allowed to take up to 150 seconds.
The evaluation of a configuration is aborted and returns a
zero if any folds got an error, e.g., infeasible configuration,
timeout. Finally, the average accuracy rates on test data over
10 repetitions are reported.

C. REPRODUCIBILITY
The reproducible scripts for both experimental results
are provided in a git-repository https://github.com/ECOLE-
ITN/DACOpt/tree/main/Experiments.

Lastly, both experiments do not use parallel computing to
ensure a fair comparison; however, we provide theoretical
guarantees that our partially parallel execution is quicker than
serial execution (see Section III-B).

V. RESULTS AND DISCUSSION
In this section, we report and discuss the results obtained from
the two experimental setups introduced above. Generally

FIGURE 4. Overview of the characteristics of 73 AutoML benchmark
datasets. The scatter plot shows the number of features (#Features) and
the number of instances (#Instances) on a logarithmic scale. The symbols
indicate the number of classes and the color indicates the number of
samples that contain missing value (#Incomplete instances).

speaking, we target three goals: (1) to compare the perfor-
mance of our two contesting procedures in terms of number
of function evaluation and wall-time limit; (2) to compare the
performance of BO with and without the proposed contesting
procedures; (3) to compare those against the current state-of-
the-art AutoML frameworks.

For each tested case, the method that achieved the
highest performance is counted as winning, provided that its
performance is significantly better than all other methods,
according to the Wilcoxon signed-rank test [51] with
level α = 0.05. The method that performs significantly
worse than the best is counted as a loss. If there is no
significant performance difference between two methods,
they are considered equal. The method is counted as a
well-performing if it either achieved the best performance or
it is not significantly worse than the best found method on the
corresponding case.
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FIGURE 5. Flowchart of the second experimental setup.

FIGURE 6. Overview of the results over 10 repetitions for the 44 binary
imbalanced benchmark datasets. Figure best viewed in color.

A. FIRST EXPERIMENT RESULTS
The results of the first experiment are summarized in
Figure 6 to illustrate the performance of our four tested
approaches, i.e., DAC-HB, DAC-SB, DAC-HH, DAC-SH
compared to BO4ML and Hyperopt. This figure is based on
the average geometric mean over a 5-fold cross-validation
over 44 imbalanced binary benchmark datasets. We make the
following observations:
• Comparing two methods that use the highest perfor-
mance as the elimination criteria (highest value-based
contest), DAC-HH achieved the highest performance

more times than DAC-HB (18 vs. 14). However,
DAC-HB significantly won on more tested cases than
DAC-HH. Additionally, DAC-HB loses on fewer cases
than DAC-HB (1 vs. 5).

• Compared to the contesting procedures that used sta-
tistical tests as the elimination criteria (statistical-based
contest), two methods, i.e., DAC-SH and DAC-SB,
achieved a similar performance.

• Overall, DAC-HB performs well in most of the tested
cases. More precisely, over 44 tested dataset, DAC-HB
loses only on dataset pima, where DAC-HH is the
winner.

Lastly, another point worth mentioning is that, we expected
the statistical-based approaches, i.e., DAC-SB and DAC-SH,
to perform better than the highest-based approaches, i.e.,
DAC-HB and DAC-HH. However, the experimental results
are contrary to our assumption. To investigate their opti-
mizing behavior, we plot a single run of those approaches
on the dataset abalone9-18 in Figure 7. Two plots on the
left show the convergence behavior of the highest-based and
statistical-based contests on the right. All approaches use
a total budget of 500 function evaluations, and the search
space is split into 10 sub-spaces. The dashed-grey vertical line
indicates a contest round cutoff point, i.e., the end of the round
where the elimination function is called. The extra dashed-red
vertical line on the two left plots shows the most extended
sequence of the corresponding underlying optimizer. We can
observe that the examined search space is relatively small
and not significantly different. The statistical-based approach
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FIGURE 7. Illustration of the contesting process on dataset abalone9-18.
This figure shows the optimization convergence plots of DAC-HB
(top-left), DAC-SB (top-right), DAC-HH (bottom-left) and DAC-SH
(bottom-right) approaches. All approaches are initialized with the same
random seed.

maintains more candidates throughout the contest than the
highest-based approach. Consequently, the best candidate
was found late with less budget than the best candidate in the
competitor approach.

B. SECOND EXPERIMENTAL RESULTS
The results of the second experiment are summarized
in Figure 8, based on a Wilcoxon signed-rank test with
α = 0.05. This figure is based on the accuracy of the
test dataset over 10 repetitions to show the performance
differences between two BO variants-based TPE surrogate
models, namely BO4ML and Hyperopt, to compare both
with and without the proposed contesting procedure, as well
as with two elimination criteria, namely the highest value
and a statistical procedure (see Table 1). Additionally,
we also compared against the current state-of-the-art AutoML
frameworks, i.e., Auto-sklearn, Random search (Random),
HPsklearn, TPOT, ATM, H20, based on the results obtained
by [13], [42]. Full results of this experiment are provided in
Appendix C-B.
• Firstly, comparing the three approaches that use
Hyperopt as the underlying optimizer, i.e., DAC-HH,
DAC-SH, and Hyperopt, we can observe that both
proposed contesting procedures won on more tested
cases than Hyperopt. More precisely, DAC-HH,
DAC-SH, Hyperopt significantly outperform others in
8, 3, 2 cases, respectively. However, in those tested cases
of Hyperopt, it is never significantly better than both
DAC-SH and DAC-HH; DAC-SH and DAC-HH are
not significantly different. In contrast, DAC-HH and
DAC-SH significantly outperform Hyperopt in 5 and
1 cases, correspondingly. Therefore, we can conclude
that (1) both contesting procedures significantly
improved the performance of BO, (2) DAC-HH won
Hyperopt on more cases compared to those on DAC-SH.

• Secondly, we analyze the results of three approaches
that use BO4ML as the underlying optimizer, i.e.,

DAC-HB, DAC-SB, and BO4ML. We observed that:
(1) all three approaches performed well on 73%, 67%,
and 55% tested cases, respectively; (2) DAC-HB
achieved the highest performances on the most of tested
cases, followed by BO4ML and DAC-SB. In 11 cases
where BO4ML significantly outperformed others, it was
not significantly better than any of competitors in
this comparison. DAC-SB was significantly better than
BO4ML on 1 tested case, i.e., task 146821, but it never
won DAC-HB. In comparison, DAC-HB outperformed
DAC-SH and BO4ML on 3 and 7 cases, correspond-
ingly.

• Comparing the results of 8 approaches using the
search space of Auto-sklearn, i.e., our four approaches,
BO4ML, Hyperopt, Auto-sklearn, and Random search.
Firstly, all BO-based approaches perform better than
Random search over all tested cases. Random search
achieves the highest result in 1 case (#ID: 24), where
all competitors perform equally (no win). Secondly,
it can be seen that DAC-HB won in most tested
cases, followed by BO4ML, DAC-HH, Auto-Sklearn,
DAC-SH, DAC-SH, Hyperopt, and Random search,
respectively. We conclude that clearly, the proposed
approach improved the efficiency of BO for solving
the AutoML optimization problems. This finding may
be explained by the fact that the HPO-based approach
does not consider the relationship of algorithms under
operators; thus, it requires more resources to cover large
and complex search space in this experiment. In contrast,
via groupping similar algorithms together and splitting
the original search space into smaller independent
sub-spaces, the proposed approach utilizes the given
budget better. Consequently, the search space can be
covered with a relatively small budget, and the most
promising sub-space can be identified early. As a result,
the resources are efficiently distributed. Additionally,
BO is known to perform better for low-dimensional
problems [15], [23], [24] – our approach transfers the
original high-dimensional problem of AutoML into
multiple low-dimensional problems, thus improving the
performance of BO.

• Additionally, when comparing all contesting variants
together, it can be seen that DAC-HB won on more
tested cases than others. The contesting procedure
based on the highest performance, i.e., DAC-HH,
DAC-HB, won on more cases than those based on
statistical procedure, i.e., DAC-SH, DAC-SB. This
finding could be explained by the fact that executing
a statistical method adds to the overall computational
cost of the procedure. As a result, the contesting
technique that used statistical procedures examined
fewer configurations in the same amount of time as the
others.

• Finally, the proposed contesting procedures performed
well on up to 73% and at least 53% over all tested
cases, when to compared to Random Search - 8%,
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FIGURE 8. Overview of the results over 10 repetitions for the 73 AutoML
benchmark datasets. Figure best viewed in color.

Hyperopt - 11%, AutoSklearn - 21%, TPOT - 27%,
ATM - 30% and H20 - 37%.

VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed a novel contesting procedure
for the AutoML optimization problem, namely DACOpt,
which is complementary to the existing BO approaches.
DACOpt partitions the AutoML search space into multiple
relatively small sub-spaces based on algorithm similarity and
budget constraints. Next, BO approaches are employed to
optimize those sub-spaces independently. The budget is then
adaptively distributed to the search area based on the per-
formance of the corresponding BO processes. The proposed
contesting procedure has two different variants of elimination
criteria – based on the highest performance and a statisti-
cal procedure. Additionally, we presented a partly-parallel
approach to use BO to address the AutoML optimization
problems with provably theoretical guarantees. Two exten-
sive experiments on the total of 117 benchmark datasets
demonstrated the superiority of our novel contesting proce-
dures over the current state-of-the-art AutoML optimization
approaches.

In the future, we intend to incorporate meta-learning
approaches to identify search areas that may perform well
early. Lastly, the scope of this study was limited to the
AutoML optimization problem; we plan to extend our
research for Neural Architecture Search (NAS) problems in
the future.

APPENDIX A ADDITIONAL DESCRIPTION ON THE
SPLITTING APPROACH
In this section, we provide a short description on splitting
function. AutoML search space is complex due to the number
of operators and their choice of algorithms. In practice,
the search space can lead up to thousands of algorithm
combinations over operators. Since the tuning budget is
relatively small vs. a large number of possible pipelines
over operators, [13] proposed grouping them based on

TABLE 3. Number of positive, negative classes, attributes (#Att) and the
imbalance ratio (IR) of the KEEL Datasets, ordered by increasing IR value.

their similarities with the assumption that a good choice
for one algorithm in the group can also serve as a good
choice for other algorithms in the group. Consequently,
the sampler can maximize coverage of the search space
by sampling at the group level instead of the algorithm
level.

Reference [13] was mainly focused on initial sampling,
where the budget is typicallymuch smaller than the number of
combinations of algorithm’s groups. As a result, the group’s
level is limited to only 1, i.e., the group’s item is a specific
choice of algorithm. In this work, we consider a scenario
that a set of algorithms under a group might be slightly
different. For example, while algorithms RandomOverSam-
pler and SMOTE are both Oversampling techniques (see
the bottom plot in Figure 9), they differ significantly:
RandomOverSampler randomly generates more data for
minority classes, while SMOTE is based on interpolation.
To account for the possible hierarchical groupings of the
algorithms, we have extended [13, Algorithm 2] to allow
any group at any level can have child groups. Therefore,
the needed groups are produced by downing (or upping)
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FIGURE 9. Illustration of the Splitting approach on a search space of two operators, i.e., Classifier and Resampler, used in our first experiment. The
connection in orange indicates a search space/ sub-space.

FIGURE 10. Overview of winner across 10 repetitions on 44 binary-class
imbalanced benchmark datasets. The color indicates the corresponding
winner. Figure best viewed in color.

level to minimize randomness. Consequently, the resulting
sub-spaces are purer, i.e., The difference between items in a
group is minimized, representing their actual relationship.

APPENDIX B ADDITIONAL DETAILS FOR EXPERIMENTAL
SETUP
In this section, we present the detailed information on
examined datasets, i.e., datasets used in the first experi-
ment (Appendix-Section B-A) and the second experiment
(Appendix-Section B-B), as mentioned in Section IV of the
main paper.

FIGURE 11. Overview of winner across 10 repetitions for the 73 AutoML
benchmark examined datasets. The color indicates the corresponding
winner. Figure best viewed in color.

A. DATASETS USED IN THE FIRST EXPERIMENTAL
The examined datasets in this experiment are taken from the
KEEL repository [52] and summarised in Table 3. For each
dataset, we include the Imbalance Ratio (IR), which is the
ratio of the number of majority class instances to that of
minority class instances.

B. DATASETS USED IN THE SECOND EXPERIMENTAL
The examined datasets in the second experiment is presented
in Table 4. This table includes 73 datasets, taken from
OpenML repository [47]. For each task, we include the
OpenML ID (#task id) and the corresponding dataset
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TABLE 4. List of 73 datasets used in our second experiment, ordered by increasing OpenML ID.
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TABLE 5. Average Geometric mean (rounded to 4 decimals) based on six approaches, i.e., DAC-HB, DAC-HH, DAC-SB, DAC-SH, BO4ML and Hyperopt, over
10 repetitions for the 44 examined datasets, ordered by increasing imbalance ratio (#IR) value.

(#ID, Name), number of classes (#Classes), number of
instances(#Instances), number of features for one instance
–Total features (#total), number of numeric (#num) and
categorical features (#cate), number of missing values
(#Missing values), and number of instances with missing
value (#Incomplete instances).

APPENDIX C ADDITIONAL DETAILS FOR EXPERIMENTAL
RESULTS
In this section, we provide the detailed results for the two
experimental setups as shown in Figure 6 and Figure 8 in the
main paper. In subsequent Tables 5 and 6 for both experi-
ments, the highest performance for the corresponding dataset
is highlighted in bold. The method performs significantly
worse than the best according to the Wilcoxon sign-rank test
with α = 0.05 is underlined. Two extra rows at the end of the
corresponding table display additional summaries. The first
extra row shows the number of times each scenario got the
highest value over tested datasets. The last extra row indicates

the number of times each approach was significantly better
than the other in group.

A. FIRST EXPERIMENT RESULTS
The results of the first experiment are presented in Table 5
to illustrate the performance between 2 BO variants based on
TPE surrogate model with and without proposed contesting
procedures using 2 elimination criteria – highest performance
and statistical test procedure, i.e., DAC-HB, DAC-HH,
DAC-SB, DAC-SH, BO4ML and Hyperopt, respectively.
Additionally, the distribution of the best found optimizer over
44 tested datasets is summarized in Figure 10.

B. SECOND EXPERIMENT RESULTS
In this experiment, we compared all approaches used in
the first experiment to the current state-of-the-art AutoML
frameworks, i.e., Auto-sklearn-SMAC (Auto-sklearn) and
Auto-sklearn-Random search (Random), HPsklearn [11],
TPOT [44], ATM [45], H20 [46], based on the results
obtained by [13], [42]. The detailed results of the second
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TABLE 6. Average accuracy (rounded to 5 decimals) over 10 repetitions for the 73 OpenML datasets, ordered by #Task id. The first fourth columns after
‘‘Dataset’’ shows our experimental results, i.e., 4 variants of the contesting procedure. The remaining columns contain results obtained by other AutoML
frameworks according to [13] and [42].
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tested scenarios are presented in Table 6. We note that entries
with missing values in the last 6 columns indicates arbitrary
fails reported by [42]. Additionally, the distribution of the best
found optimizer over 73 examined datasets is summarized in
Figure 11.
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