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Abstract

Excessive nitrogen (N) use in agriculture, industry, and household waste leads to

widespread N release throughout the environment, causing eutrophication in both

freshwater and coastal areas. To better understand N-induced eutrophication and

otherN-use-related environmental impacts at the local scale, improvements in the spa-

tial resolution of life cycle impact assessmentmeasures are required. Here, we present

a method to estimate gridded fate factors (FFs) at a half-degree resolution based on

the IntegratedModel toAssess theGlobal Environment-GlobalNutrientModel to pro-

vide eutrophication indicators for global N-related manufacture, trade, and consump-

tion in life cycle assessment. Across global freshwater systems, our cumulative FFs

have a 5th percentile of 0.9 days and a 95th percentile of 184.0 days. Aggregated FFs

for administrative units range from 0.3 days to 211.9 days. The hotspots of cumula-

tive FFs are mainly distributed upstream of large reservoirs or lakes. On a global level,

advection is the dominant process controlling the FF (69.7% of areas), followed by

retention (29.0%), andwater consumption (1.3%). N retention dominates in advection-

favoring, high-discharge regions due to the high residence times, while water con-

sumption tends to dominate water-scarce zones. The results demonstrate the impor-

tance of gridded information to assess eutrophication impacts, as it characterizes

N emissions from anthropogenic sources at high spatial resolution in comparison to

basin- or country-level assessments. Introducing soil–freshwater N fate complements

existing P-related fates to improve global assessments of eutrophication. This article

met the requirements for a Gold–Gold Badge JIE data openness badge described at

http://jie.click/badges
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1 INTRODUCTION

Humanactivities, including foodproduction, detergent and fertilizer use, andwaste suchas sewage fromhouseholds and industry, haveexacerbated

nutrient emissions to the environment, posing a pervasive threat to aquatic ecosystems. Nitrogen (N) is an important nutrient for life, but in excess

can lead to eutrophication, hypoxia, and the deterioration of ecosystems (Jenny et al., 2016; Müller et al., 2012; Vonlanthen et al., 2012). Global

N input to freshwater systems has grown from 34 to 64 Tg year−1 from 1900 to 2000 (Beusen et al., 2016), leading to an increase in eutrophic

(and hypoxic) areas in freshwater and coastal systems (Jenny et al., 2016). Eutrophication can induce excessive reproduction of pernicious algae

blooms (Chislock et al., 2013), whose decomposition consumes oxygen and can lead to hypoxia/anoxia in the water column. These conditions may

be unable to sustain many aquatic organisms and thus jeopardize biodiversity (Schindler & Vallentyne, 2008), and may lead to a collapse of the

aquatic ecosystem. This deterioration of aquatic ecosystems may last months or even years (e.g., algae blooms in Taihu Lake; Duan et al., 2015)

and is highly likely to intensify because of increasing demand for food, fertilizer use, and industrial production with population growth (Mogollón,

Lassaletta et al., 2018; Tilman et al., 2001).

Life cycle assessment (LCA) provides a widely recognized framework to quantify environmental impacts, such as eutrophication, throughout

the whole life cycle of a specific product (Hellweg & Milà i Canals, 2014; Payen. et al., 2019). In the life cycle impact assessment (LCIA) phase of

LCA, characterization factors (CF) relate the emissions or resource use from various life cycle stages to associated environmental impacts. For

eutrophication, the fate factor (FF) describes the nutrient fate originating from various anthropogenic emissions and serves as the first step toward

assessing the environmental impact of the nutrients from an LCIA standpoint.

Historically, LCA research has evaluated eutrophication indicators ignoring geospatial variation, a limitation that has been pointed out in pre-

vious research (Hauschild, 2006; Hauschild & Potting, 2005; Morelli et al., 2018). For instance, the Tool for the Reduction and Assessment of

Chemical and other environmental Impacts (TRACI) (Bare, 2002,2011; Bare et al., 2012) provides a midpoint eutrophication indicator by mul-

tiplying a nutrient factor and a transport factor. Nonetheless, TRACI does not model explicit N processes; instead, it derives the nutrient fac-

tor from the Redfield ratio to describe the relative influence of P versus N (Norris, 2002). Further, the transport factor, which is the same for

N and P, ranges from 0 to 1 to represent the probability of the release arriving in an aquatic environment. TRACI assumes that all emitted

nitrogen contributes to eutrophication, and ignores biogeochemical transformations of N before reaching water bodies and during transport

through water bodies (Payen & Ledgard, 2017). More recently, however, coupling LCA with geographic information systems (GIS) has allowed for

the ability to identify locations undergoing (or that are susceptible to) N-induced impacts. Helmes et al. (2012) made the first big step toward

regionalizing eutrophication impacts by developing a gridded FF model for phosphorus (P). They simulated P fate from its emissions and their

model was later integrated into ReCiPe 2016 (Huijbregts et al., 2017), IMPACT World+ (Bulle et al., 2019), and LC-IMPACT (Verones et al.,

2020). LCA models focusing specifically on N have mainly been developed for marine ecosystems (Payen. et al., 2019), even though N has also

been regarded as a nutrient sometimes contributing to freshwater eutrophication (Dodds & Smith, 2016; Lewis et al., 2011; Payen. et al., 2019;

Schindler, 2006; Vollenweider, 1971). The study of Cosme and Hauschild (2017) estimated CFs for N in 66 large marine ecosystems (LMEs) and

their corresponding watershed based on the global Nutrient Export from WaterSheds (NEWS) 2 model (Mayorga et al., 2010). However, a grid-

scale FF model for freshwater N is not available globally. Large watersheds are often quite heterogeneous. Thus, gridded models, consisting of

much smaller spatial units, can better help evaluate local hotspots where nutrients may accumulate within watersheds. Furthermore, grid cells

can be aggregated more accurately than watersheds to any scale, such as the country scale, which is the typical spatial unit of life cycle inven-

tory data. Based on a review of existing spatially explicit fate models, NEWS 2, Soil and Water Assessment Tool (SWAT, Kalcic et al., 2015),

and the Integrated Model to Assess the Global Environment-Global Nutrient Model (IMAGE-GNM, Beusen et al., 2015) have been the recom-

mended options for the quantification of N fate factors for use in LCIA on a watershed scale (Morelli et al., 2018). Among them, NEWS 2 can

simulate the nutrient fate for rivers and watersheds, but the resolution is limited to the watershed scale. SWAT can simulate organic nitrogen,

organic phosphorus, nitrate, and dissolved inorganic phosphorus at the scale of user-defined hydrologic response units within a basin, but it is

seldom applied to wide geographic coverage, let alone globally. Because it provides global nutrient loads and emissions at a half-degree reso-

lution, Cosme et al. (2018) and Morelli et al. (2018) suggested IMAGE-GNM as the most comprehensive option for developing a grid-scale FF

model.

In this study, we present a grided, spatially explicit FF model for N emissions to freshwater systems over the globe. We extract infor-

mation about inland N fate from IMAGE-GNM at 0.5◦ × 0.5◦ grid cells on a global scale for the year 2000, and also run the model

for 1998 and 1999 to display the dynamics of N fate in subsequent years. IMAGE-GNM is a dynamic, distributed model with a yearly

time step. It depicts nutrient reaction and delivery processes in soils and freshwater systems. The N retention, the N withdrawn via

water consumption, and the N advection toward downstream cells—henceforth collectively termed “ N removal processes” following

Cosme et al. (2018) and Helmes et al. (2012)—as well as the drivers and accompanying uncertainties, are analyzed to better contex-

tualize the meaning of the obtained FFs. By highlighting the importance of the link between the hydraulic drivers and FFs, this analy-

sis allows identifying the possible impact of N in distinctive regions to improve the management of emission sources from production

activities.
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2 METHODS

2.1 Model structure

N fate in soil and freshwater depends on its input, transport, and removal processes (Mayorga et al., 2010; Seitzinger et al., 2005). At any location

on land, N is imported from applications, depositions, erosion, and fixation, and further transported to the freshwater. For each grid cell, the N

sources compose so-called soil N budgets (the difference between those inputs and N eliminations due to harvesting, grass cutting, and grazing) in

IMAGE-GNM. Surplus N is transported via leaching into groundwater or surface runoff. During the soil to freshwater transport, N concentration

declines due to absorption, uptakebyplants, anddenitrification.N is transported to open freshwater bodies via surface runoff, shallowgroundwater

transport, and deep groundwater transport.

Denitrification occurs in surface water and shallow groundwater that feeds into rivers along various flow paths, while N percolating from shal-

low to deep groundwater is assumed to not undergo denitrification (Beusen et al., 2015). Finally, the N contained in surface runoff and ground-

water arrives at rivers and large water bodies (e.g., lakes and reservoirs). Note that in IMAGE-GNM all N processes (e.g., reaction and transport)

taking place within multi-grid water bodies are assumed homogeneous andmodeled at the single-cell outlet. IMAGE-GNMalsomodels the treated

sewage as a point source emitted directly to freshwater system. The spatial data used in IMAGE-GNM includes land cover, soil, lithology, and climate

obtained from open-access databases.

IMAGE-GNMsimulates the overall fate ofN inputs.While IMAGE-GNMsplits emissions into natural sources (e.g., biological fixation) and anthro-

pogenic sources (e.g., synthetic fertilizers andmanure), once these sources enter the compartment, they constitute total nitrogen (TN). The ratio of

N decay from soil emissions to freshwater does not change within a cell, as it is determined by climate, soil texture, aeration, and soil organic car-

bon (C) content as opposed to the N soil content. The same applies to N emitted to freshwater, as the retention and residence time depend on the

hydrological conditions of the water bodies. Therefore, the separation of natural and anthropogenic does not affect the calculation of cumulative

FFs, but it could influence the emission-weighted FFs (i.e., regional average FFs) for diffusive emissions.

Here we estimated FFs for the year 2000, as it represents the most recent year available in IMAGE-GNM (Beusen et al., 2016). To show the

temporal variationofFFs,wealsoexamined theyears1998and1999, anddisplayed the relative standarddeviation (RSD)of FFs for direct emissions

to freshwater in “Supporting information S1.docx” within the Supporting Information. Our method can be replicated for other (more recent) years,

once the data become available.

N fate in this study is determined by retention and water consumption, as well as advection transporting N to downstream grid cells. We ran

IMAGE-GNMand used themodel inputs (e.g., emission data), intermediate variables (e.g., retention), and outputs (e.g., nutrient loading) to calculate

rate constants (𝜆adv,𝜆ret, and 𝜆con, respectively), which we implemented as the advection, retention, and consumption removal processes (Figure 1)

in the fate factor model. These rate constants, which were calculated for each grid cell, are explained further in Sections 2.1.1 to 2.1.3.

The cumulative fate factors (FFe→i, days), Equation (1) follow the approach of Helmes et al. (2012) and LC-IMPACT (Verones et al., 2020). FFe→i

denotes the sumof individual fate factors fromemission source e in cell i andall thedownstreamcells. The individual fate factors (FFe→i→j , days) indi-

cate FFs of the N emitted from source e in cell i to a specific receiving cell j. They are the product of the fraction of N transported from the emission

to freshwater (fre→i, dimensionless), the fraction of N delivered from the source cell i to receptor cell j by the freshwater system (fi,j , dimensionless),

and the persistence of N in the receiving compartment j (τj, year−1):

FFe→i =
∑
j

FFe→i→j = 365 ⋅ fre→i ⋅
∑
j

fi,j ⋅ 𝜏j (1)

The resulting FFe→i is spatially differentiated and it provides a basis for the environmental impact analysis caused byN emissions. A larger cumu-

lative FF suggests that emissions in the source cell result in a higher possibility and duration of N remaining in the receiving water bodies.

Point sources are regarded as direct loads to the water bodies, and thus fre→i,freshwater equals 1. In contrast, nutrients in the soil are trans-

formed/removed/retained during the transport from the soil to freshwater. For example, during the process of fertilizer application, N may be par-

tially left in the soil compartment and absorbed by plants, and only the remainder of N can be delivered to the freshwater system. IMAGE-GNM

distinguishes two emission routes from the soil to freshwater: losses from recent nutrient applications in the form of fertilizer, manure, or organic

matter transported by runoff and subsurface delivery (Hart et al., 2004), as well as losses from long-term accumulation in soil compartments, which

may be subject to erosion (McDowell & Sharpley, 2001; Tarkalson &Mikkelsen, 2004).

In IMAGE-GNM, the diffusive emissions excluding erosion only include agricultural applications (i.e., it excludes sludge). The transfer fraction

of N losses from recent nutrient applications (i.e., nutrient budget that contains fertilizer, animal manure application, and biological N fixation sub-

tracting crop harvesting, grass cutting, and ammonia volatilization) is considered as an export fraction of diffusive loads from the soil through runoff,

drainage, and leaching into groundwater (fre→i,diffuse, kg Nwater / kg Nemission).

fre→i,→diffuse =
Le→i,diffuse

Ee→i,diffuse
(2)
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F IGURE 1 Model structure and spatial relation between themodel grid cells. 𝜆adv, 𝜆ret, and 𝜆con indicate N removal rate constants for
advection, retention, and water consumption, respectively

where Ee→i,diffuse is the diffusive emission of source e from recent nutrient applications to the soil within grid cell i (kg year−1), and Le→i,diffuse is the

load produced by source e in grid cell i (kg year−1).

The transfer fraction of soil erosion (fri,erosion, kg Nwater / (km
2⋅year)) depends on the land use type.

fri,erosion,landuse =
Li,erosion,landuse

Ai,landuse
(3)

where Li,erosion,landuse is the soil N eroded to freshwater systemswithin grid cell i (kg year−1),Ai is the area of a given land use type in grid cell i (km2).

IMAGE-GNM distinguishes arable land, grassland, and natural land. Note that in each grid cell, fi,j and 𝜏j is the same for all land types, but erosion

FFs of different land-use types are distinguished via the enhanced transfer fraction of soil erosion (fr∗i,erosion,landuse). This latter parameter reflects

anthropogenic pressures due to a relative change from natural land to grassland and arable land (clanduse).

fr∗i,erosion, landuse = fri,erosion, landuse − fri,erosion, landuse

=
frerosion, landuse − frerosion, natural

frerosion, natural
⋅ fri, erosion, natural

= clanduse ⋅ fri, erosion, natural (4)

Calculating fri,erosion,landuse for arable land and grassland as well as fri,erosion,natural by using Equation (3), we found that clanduse is a constant with

values of 2.41 and 45.30 for grassland and arable land, respectively. Given the constant conversion between different land uses and thus equal

spatial patterns, FFs of natural land erosion were shown as the baseline in Section 3.1.

The persistence of N in the receiving water 𝜏j is defined as the reciprocal of the removal rates. It is related to advection rate (𝜆adv,j, year
−1), the

retention rates (𝜆ret,j, year
−1) and the removal rates by consumptive water use (𝜆con,j, year

−1) in estuaries, river reaches, and lakes.

𝜏j =
1

𝜆adv,j + 𝜆ret,j + 𝜆con,j
(5)
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The transport fraction of freshwater fi,jcan be expressed as a ratio between advection rate and the combined removal rates (Equation 6). In

contract to the persistence 𝜏j, the transport fraction of N in the source cell i delivered to receptor cell j (fi,j) is dimensionless, and is calculated as the

ratio ofN that reaches the receptor cell j to theN export from the source cell i (where n denotes the grid cell along the flow path between the source

cell i to the upstream cell adjacent to the receptor cell j). As the index cell j starts in source cell i, when j= i, fi,i = 1. Due to the removal by retention

andwater consumption along the flow path, the further away from source cell i, the less impact is caused in the receptor cell j.

fi,j =
j−1∏
n=i

𝜆adv,n

𝜆adv,n + 𝜆ret,n + 𝜆con,n
(6)

We elaborate on the components of Equations (5) and (6) in Sections 2.1.1–2.1.3.

In our global analysis, we excluded FFs fromarid and low-discharge cells. Inmany of these systems, surfacewater is highly likely to be unavailable

or insufficient to meet the local water demand and could bias the resulting FFs. Here, arid cells were defined to be cells with an aridity index (AI;

obtained from Trabucco & Zomer, 2019) of less than 0.2 (Middleton & Thomas, 1997). However, we still included the dominant rivers (e.g., the

Nile River) flowing within arid zones. For arid zones, cells, where the discharge is higher than the median of discharge in non-arid zones (325 mm

year−1), were kept, whereas, in non-arid zones, the cellswhere the discharge is lower than themedian of discharge in arid zones (6mmyear−1) were

excluded.

2.1.1 Advection

The advection rate constant (𝜆adv in Figure 1) was calculated following Helmes et al. (2012), following the principle that each grid cell undergoes

advection from the local cell to a downstream cell.

IMAGE-GNMuses the hydrological model PCRaster GlobalWater Balance (PCR-GLOBWB,Wood et al., 2011), where the river channel network

is based on theDDM30 flow directionmap of Döll and Lehner (2002), which links the upstream and downstream cells. The advection rate constant,

𝜆adv,i, is related to the water travel rate in river channels. This parameter equals the reciprocal of water residence time tr,j for water bodies, which is

determined by the dischargeQi (m
3 year−1) and volume Vi (m3) of the water body.

𝜆adv,i =
1
tr,j

=
Qi

Vi
(7)

Water from the ground surface, soil, or aquifer is transported to the river network. Besides exchange between surface and subsurface water

through infiltration and percolation, PCR-GLOBWB also simulates direct runoff, interflow, and base flow which are converted into discharge

(Beusen et al., 2015). Reservoir regulation is also introduced in discharge modeling. However, the discharge does not reflect consumptive water

use in IMAGE-GNM. Therefore, lakes and reservoirs are only included if the volume outstrips thewater storage capacity within a cell (Beusen et al.,

2015). Lake volumes and areaswere taken from theGlobal Lakes andWetlandsDatabase version 1 (GLWD1) (Lehner &Döll, 2004), while reservoir

data are from the Global Reservoir and Dam (GRanD) database (Lehner et al., 2011). In PCR-GLOBWB, the reservoirs were included in the model

dynamically, according to their reported construction time.

2.1.2 Retention

N retention (𝜆ret in Figure 1) consists of denitrification in water, sedimentation, and uptake by aquatic plants. As opposed to P, N undergoes little

absorption in sediments. Thus, the advection rate of N better approximates the reciprocal of the water residence time. The analysis of hundreds

of rivers and lakes by Behrendt and Opitz (1999) and Seitzinger et al. (2005) also indicated the link between N retention and hydrology. IMAGE-

GNMemploys the empirical retention equation ofWollheim et al. (2008), where the retention Ri (dimensionless) in cell i is a first-order degradation

process, shown in Equation (8).

Ri = 1 − exp

(
−

vf,i
HL,i

)
(8)

where HL (m year−1, Equation 9) is the hydraulic load, and vf (m year−1, Equation 10) is the net uptake velocity. The hydraulic load represents the

hydrological characteristics of water bodies. It is determined by the depth (Di, m) and residence time (tr,i, year) of the water bodywithin a cell.

HL,i =
Di

tr,i
(9)



6 ZHOU ET AL.

The net uptake velocity vf is affected by the biological and chemical features of the nutrient. In IMAGE-GNM, vf for N takes a base value of 35m

year−1 fromWollheim et al. (2006, 2008) and is modified by the annual temperature T (˚C) andN concentration CN:

vf = 35 ⋅ f (T) ⋅ f (CN) (10)

f(CN) represents the effect of concentration on denitrification resulting from electron donor limitation if excessive N is transported into the water

(Mulholland et al., 2008).

Alexander et al. (2004) proposed that the retention rate 𝜆ret,i (year
−1, Equation 11) in cell i is related to the net uptake velocity vf and the depth

(Di, m) of water bodies. Based on the in-stream retention Ri given by IMAGE-GNM, 𝜆ret,i can be derived from a function of a natural logarithm of

(1 − Ri) and advection rate 𝜆adv,i:

𝜆ret,i =
vf,i
D

= − ln (1 − Ri) ⋅ 𝜆adv,i (11)

2.1.3 Water consumption

Humans withdraw water from rivers, lakes, and reservoirs for irrigation, industrial production, and households. Some of the water withdrawal

returns to the freshwater system, while the rest of the water is consumed, along with a net removal of N from freshwater (𝜆con), which is not con-

sidered as an N output by IMAGE-GNM. Therefore, we introduce N removal from consumption of both surface water and groundwater into the

removal rates. The removal rate due to water consumption (𝜆con,i, year
−1, Equation 12) corresponds to a product of all fractions of water consump-

tion (fcon,i, dimensionless, Equation 13) and the advection removal rate (𝜆adv,i, year
−1).

𝜆con,i =
∑

fcon,i ⋅ 𝜆adv,i = (fagr,i + fdom,i + felc,i + fman,i + flvs,i) ⋅ 𝜆adv,i (12)

where fagr,i, fdom,i, felc,i, fman,i, and flvs,i (dimensionless) are the fractions of water consumption for agriculture, domestic, thermoelectric, manufactur-

ing, and livestockuse, respectively. The fractionofwater consumption fcon,i is the ratio between thevolumetric extraction rateofwater consumption

Ucon,i (m
3 year−1) and the available water in the form of river dischargeQi within a cell.

fcon,i =
Ucon,i

Qi
(13)

Global agricultural water consumption data were obtained from Pfister and Bayer (2014). The domestic, industrial, and livestock water con-

sumption data are from Flörke and Eisner (2011).

2.2 Aggregation of FFs

With the emissions of N applications (i.e., diffusive and point sources) and land use (through soil erosion) in any location quantified, the cumulative

FFs can be used to predict theN fate at a half-degree resolution. UnlikeHelmes et al. (2012) whoweighted FFs based on population, we aggregated

FFs by weighting according to the respective inventories for each emission route.We use the emission-weighting data of direct emissions to fresh-

water and diffusive emissions to the soil, while we weight erosion FFs using the areas of three land use types (Figures S1 to S5). These weighting

data were given at the same spatial resolution and for the same representative year as the cumulative FFs. The impact of direct N emissions to

freshwater and diffusive emissions to the soil over a region was assessed via emission-weighted FFs (Equation 14):

FFaverageregion,e =
1∑

i Ee→i∈r
⋅
∑
i

FFe→i∈r ⋅ Ee→i∈r (14)

The regional (e.g., country) average fate factor (FFaverageregion , days) is used to represent the aggregation of FFs over a region r. Ee→i∈r is the emission

from diffusive or point source e in grid cell i (kg year−1), provided by IMAGE-GNM.

Regional FFs of erosion FFaverageregion,erosion (days⋅kgNwater / (km
2⋅year)) aggregate nonzero FFs of erosion over a region and all land-use types through

area weighting:

FFaverageregion,erosion =
1∑
i Ai∈r

∑
i,landuse

FFi∈r, erosion,landuse ⋅ Ai∈r,landuse (15)
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where Ai∈r (km2) is the total land area of grid cell i; Ai∈r,landuse (km2) is the area of this land-use type; FFi∈r,erosion,landuse (days⋅kg Nwater / (km
2⋅year))

is the individual FF of soil erosion of the site-specific land use in grid cell i.

2.3 Net removal rate

Helmes et al. (2012) developed amethod to calculate the net removal rate to assess dominant processes for phosphorous persistence in freshwater,

andweapply thismethod toN. For the advectionprocess, thenet removal rate (kadv, dimensionless) canbe calculateddirectly byexcluding retention

and water consumption processes in the reciprocal of the FF of freshwater (Equation 16). However, during the calculation of the FF, advection

cannot be omitted and thus the net removal rates for retention and water use were estimated indirectly as the difference between the overall net

removal rate (kall, dimensionless) and the net removal rate excluding the corresponding process (Equations 17 and18). Finally, the dominant process

is determined by the largest net removal rate occupied in each cell.

kadv =
1

FFadv
(16)

kret = kall − knoret =
1

FFall
−

1
FFnoret

(17)

kcon = kall − knocon =
1

FFall
−

1
FFnocon

(18)

3 RESULTS

3.1 Global spatially explicit fate factors

The cumulative FFs (Figure 2, data can be found in “Supporting information S2(x).asc” within the Supporting Information where x represents the

sub-figure a, b, and c, given as ASCII grids with geographic coordinates [i.e., in degrees] and we used WGS84 for our figures) show a distinctive

spatial differentiationpatternover the globe. For instance, the fate factor of freshwater (FFi,freshwater) has hotspotsmainly located inNorthAmerica,

Central Asia, Russia, andTurkey;with high values also occurring in the east of SouthAmerica, SouthAfrica, East Asia, andEast Europe. Furthermore,

FFi,freshwater has a considerable variability, as its 5th and 95th percentiles are 0.9 and 184.0 days, respectively. The hotspots and high values of the

FFi,freshwater are distributed in large reservoirs and lakes and their upstream sources. For instance, inNorthAmerica, the hotspots of the FFi,freshwater

are distributed in theupper reachofColoradoRiver, at the upstreamof LakePowell and LakeMead, togetherwithMissouri River, at the upstreamof

Lake Sakakawea,Manicouagan reservoir, and LakeOahe. InAsia, the hotspots are situated LakeQinghai, LakeBaikal, and theKebanBaraji reservoir.

In Europe, the hotspots of FFs appear in North Europe, Spain, and Turkey. Low values of FFi,freshwater are commonlty situated near the coast.

The cumulative FFs of direct emission to freshwater, diffusive emission, and erosion show similar patterns. The 5th and 95th percentiles are 0.04

and 27.3 days⋅kg Nwater / kg Nemission for FFi,diffuse, and 5.2 and 2496.6 days⋅kg Nwater / (km
2⋅year) for FFi,erosion,natural.

3.2 Regional averages of fate factors

As life cycle inventories are usually reported at the national level (e.g., ecoinvent, Wernet et al., 2016), we also analyze the regional average FFs to

match that spatial scale (Figure 3, data can be found in “Supporting information S4.csv” within the Supporting Information). Generally, geographic

regions that contain no large lakes or reservoirs tend to have lower cumulative FFs, and thus emissions from those regions typically have less impact

on the regional FFs. Conversely, regions that have a large portion of lakes and reservoirs tend to exhibit higher regional FFs. For instance, there are

five geographic regions with a regional average FF of direct emission to freshwater larger than 100 days, while 39 geographic regions have an

average FF lower than 3 days (Figure 3). As for continents, the regional average FFs of direct emission to freshwater varies from 20.0 days in Africa

to 41.2 days in North America as calculated from aggregated values in Figure 3. The emission-weighted global average FFs for direct emission to
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F IGURE 2 Cumulative FFs (fate factors) for N emission to freshwater for 0.5◦ × 0.5◦ grid cells. (a) diffusive sources excluding erosion,
(b) baseline erosion on natural land, and (c) direct emissions to freshwater, including point sources. For erosion, the difference of FFs between
anthropogenic and natural erosion can be derived bymultiplying with clanduse. clanduse for arable land and grassland are 45.30 and 2.41,
respectively. The underlying data for this figure can be found in the Supporting Information
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F IGURE 3 FFregion. This figure presents cumulative FFs (fate factors) of direct emission of N to freshwater over geographic regions (e.g.,
country scale). The underlying data for this figure can be found in the Supporting Information. Other regional FFs are given in “Supporting
information S5.csv” and “Supporting information S6.csv” within the Supporting Information. The griddedweighting data for FFs are shown in
“Supporting information S1.docx” within the Supporting Information

F IGURE 4 Dominant processes of net removal rate for cumulative FFs (fate factors) on a global scale. Because FFs of different emission routes
only vary in the fraction of N transported from the emission to water (fre→i) which is irrelevant for removal rates, dominant processes are analyzed
based on FFs of freshwater. The underlying data for this figure can be found in the Supporting Information

freshwater is 29.3 days. The regional average FFs of diffusive sources and erosion can be found in “Supporting information S5.csv” and “Supporting

information S6.csv,” respectively, within the Supporting Information.

3.3 Dominant removal process for N fate

The dominant removal process for N transported to freshwaters differs across the globe (Figure 4, data can be found in “Supporting information

S3.asc” within the Supporting Information). In the northern hemisphere, retention dominates the cumulative FFs in most areas of North America,

EasternEurope, andCentralAsia,while in the southernhemisphere, retentiondominates in the eastern sideof the continents. In contrast, advection

is themain contributor in coastal areas aswell as SouthAmerica, northern and easternAsia.Water consumption dominates in somewater-deficient

areas, for example, Northern India and the Beijing-Tianjin Metropolitan Region in Northern China. Globally, advection is the largest net removal



10 ZHOU ET AL.

F IGURE 5 Letter-value plots of cumulative FFs (fate factors), residence time, discharge, and aridity index of N for different dominant
processes. The black line in each letter-value plot denotes themedian of the data, and the black dot indicates the average value. The widest box is
the range of approximate 1/4 to 3/4 quantile, the lower box of the secondwidest is the approximate 1/8 to 1/4 quantile, and the next lower box is
the approximate 1/16 to 1/8 quantile, recursively (Heike et al., 2017). Note that the width of the box does not denote the probability density of
element and its value is arbitrary. The underlying data for this figure can be found in the Supporting Information.

process, dominating 69.7% of the global area; while retention is the main removal process for 29.0% of the global area; and water consumption is

theprevailing process in1.3%of the global area. The globalmapof the contributionof each removal process canbe found in “Supporting information

S1.docx” within the Supporting Information.

The overall statistical distribution of cumulative FFs and their main drivers (residence time, discharge, and aridity index, whose global maps can

be found in Figures S10–S12 in “Supporting information S1.docx” within the Supporting Information), are grouped according to the corresponding

dominant process for each grid cell: advection, retention, or water consumption in Figure 5 (given in the folder “Supporting information S7” within

the Supporting Information, in which “Supporting information S7 (x).csv” represents the dataset of variables (x), i.e., cumulative fate factors, resi-

dence time, discharge, and aridity index). The grid cells dominated by advection are mainly clustered in the interval of low residence time (the 95%

quantile is 12.9 days) and their average residence time is 5.3 days. For these cells, the average discharge is 792.5 m3/s, which is much higher than

the 263.6 m3/s and 16.9 m3/s for cells dominated by retention and water consumption, respectively. Advection is also the main contributor to all

grid cells with high discharge (≥104 m3/s). High discharge and low residence time are the typical hydrological features of large rivers, especially

near the mouth. Therefore, most of the grid cells controlled by advection are distributed in the river basins of large rivers. Retention is the most
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significant process in grid cellswhere the residence time is high (the average residence time in retention-dominated cells is 92.5 days) and discharge

is low, which means that retention controls the removal process in lakes, reservoirs, and near the source. Grid cells dominated by water consump-

tion have a firm relationship with the aridity index (AI), and they are all distributed in the low-AI zone (AI< 1.24), showing that water scarcity plays

an important role in these regions. In particular, the AI of 97% of these grid cells is lower than 1, which indicates that evaporation is higher than

precipitation.

The cumulative FFs of cells dominatedby retention are high, as its average is 99.5 days,while the averages of the cells controlled by advection and

water consumption are 20.1 and 16.2 days, respectively. These findings agree with Helmes et al. (2012), as they found that most of the retention-

dominated cells have a high residence time and the cells dominated bywater use are distributed in the arid zone.

The FFs spatial variability is thus largely driven by the local hydrological conditions, especially residence time and the discharge. For instance,

according to GLWD1 and theWorld Lake Database (Bengtsson et al., 2012), Zambia contains six major lakes (surface area ≥ 1000 km2) and three

large water bodies (surface area ranging from 100 to< 1000 km2), which favor long residence times, and it is a hotspot of regional FFs in our study.

In contrast, its neighboring country,Mozambique, has an extensive river networkwith high dischargeswith only onemajor lake and four large lakes,

which favor removal through advection and is in the lowest FF class. Examples of discharge driving FF spatial heterogeneity include the difference

between theAmazonRiver (209,000m3/s) versus the São Francisco River (2943m3/s) and ParanáRiver (17,290m3/s) in SouthAmerica. The higher

advection rate in the Amazon River results in comparatively lower FFs. Similarly, river sub-basins tend to have lower discharge and thus a higher

FF than the main downstream branch. An example of this latter phenomenon is theMissouri River, which, as an upstream branch of theMississippi

River, has a fraction of its discharge (2478 vs. 16,790m3/s), and thus a higher FF.

While this analysis shows that the cumulative FFs are highly related to the hydrological condition, the regional FFs also depend on the amount

and location of the emission sources (e.g., synthetic fertilizer use). Due to the high residence time and low discharge in cells with large lakes and

reservoirs, emissions from the nearby upstream to these cells increase the risk ofNenrichment andpersistence. For instance, agricultural emissions

upstream of lakes and reservoirs (e.g., Lake Qinghai and Lake Baikal) may result in over 300 days of N persistence in the region, while fertilizing the

same amount downstream of these lakes, reservoirs, or large rivers (e.g., Amazon River and Nile River) may only let N reside for 10 days, owing to

high removal rates, thus causing lower eutrophication impacts.

4 DISCUSSION

Our research calculates N FFs of three different emission routes at a half-degree spatial resolution and reveals the influence of hydrological

conditions on N persistence, which affects the vulnerability of freshwater bodies to eutrophication. The local hydrological conditions depend on

geological features, climate, and the presence of dams. For instance, large rivers with high discharge and low residence time always appear in

humid regions with steep terrain. These areas thus tend to have low FFs, whereas a dam increases the residence time, hence the higher FFs in

river basins with a dam. Emissions from anthropogenic sources (e.g., via industrial and agricultural activity) in those regions with high FFs may

cause severe eutrophic impacts on downstream areas. Through our analysis of FFs, spatial patterns have for the first time been quantified for

inland N at the sub-degree grided scale and build the foundation to allow LCA practitioners to assess the regional eutrophic impact of N over

the globe.

We also highlight that FF temporal variations even in subsequent years can be quite substantial in urban regions with a massive population, as

attested by theRSDof FFs between 1998 and2000 (Figure S9 of “Supporting information S1.docx”within the Supporting Information). This reveals

that the nutrient fate in freshwater systems is a dynamic process and reinforces the necessity of using dynamicmodels to derive FFs to complement

current steady-state LCIAmodels.

4.1 Comparison with other models

This research builds on previous studies, and it provides FFs of inland N emitted both from the soil and directly to freshwater. Previous research of

Cosme et al. (2018) extracted hydrological parameters from the Global NEWS 2model (Mayorga et al., 2010), in which the residence time was also

used to estimate denitrification, and constructed a FFmodel for the global coast. Cosme et al. (2018) aimed atmodeling the persistence of dissolved

inorganic nitrogen (DIN) in the receiving coastal LMEs, and also provided information of inland N fate at the watershed scale as a complementary

result to N discharge toward the ocean. The basin-area-weighted riverine FF for DIN of Cosme et al. (2018) is 96 days, while Payen et al., (2021),

who also appliedNEWS2, calculated the global average of freshwater FF forDINas 257days. Compared to their results, our global average FFof TN

(29.3 days) is lower. Hotspots partly agree, but not always. For example, both Payen et al. (2021) and we identified hotspots in theMississippi River

andObRiver, while these are not hotspots according to Cosme et al. (2018); Payen et al. (2021) also identified hotspots in the Ganges River and the

Hudson Bay, while these are not hotspots according to our FFs or the ones of Cosme et al. (2018). The discrepancy between our FFs and their FFs

results from the difference in nitrogen indicators (DIN vs. TN), as well as the different mechanisms of nutrient models, methods of calculating FFs,
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and spatial delineations. For instance, van Vliet et al. (2019) showed that global TN export of NEWS2 (45Tg year−1) is higher than that of IMAGE-

GNM (37 Tg year−1) due to the difference in hydrological input data, spatial resolution, and the estimation of retention. Besides, the ratios between

DIN and TN also exert large variation in different rivers. For example, the ratios have been found to be 50% for the Yangtze River (Yan et al., 2001)

and 86% for theMississippi River (Goolsby et al., 1999).

Themodel by Helmes et al. (2012) put forward an inland FFmodel for P for 0.5˚× 0.5˚ grid cells. Due to different hydrodynamic and biochemical

processes, there is a clear difference between N and P cycles (e.g., N has a variety of redox forms, and undergo denitrification and exchange with

the atmosphere, while most P in nature exists in solid or dissolved form). The difference between N and P is reflected in the retention, which in

both cases is calculated based on regression methods. The retention rates of Helmes et al. (2012) are a fixed value in each interval (71.2 year−1 if

discharge < 0.0882 km3 year−1, 25 year−1 if 0.4473 < discharge < 0.0882 km3 year−1, and 4.4 year−1 if discharge > 0.4473 km3 year−1), while

retention rates in our study are site dependent, the average of which for these intervals are 92.1, 32.4, and 18.4 year−1, respectively. Moreover,

Helmes et al. (2012) did not consider domestic and industrial water consumption. Higher N retention rates together with domestic and industrial

water consumption result in lower FFs in our study. Nonetheless, the distribution of low-to-high values of P cumulative FFs (Helmes et al., 2012) is

consistentwith ourmodel on a global scale, especially for the hotspots inNorth America, Central Asia, and Turkey. Furthermore, ourmodel’s spatial

differentiation of dominant removal processes is similar to Helmes et al. (2012).

4.2 Uncertainties

Current FF studies, including the one presented here, do not estimate sub-year variability, and thus ignore seasonal information. de Andrade et al.

(2021) assessed the temporal and spatial variability of phosphorus FFs for freshwater in Bahia, Brazil, and concluded that FFs do not intensely vary

monthly, although they recommended distinguishing two periods of higher and lower water availability. In contrast, their analysis suggests that

FFs are highly site dependent, thus it is important to regionalize eutrophication indicators. FFs in temporal regions, however, may be subject to

much more pronounced seasonality, and thus the level of temporal variability on a global scale requires further study. Furthermore, in contrast to

water consumption affecting only a few extreme grids cells, our results show that the cumulative FFs are related to hydrological features, retention,

and other biogeochemical processes. Given that IMAGE-GNM and PCR-GLOBWB control these aspects, some uncertainties for these models are

presented below.

4.2.1 Advection

The assumptions of the hydrological model PCR-GLOBWB introduce uncertainties in the estimation of advection. On the one hand, the reservoirs

in PCR-GLOBWB are designated for hydropower generation and therefore it maximizes the available potential energy (Beusen et al., 2015), which

can overestimate the real reservoir volume and could lead to an overestimation of FFs. On the other hand, PCR-GLOBWB divides multi-cell water

bodies (i.e., lakes and reservoirs) by splitting the volume and combines multiple water bodies located within the same grid cell, ignoring the small

water bodies if their totalwater volumes are lower than the volumeof the river channel. This results in an underestimation of FFs due to an assumed

lower water volume (774 out of a total of 6369 reservoirs were omitted in the year 2000) (Beusen et al., 2015).

Further improvement in simulating global gridded hydrological parameters in PCR-GLOBWBwould provide a better assessment of eutrophica-

tion impacts.

4.2.2 Retention

The retention rate, as an argument in the inverse proportional function of FF, tends to have higher values when the water depth is underestimated

(Equation 11). Due to the proportional relationship between water volume and depth, the overestimated real reservoir volume in PCR-GLOBWB

leads to an underestimation of the retention rate. Furthermore, the exclusion of small water bodies leads to an overestimation of the retention rate.

In that case, FFs are inversely affected by the inaccurate estimation of retention removal rate. The empirical equation of Wollheim et al. (2006) is

based on a first-order degradation process, assuming retention follows an exponential function of net uptake velocity and hydraulic load. However,

there are also other options for empirical retention equations. For instance, Behrendt andOpitz (1999) and Venohr et al. (2005) assumed retention

is a power function of surfacewater area, DeKlein (2008) assumes that discharge plays a role in the retention process; while Seitzinger et al. (2002)

only related thehydraulic load to retention. Empirical equations are limited in that theyquantify retention ignoring chemical–mechanistic processes

such as the interaction among different nutrient forms. Nevertheless, studies such as Vilmin et al. (2020) are increasingly incorporatingmechanistic

geochemical dynamics to better understand nutrient transport in the hydrosphere. With such information, N fate can be more precisely estimated



ZHOU ET AL. 13

by including the transformations among different N forms, including ammonium (NH+

4 ), nitrate (NO
−

3 ), nitrite (NO
−

2 ), and organic nitrogen, together

with increasing the temporal resolution of themodel (Vilmin et al., 2020).

4.2.3 The exclusion of sludge

Aswementioned in themethods section, calculating the cumulative FFs forNonly relates to the denitrification process in the soil and the hydrolog-

ical conditions of the water. Hence, the exclusion of sludge in IMAGE-GNM does not influence the calculation of the cumulative FFs. Nevertheless,

the exclusion of sludge might affect the aggregation of regional FFs by underestimating the emission-weighting data for direct emissions to fresh-

water. This impact on the regional FFs is difficult to generalize as overestimation or underestimation due to the uneven distribution of the sludge’s

share of emission-weighting data.

4.3 Potential variation under the climate change

Despite increasing retention, throughout the 20th century, more nutrients have been exported to the coast (Beusen et al., 2016). Further into the

future, this trend is set to continue due to increasing use of fertilizer and increasing population and wastewater discharge (Mogollón, Beusen et al.,

2018; van Puijenbroek et al., 2019). However, under a warmer climate, more evaporation can lead to an acceleration of the hydrological cycle,

whichmay lead to a higherwater advection rate andmore nutrient transport. Togetherwith the stronger advection rate, predicted additional water

extraction from surface and groundwater (Wada & Bierkens, 2014) may counteract the effect of more intensive nutrient emissions. More research

into future scenarios is required to assess future FFs.

4.4 Implications for LCIA modeling

LCIA methods seek to characterize the fate of human emissions. Cosme et al. (2018) have shown that FFs contribute much more to the spatial

variability of CFs than exposure or effect factors, which demonstrates the importance of regionalizing especially the FFs, as presented here. The

application of a gridded FFmodel may improve LCIAmethods with regard to previous spatially resolvedmodels, as it includesmore details of intra-

basin heterogeneity. Additionally, this work complements existing P-related LCIA models, and thus both the N and P fate can be used to better

assess global eutrophication. Our analysis shows the strong relationship between FFs and N removal processes, which is crucial to design more

sustainable site selections forN emitting activities and to raise awareness on the potential environmental impacts of globalizedmanufacture, trade,

and consumption in terms of the N cycle. For such implementation in LCIA, the FFs can be aggregated from the original half-degree resolution to

an arbitrary regional scale by weighing according to the emissions, or in case of erosion, using the land use area. This will allow LCA practitioners to

obtain the final fate for nutrients emitted during production in any regionmatching their inventory data.

5 CONCLUSION

We introduced N into the assessment of the environmental impacts on the global freshwater system as a co-limiting nutrient for eutrophication

to complement present analyses based on P. Our spatially explicit approach provides global FFs of nitrogen for grid-based emissions both from the

soil and directly to freshwater systems. Moreover, our study emphasizes the quantitative analysis of the connection between hydrological condi-

tions and FFs. Our study revealed that FFs show conspicuous spatial heterogeneity because of differences in hydrological conditions and provided

regionalized FFs which serve asmidpoint indicators and can help LCA practitioners choosemore sustainable production sites or suppliers.

ACKNOWLEDGMENTS

Jinhui Zhou is supported by the China Scholarship Council (grant no. 201908430153).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

The data that supports the findings of this study are available in the supporting information of this article.



14 ZHOU ET AL.

ORCID

Jinhui Zhou https://orcid.org/0000-0001-8640-955X

Laura Scherer https://orcid.org/0000-0002-0194-9942

JoséM.Mogollón https://orcid.org/0000-0002-7110-5470

REFERENCES

Alexander, R. B., Smith, R. A., & Schwarz, G. E. (2004). Estimates of diffuse phosphorus sources in surface waters of the United States using a spatially refer-

encedwatershedmodel.Water Science and Technology, 49(3), 1–10.
Bare, J. C. (2002). TRACI: The tool for the reduction and assessment of chemical and other environmental impacts. Journal of Industrial Ecology, 6(3-4), 49–78.
Bare, J. C. (2011). TRACI 2.0: The tool for the reduction and assessment of chemical andother environmental impacts 2.0.Clean Technologies and Environmental

Policy, 13(5), 687–696.
Bare, J., Young, D., Qam, S., Hopton,M., & Chief, S. (2012). Tool for the reduction and assessment of chemical and other environmental impacts (TRACI). US Environ-

mental Protection Agency.

Behrendt, H., &Opitz, D. (1999). Retention of nutrients in river systems: Dependence on specific runoff and hydraulic load. In J. Garnier & J.-CMouchel (Eds.),

Man and river systems (pp. 111–122). Springer.
Bengtsson, L.,Herschy,R.W.,&Fairbridge,R.W. (2012).Encyclopedia of Lakes andReservoirs. Springer,Dordrecht. https://doi.org/10.1007/978-1-4020-4410-

6

Beusen, A., Bouwman, A., van Beek, L. P. H., Mogollon, J., & Middelburg, J. J. (2016). Global riverine N and P transport to ocean increased during the 20th

century despite increased retention along the aquatic continuum. Biogeosciences, 13(8), 2441–2451.
Beusen, A. H.W., van Beek, L. P. H., Bouwman, L., Mogollón, J. M., &Middelburg, J. B. M. (2015). Coupling global models for hydrology and nutrient loading to

simulate nitrogen and phosphorus retention in surface water–description of IMAGE–GNM and analysis of performance.Geoscientific Model Development,
8(12), 4045–4067. https://doi.org/10.5194/gmd-8-4045-2015

Bulle, C.,Margni,M., Patouillard, L., Boulay, A.-M., Bourgault, G., DeBruille, V., Cao, V., Hauschild,M., Henderson, A., Humbert, S., Kashef-Haghighi, S., Kounina,

A., Laurent, A., Levasseur, A., Liard, G., Rosenbaum, R. K., Roy, P.-O., Shaked, S., Fantke, P., & Jolliet, O. (2019). IMPACTWorld+: A globally regionalized life

cycle impact assessmentmethod. The International Journal of Life Cycle Assessment, 24(9), 1653–1674.
Chislock, M. F., Doster, E., Zitomer, R. A., &Wilson, A. E. (2013). Eutrophication: Causes, consequences, and controls in aquatic ecosystems. Nature Education

Knowledge, 4(4), 10.
Cosme, N., &Hauschild,M. Z. (2017). Characterization of waterborne nitrogen emissions formarine eutrophicationmodelling in life cycle impact assessment

at the damage level and global scale. The International Journal of Life Cycle Assessment, 22(10), 1558–1570. https://doi.org/10.1007/s11367-017-1271-5
Cosme, N., Mayorga, E., & Hauschild, M. Z. (2018). Spatially explicit fate factors of waterborne nitrogen emissions at the global scale. The International Journal

of Life Cycle Assessment, 23(6), 1286–1296.
De Andrade, M. C., Ugaya, C. M. L., deAlmeida Neto, J. A., & Rodrigues, L. B. (2021). Regionalized phosphorus fate factors for freshwater eutrophication in

Bahia, Brazil: An analysis of spatial and temporal variability. The International Journal of Life Cycle Assessment, 26(3), 1–20.
DeKlein, J. J.M. (2008). Fromditch to delta, nutrient retention in runningwaters [PhD thesis,WageningenUniversity&Research,Wageningen, TheNetherlands].

https://library.wur.nl/WebQuery/wurpubs/366668

Dodds,W. K., & Smith, V. H. (2016). Nitrogen, phosphorus, and eutrophication in streams. InlandWaters, 6(2), 155–164.
Döll, P., & Lehner, B. (2002). Validation of a new global 30-min drainage direction map. Journal of Hydrology, 258(1–4), 214–231. https://doi.org/10.1016/

S0022-1694(01)00565-0

Duan, H., Loiselle, S. A., Zhu, L., Feng, L., Zhang, Y., &Ma, R. (2015). Distribution and incidence of algal blooms in Lake Taihu.Aquatic Sciences, 77(1), 9–16.
Flörke, M., & Eisner, S. (2011). The development of global spatially detailed estimates of sectoral water requirements, past, present and future, including discussion of

the main uncertainties, risks and vulnerabilities of human water demand (No. 46, p. 25).WATCHTechnical Report.

Goolsby, D. A., Battaglin, W. A., Lawrence, G. B., Artz, R. S., Aulenbach, B. T., Hooper, R. P., Keeney, D. R., & Stensland, G. J. (1999). Flux and sources of nutrients
in theMississippi-Atchafalaya River Basin: Topic 3 report for the integrated assessment on hypoxia in the Gulf of Mexico [NOAACoastal Ocean ProgramDecision

Analysis Series 17]. National Centers for Coastal Ocean Science.

Hart,M. R., Quin, B. F., &Nguyen,M. L. (2004). Phosphorus runoff fromagricultural land and direct fertilizer effects: A review. Journal of Environmental Quality,
33(6), 1954–1972.

Hauschild,M. (2006). Spatial differentiation in life cycle impact assessment: A decade ofmethod development to increase the environmental realism of LCIA.

The International Journal of Life Cycle Assessment, 11(1), 11–13.
Hauschild, M., & Potting, J. (2005). Spatial differentiation in Life cycle impact assessment - The EDIP2003methodology. Environmental News, 80, 1–195.
Heike, H.,Wickham, H., & Kafadar, K. (2017). Letter-value plots: Boxplots for large data. Journal of Computational and Graphical Statistics, 26(3), 469–477.
Hellweg, S., & Milà i Canals, L. (2014). Emerging approaches, challenges and opportunities in life cycle assessment. Science, 344(6188), 1109–1113. https:

//doi.org/10.1126/science.1248361

Helmes, R. J. K., Huijbregts, M. A. J., Henderson, A. D., & Jolliet, O. (2012). Spatially explicit fate factors of phosphorous emissions to freshwater at the global

scale. The International Journal of Life Cycle Assessment, 17(5), 646–654.
Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., & van Zelm, R. (2017). ReCiPe2016: A har-

monised life cycle impact assessmentmethod at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 22(2), 138–147.
Jenny, J., Francus, P., Normandeau, A., Lapointe, F., Perga, M., Ojala, A., Schimmelmann, A., & Zolitschka, B. (2016). Global spread of hypoxia in freshwater

ecosystems during the last three centuries is caused by rising local human pressure.Global Change Biology, 22(4), 1481–1489.
Kalcic,M.M., Chaubey, I., & Frankenberger, J. (2015). Defining Soil andWater Assessment Tool (SWAT) hydrologic response units (HRUs) by field boundaries.

International Journal of Agricultural and Biological Engineering, 8(3), 69–80.
Lehner, B., & Döll, P. (2004). Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology, 296(1), 1–22. https:

//doi.org/10.1016/j.jhydrol.2004.03.028

https://orcid.org/0000-0001-8640-955X
https://orcid.org/0000-0001-8640-955X
https://orcid.org/0000-0002-0194-9942
https://orcid.org/0000-0002-0194-9942
https://orcid.org/0000-0002-7110-5470
https://orcid.org/0000-0002-7110-5470
https://doi.org/10.1007/978-1-4020-4410-6
https://doi.org/10.1007/978-1-4020-4410-6
https://doi.org/10.5194/gmd-8-4045-2015
https://doi.org/10.1007/s11367-017-1271-5
https://library.wur.nl/WebQuery/wurpubs/366668
https://doi.org/10.1016/S0022-1694(01)00565-0
https://doi.org/10.1016/S0022-1694(01)00565-0
https://doi.org/10.1126/science.1248361
https://doi.org/10.1126/science.1248361
https://doi.org/10.1016/j.jhydrol.2004.03.028
https://doi.org/10.1016/j.jhydrol.2004.03.028


ZHOU ET AL. 15

Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan,M., Frenken, K., &Magome, J. (2011). High-resolutionmapping

of theworld’s reservoirs anddams for sustainable river-flowmanagement. Frontiers in Ecology and the Environment,9(9), 494–502. https://doi.org/10.1890/
100125

Lewis,W.M. Jr.,Wurtsbaugh,W. A., & Paerl, H.W. (2011). Rationale for control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland

waters. Environmental Science & Technology, 45(24), 10300–10305.
Mayorga, E., Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H. W., Bouwman, A. F., Fekete, B. M., Kroeze, C., & van Drecht, G. (2010). Global nutrient

export fromWaterSheds 2 (NEWS 2): Model development and implementation. Environmental Modelling & Software, 25(7), 837–853.
McDowell, R. W., & Sharpley, A. N. (2001). Approximating phosphorus release from soils to surface runoff and subsurface drainage. Journal of Environmental

Quality, 30(2), 508–520.
Middleton, N., & Thomas, D. (1997).World atlas of desertification (2nd ed.). Hodder Education Publishers.
Mogollón, J. M., Lassaletta, L., Beusen, A. H.W., Van Grinsven, H. J. M., Westhoek, H., & Bouwman, A. F. (2018). Assessing future reactive nitrogen inputs into

global croplands based on the shared socioeconomic pathways. Environmental Research Letters, 13(4), 44008.
Mogollón, J. M., Beusen, A. H. W., Van Grinsven, H. J. M., Westhoek, H., & Bouwman, A. F. (2018). Future agricultural phosphorus demand according to the

shared socioeconomic pathways.Global Environmental Change, 50, 149–163.
Morelli, B., Hawkins, T. R., Niblick, B., Henderson, A. D., Golden, H. E., Compton, J. E., Cooter, E. J., & Bare, J. C. (2018). Critical review of eutrophicationmodels

for life cycle assessment. Environmental Science & Technology, 52(17), 9562–9578.
Mulholland, P. J., Helton, A. M., Poole, G. C., Hall, R. O., Hamilton, S. K., Peterson, B. J., Tank, J. L., Ashkenas, L. R., Cooper, L. W., & Dahm, C. N. (2008). Stream

denitrification across biomes and its response to anthropogenic nitrate loading.Nature, 452(7184), 202–205.
Müller, B., Bryant, L. D., Matzinger, A., & Wüest, A. (2012). Hypolimnetic oxygen depletion in eutrophic lakes. Environmental Science & Technology, 46(18),

9964–9971.

Norris, G. A. (2002). Impact characterization in the tool for the reduction and assessment of chemical and other environmental impacts: Methods for acidifi-

cation, eutrophication, and ozone formation. Journal of Industrial Ecology, 6(3-4), 79–101.
Payen, S., Civit, B. G., Niblick, B., Uwizeye, A.W., &Henderson, A. (2019). Acidification and eutrophication. In R. Frischknecht, &O. Jolliet (Eds.),Global guidance

for life cycle impact assessment indicators (Vol. 2). United Nations Environment Programme. https://www.lifecycleinitiative.org/training-resources/global-

guidance-for-life-cycle-impact-assessment-indicators-volume-2//

Payen, S., Cosme,N., &Elliott, A.H. (2021). Freshwater eutrophication: Spatially explicit fate factors for nitrogen andphosphorus emissions at the global scale.

The International Journal of Life Cycle Assessment, 26, 388–401.
Payen, S., & Ledgard, S. F. (2017). Aquatic eutrophication indicators in LCA: Methodological challenges illustrated using a case study in New Zealand. Journal

of Cleaner Production, 168, 1463–1472.
Pfister, S., & Bayer, P. (2014).Monthlywater stress: Spatially and temporally explicit consumptivewater footprint of global crop production. Journal of Cleaner

Production, 73, 52–62. https://doi.org/10.1016/j.jclepro.2013.11.031
Schindler, D.W. (2006). Recent advances in the understanding andmanagement of eutrophication. Limnology and Oceanography, 51(1, part 2), 356–363.
Schindler, D.W., & Vallentyne, J. R. (2008). The algal bowl: Over fertilization of the world’s freshwaters and estuaries. University of Alberta Press.
Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H.W., & Bouwman, A. F. (2005). Sources and delivery of carbon, nitrogen, and phosphorus to the coastal

zone: An overview of Global Nutrient Export fromWatersheds (NEWS)models and their application.Global Biogeochemical Cycles, 19(4), GB4S03.
Seitzinger, S. P., Styles, R. V., Boyer, E.W., Alexander, R. B., Billen, G., Howarth, R.W., Mayer, B., & van Breemen, N. (2002). Nitrogen retention in rivers: Model

development and application towatersheds in the northeasternUSA. In E.W. Boyer &R.W.Howarth (Eds.), The nitrogen cycle at regional to global scales (pp.
199–237). Springer.

Tarkalson, D. D., &Mikkelsen, R. L. (2004). Runoff phosphorus losses as related to soil test phosphorus and degree of phosphorus saturation on piedmont soils

under conventional and no-tillage. Communications in Soil Science and Plant Analysis, 35(19-20), 2987–3007.
Tilman, D., Fargione, J.,Wolff, B., D’Antonio, C., Dobson, A., Howarth, R., Schindler, D., Schlesinger,W.H., Simberloff, D., & Swackhamer, D. (2001). Forecasting

agriculturally driven global environmental change. Science, 292(5515), 281–284.
Trabucco, A., & Zomer, R. J. (2019). Global Aridity Index and Potential Evapotranspiration (ET0) climate database v2 (Version 3) [Data set]. figshare. https://doi.

org/10.6084/m9.figshare.7504448.v3

van Puijenbroek, P. J. T. M., Beusen, A. H. W., & Bouwman, A. F. (2019). Global nitrogen and phosphorus in urban waste water based on the Shared Socio-

economic pathways. Journal of Environmental Management, 231, 446–456. https://doi.org/10.1016/j.jenvman.2018.10.048

van Vliet, M. T. H., Flörke, M., Harrison, J. A., Hofstra, N., Keller, V., Ludwig, F., Spanier, J. E., Strokal, M., Wada, Y., & Wen, Y. (2019). Model inter-comparison

design for large-scale water quality models. Current Opinion in Environmental Sustainability, 36, 59–67.
Venohr,M., Donohue, I., Fogelberg, S., Arheimer, B., Irvine, K., & Behrendt, H. (2005). Nitrogen retention in a river system and the effects of river morphology

and lakes.Water Science & Technology, 51(3–4), 19–29.
Verones, F., Hellweg, S., Antón, A., Azevedo, L. B., Chaudhary, A., Cosme, N., Cucurachi, S., de Baan, L., Dong, Y., & Fantke, P. (2020). LC-IMPACT: A regionalized

life cycle damage assessmentmethod. Journal of Industrial Ecology, 24(6), 1201–1219.
Vilmin, L.,Mogollón, J.M., Beusen, A.H.W., vanHoek,W. J., Liu, X.,Middelburg, J. J., &Bouwman, A. F. (2020).Modeling process-based biogeochemical dynam-

ics in surface freshwaters of largewatershedswith the IMAGE-DGNMframework. Journal of Advances inModeling Earth Systems,12(11), e2019MS001796.

Vollenweider, R. A. (1971). Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors
in eutrophication. Paris: Organisation for economic co-operation and development.

Vonlanthen, P., Bittner,D.,Hudson,A.G., Young,K.A.,Müller, R., Lundsgaard-Hansen,B., Roy,D.,DiPiazza, S., Largiader,C.R., &Seehausen,O. (2012). Eutroph-

ication causes speciation reversal in whitefish adaptive radiations.Nature, 482(7385), 357–362.
Wada, Y., & Bierkens, M. F. P. (2014). Sustainability of global water use: Past reconstruction and future projections. Environmental Research Letters, 9(10),

104003.

Wernet, G., Bauer, C., Steubing, B., Reinhard, J.,Moreno-Ruiz, E., &Weidema, B. (2016). The ecoinvent database version 3 (part I): Overviewandmethodology.

The International Journal of Life Cycle Assessment, 21(9), 1218–1230.
Wollheim,W.M., Vörösmarty, C. J., Bouwman, A. F., Green, P., Harrison, J., Linder, E., Peterson, B. J., Seitzinger, S. P., & Syvitski, J. P.M. (2008).GlobalN removal

by freshwater aquatic systems using a spatially distributed, within-basin approach.Global Biogeochemical Cycles, 22(2), GB2026.

https://doi.org/10.1890/100125
https://doi.org/10.1890/100125
https://www.lifecycleinitiative.org/training-resources/global-guidance-for-life-cycle-impact-assessment-indicators-volume-2//
https://www.lifecycleinitiative.org/training-resources/global-guidance-for-life-cycle-impact-assessment-indicators-volume-2//
https://doi.org/10.1016/j.jclepro.2013.11.031
https://doi.org/10.6084/m9.figshare.7504448.v3
https://doi.org/10.6084/m9.figshare.7504448.v3
https://doi.org/10.1016/j.jenvman.2018.10.048


16 ZHOU ET AL.

Wollheim,W.M., Vörösmarty, C. J., Peterson, B. J., Seitzinger, S. P., &Hopkinson,C. S. (2006). Relationship between river size andnutrient removal.Geophysical
Research Letters, 33(6), L06410.

Wood, E. F., Roundy, J. K., Troy, T. J., Van Beek, L. P. H., Bierkens,M. F. P., Blyth, E., de Roo, A., Döll, P., Ek,M., Famiglietti, J., Gochis, D., van deGiesen, N., Houser,

P., Jaffé, P. R., Kollet, S., Lehner, B., Lettenmaier, D. P., Peters-Lidard, C., Sivapalan,M., Sheffield, J.,Wade, A., &Whitehead, P., (2011). Hyperresolution global

land surfacemodeling:Meeting a grand challenge for monitoring Earth’s terrestrial water.Water Resources Research, 47(5), 1–10.
Yan,W., Zhang, S., &Wang, J. (2001). Nitrogen biogeochemical cycling in the Changjiang drainage basin and its effect on Changjiang River dissolved inorganic

nitrogen. Acta Geographica Sinica, 56(5), 507–514.

SUPPORTING INFORMATION

Additional supporting informationmay be found in the online version of the article at the publisher’s website.

How to cite this article: Zhou J, Scherer L, van BodegomPM, Beusen A,Mogollón JM. Regionalized nitrogen fate in freshwater systems on

a global scale. J Ind Ecol. 2022;1–16. https://doi.org/10.1111/jiec.13227

https://doi.org/10.1111/jiec.13227

	Regionalized nitrogen fate in freshwater systems on a global scale
	Abstract
	1 | INTRODUCTION
	2 | METHODS
	2.1 | Model structure
	2.1.1 | Advection
	2.1.2 | Retention
	2.1.3 | Water consumption

	2.2 | Aggregation of FFs
	2.3 | Net removal rate

	3 | RESULTS
	3.1 | Global spatially explicit fate factors
	3.2 | Regional averages of fate factors
	3.3 | Dominant removal process for N fate

	4 | DISCUSSION
	4.1 | Comparison with other models
	4.2 | Uncertainties
	4.2.1 | Advection
	4.2.2 | Retention
	4.2.3 | The exclusion of sludge

	4.3 | Potential variation under the climate change
	4.4 | Implications for LCIA modeling

	5 | CONCLUSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES
	SUPPORTING INFORMATION


