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Meta-analysis of individual participant data (IPD) is considered the “gold-stan-
dard” for synthesizing clinical study evidence. However, gaining access to IPD

can be a laborious task (if possible at all) and in practice only summary (aggre-

gate) data are commonly available. In this work we focus on meta-analytic

approaches of comparative studies where aggregate data are available for con-

tinuous outcomes measured at baseline (pre-treatment) and follow-up (post-

treatment). We propose a method for constructing pseudo individual baselines

and outcomes based on the aggregate data. These pseudo IPD can be subse-

quently analysed using standard analysis of covariance (ANCOVA) methods.

Pseudo IPD for continuous outcomes reported at two timepoints can be gener-

ated using the sufficient statistics of an ANCOVA model, i.e., the mean and

standard deviation at baseline and follow-up per group, together with the cor-

relation of the baseline and follow-up measurements. Applying the ANCOVA

approach, which crucially adjusts for baseline imbalances and accounts for the

correlation between baseline and change scores, to the pseudo IPD, results in

identical estimates to the ones obtained by an ANCOVA on the true IPD. In

addition, an interaction term between baseline and treatment effect can be

added. There are several modeling options available under this approach,

which makes it very flexible. Methods are exemplified using reported data of a

previously published IPD meta-analysis of 10 trials investigating the effect of

antihypertensive treatments on systolic blood pressure, leading to identical

results compared with the true IPD analysis and of a meta-analysis of fewer tri-

als, where baseline imbalance occurred.
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1 | INTRODUCTION

Meta-analysis methods of individual participant data or
individual patient data (IPD) are considered the “gold-
standard” for clinical studies' evidence synthesis.1,2,3,4

IPD meta-analysis has several advantages over the tradi-
tional aggregate data (AD) meta-analysis approach,
which synthesizes summary statistics per study, often
retrieved from published sources. For example when con-
tinuous outcomes are available at baseline and follow-up,
IPD meta-analysis enables the meta-analyst to perform
adjustments for baseline imbalances and detailed explo-
rations of treatment-covariate interactions.5,6,7 In addi-
tion, it comes with a large toolbox of methods and
greater flexibility to analyze the data in an one-stage or a
two-stage approach.8,9,10,11

There are, however, challenges as access to IPD can
be problematic because of time and cost constraints and
privacy issues, and often it is not feasible to retrieve the
IPD of all studies to be synthesized. It is possible to gen-
erate/back-calculate IPD for different types of AD, such
as for binary, ordinal and time to event out-
comes.12,13,14,15 For aggregate data of continuous out-
comes reconstructing the original outcome values is not
possible. However, we recently proposed an algorithm to
construct pseudo IPD for an one-stage meta-analysis with
one continuous outcome, using the sufficient statistics for
linear mixed models, i.e.,, group means, standard devia-
tions and sample sizes.16 In this way the analysis using
the pseudo IPD yields exactly the same results as the
analysis of the original IPD. The pseudo IPD approach
allowed more flexible modeling, using standard linear
mixed model software, for example enabling common or
different residual variances for treatment and control
groups in each study.

In this paper we extend the original method of creat-
ing pseudo IPD from reported AD to the situation where
continuous outcomes are reported both at baseline and
follow-up. We discuss how pseudo IPD can be derived,
taking the correlation between baseline and follow-up/
final measurements into account, using the summary
observed group means, standard deviations at baseline
and post-treatment, and the group correlation of the
baseline and post-treatment values (or equivalently the
standard deviations of the difference between baseline
and post-baseline values in both groups). These summary
measures are the sufficient statistics for an analysis of
covariance (ANCOVA) approach under the linear mixed
model (LMM) framework. The generated pseudo IPD can
be analysed using standard software for linear mixed
models, and a linear mixed model analysis of the pseudo
IPD will yield identical results to the ones obtained when
it is applied on the original IPD.

We describe the advantages of this approach, com-
pared with the standard methods to synthesize aggregate
baseline and follow-up data: using mean follow-up (post-
treatment/final) scores, ignoring the baseline values and
mean change scores, subtracting the follow-up value from
the baseline.17,18

Highlights

What is already known?

The meta-analysis of IPD has been advocated as
the “gold-standard” of evidence synthesis for
many years. The generally preferred method to
analyse IPD with continuous measurements at
baseline and follow-up is the linear mixed effects
ANCOVA model. However access to IPD is often
impossible. Researchers thus resort in an AD
meta-analysis where in case of baseline imbal-
ances, the treatment effects, derived by other
methods than ANCOVA, may be biased.

What is new?

We provide an algorithm which makes use of
summary reported AD of continuous measure-
ments at baseline and follow up for to construct
pseudo IPD. These pseudo IPD can be analysed
in the same way as the original IPD using
ANCOVA, producing identical results. Therefore
we can adjust for baseline imbalances between
treatment and control groups and explore inter-
actions between baseline values and treatment
effects. The results of the analysis under our pro-
posed algorithm in the example dataset where
the true IPD have been synthesized, were found
to be identical to the analysis of the original
true IPD.

What is the potential impact for RSM
readers outside the author's field?

To enable reproducibility and dissemination of
the method, we have provided implementation
code of the algorithm both in R and SAS. Meta-
analysis is a statistical technique undertaken by
researchers from various fields and thus being
able to use the provided code in easily accessible
free and commercial software can only improve
the quality of their work.
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It is possible to perform a meta-analysis in an one-
stage or a two-stage approach using the pseudo IPD,
using the toolbox of available IPD methods.8,9,10,11 A
plethora of modeling options is available and we discuss
several options, assuming stratified and random study
intercepts and random treatment effect models.

The flexibility of the linear mixed modeling frame-
work makes it possible to correct for potential baseline
imbalances. Although imbalance at baseline is not
expected in a randomized trial, it can occur by chance,
particularly in small trials19 or due to flaws in the ran-
domization process.20

Treatment effects may also differ between patients,
depending on their baseline values. For example, in a
trial for hypertension, patients with low systolic blood
pressure at baseline are expected to experience less
improvement after administration of treatment, com-
pared with patients having high baseline pressure values.
Similarly, severely depressed patients with high values on
a depression score may profit more from treatment than
patients with mild depression. When generating and ana-
lyzing pseudo IPD using an ANCOVA approach we can
cope with the correlation between the baseline value and
the change score by introducing an interaction term
between the baseline measurement and the treatment
effect. In this way treatment heterogeneity depending on
the baseline values can be further explored.

The paper is organized as follows. In Section 2 we
introduce two illustrating meta-analysis datasets: one in
hypertension where group-level AD of systolic blood
pressure (SBP) at baseline and at follow-up for anti-
hypertensive treatments vs placebo/no treatment are
available from a previous IPD meta-analysis publication21

and a second example where active vs sham treatments
in obstructive sleep apnea are compared and baseline
imbalance occurred between the treatment groups.22 In
Sections 3 and 4, we describe some of the existing model-
ing options for one-stage and two-stage IPD meta-ana-
lyses, respectively, including models for treatment-by-
baseline interaction. In Section 5, we explain how pseudo
IPD baselines and outcomes can be generated from the
aggregate continuous data in the case of correlated base-
line and final measurements. In Section 6, we apply our
proposed method to the hypertension dataset in/exclud-
ing an investigation of the interaction between baseline
and treatment and compare the results with those
obtained when using the original IPD as previously
reported in the work of Riley et al21,23 and with standard
two-stage methods on the AD. In addition, we apply the
pseudo IPD approach on the sleep apnea dataset and
compare the results of the pseudo IPD ANCOVA models,
while varying group-correlations coefficients (as

sensitivity analysis), with change scores AD meta-analy-
sis. Brief final comments are provided in Section 7.

2 | ILLUSTRATING EXAMPLES

2.1 | Aggregate data from 10 trial in
hypertension with baseline imbalance and
artificial baseline imbalance

We use the reported aggregate data for studies originally
contained in an IPD meta-analysis of Wang et al,24 and
subsequently analysed by Riley et al21 investigating the
effect of hypertension treatments on systolic blood pres-
sure (SBP). The authors included IPD of trials comparing
antihypertensive treatments against placebo/no treat-
ment.25,26,27,28 A total of 28 851 patients from 10 trials
were included. Each trial measured blood pressure at
baseline and after treatment. The aggregate data for each
trial, including the mean, standard deviation and correla-
tion of the baseline and the final SBP values (in mmHg)
are shown in Table 1. Riley et al21 compared several IPD
and AD meta-analytic approaches to estimate the sum-
mary treatment effect of antihypertension treatments in
reducing SBP. In this article, we re-analyze these data
using only the aggregate group means, standard devia-
tions and correlations of the baseline and the final values
and apply our algorithm to generate pseudo IPD. We also
perform standard AD meta-analysis using change scores
and provide a comparison of the different methods. Riley
et al21 explored the effect of large baseline imbalance by
modifying the original hypertension dataset. This was
achieved by subtracting 5 mmHg from the baseline and
final SBP values of patients in the treatment group of tri-
als 1 and 2; 20 mmHg of patients in the treatment group
of trials 4 and 5 and 10 mmHg of the baseline and final
values of patients in the treatment group of trial 6 accord-
ingly, such that five studies have lower baseline values in
the treatment group compared with the control group.
We also demonstrate our method on the aggregate ver-
sion of this modified dataset.

2.2 | Aggregate data from eight trials in
obstructive sleep apnea with baseline
imbalance

Aggregate data from a review of treatments for obstruc-
tive sleep apnea in adults22 were used. We focus on a
meta-analysis summarizing the treatment effect of an
active continuous positive airway pressure (CPAP) device
vs a sham CPAP. Eight studies, of in total 311 patients,
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recorded the apnea-hypopnea index (AHI), which is
defined as the number of apnea and hypoapnea events
divided by the total hours of sleep, at baseline and fol-
low-up. The authors22 estimated a statistically significant
mean difference in change scores of AHI between active
CPAP and sham, favoring CPAP (difference −46 events/
hour 95% CI: [−57, −36]; blue/triangle, Figure 1). We re-
analysed these data, taking into account the considerable
baseline imbalance which occurred between the treat-
ment groups (difference of 5 events/hour, 95% CI [0,
11]—the subjects randomized in the active CPAP arm
suffered more severely from sleep apnea; red/circle, Fig-
ure 1), and explored whether patients with higher AHI at
baseline benefitted more from treatment. For comparison
purposes, we have additionally included the summary
estimates of the final values analysis, which is not pre-
ferred due to baseline imbalance (green/square,
Figure 1).

3 | ONE-STAGE IPD META-
ANALYSIS USING LMM

In this section we introduce notation and modeling
options for an one-stage meta-analysis of IPD of studies
measuring continuous outcomes as baseline and follow-
up. The data we consider have the following format: let
YBij denote the continuous outcome of interest (ie, SBP) at
baseline/pre-treatment of patient j in study i(1, …, N) and

YFij the outcome, of each patient post-treatment (at fol-
low-up). Also, let Xij be a dummy variable to indicate the
treatment group; Xij = 1 for patients in the treatment
group and 0 for patients in the control group, respec-
tively. There are many IPD meta-analysis ANCOVA type
model options. A number of them are presented in this
section; a similar description of the ANCOVA model can
be found in Burke et al.8

3.1 | Analysis of covariance

3.1.1 | Stratified study model

An analysis of covariance (ANCOVA) model, with study-
specific stratified intercepts and stratified adjustment
terms for baseline measurements may be written as
follows:

YFij=β0i+ β1 +b1ið ÞXij+β2i YBij− �YBi
� �

+ ϵij, ð1Þ

where β0i is the mean outcome in the control group in
study i for individuals with the mean baseline value, β1
the summary (average) treatment effect and β2i is the
study-specific adjustment term for baseline values. A ran-
dom effect b1i is added to the overall treatment effect,
which is assumed to be normally distributed with mean 0
and between-study variance equal to τ21 . Although a

TABLE 1 Aggregate data of the 10 hypertension trials included in the meta-analysis of Wang et al24 as reported by Riley et al21

SBP final (mmHg) SBP final (mmHg)

Number of subjects Treatment Control Treatment Control
Correlation (SBP baseline,
SPB final)

ID Trial name Treatment Control Mean (SD) Mean (SD) Mean (SD) Mean (SD) Treatment Control

1 ATMH 780 750 152.28 (15.25) 153.05 (15.73) 132.85 (16.72) 139.75 (17.85) 0.265 0.284

2 HEP 150 199 189.94 (16.15) 191.55 (17.64) 165.06 (20.03) 179.89 (22.15) 0.335 0.331

3 EWPHE 90 82 177.33 (15.85) 178.23 (15.06) 156.88 (21.26) 170.45 (26.91) 0.462 0.534

4 HDFP 2427 2370 151.68 (19.83) 151.00 (19.53) 130.09 (19.25) 138.54 (21.26) 0.337 0.408

5 MRC-1 3546 3445 156.60 (16.09) 156.65 (15.96) 135.49 (16.32) 144.25 (17.58) 0.346 0.416

6 MRC-2 1314 1337 182.19 (12.63) 182.13 (12.73) 153.99 (20.13) 164.58 (19.71) 0.178 0.137

7 SHEP 2365 2371 170.49 (9.5) 170.12 (9.24) 145.10 (19.05) 156.24 (20.12) 0.315 0.253

8 STOP 137 131 194.68 (12.21) 194.15 (11.16) 171.46 (19.29) 189.11 (21.9) 0.177 0.414

9 Sy-Chi 1252 1139 170.73 (10.9) 170.25 (11.41) 150.2 (15.84) 156.55 (16.86) 0.199 0.347

10 Sy-Eur 2398 2297 173.75 (9.86) 173.94 (10.07) 154.87 (16.31) 165.24 (16.33) 0.319 0.431

Abbreviations: ATMH, Australian Trial in Mild Hypertension; HDFP, Hypertension Detection and Follow-up Programme; EWPHE, Euro-
pean Working Party on High Blood Pressure in the Elderly; MRC, Medical Research Council; SBP, systolic blood pressure; SD, standard devi-
ation; SHEP, Systolic Hypertension in the Elderly Programme; STOP, Swedish Trial in Old Patients with Hypertension; Sy-Chi, Systolic
Hypertension in China; Sy-Eur, Systolic Hypertension in Europe.
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random treatment effect is preferred, one can assume a
common (fixed) treatment effect by constraining τ21 =0 .
There are several modeling options for the variance of
the within-study residuals, ϵij, on which we elaborate
later on.

3.1.2 | Random study model

An alternative approach to using stratified study inter-
cepts and slopes is to assume a random intercept and a
random baseline adjustment effect, resulting in the fol-
lowing ANCOVA model:

YFij= β0 +b0ið Þ+ β1 +b1ið ÞXij+ β2 +b2ið Þ YBij− �YBi
� �

+ ϵij,
ð2Þ

where

b0i
b1i
b2i

2
64

3
75�MVN

0

0

0

2
64

3
75,

τ20 τ01 τ02

τ01 τ21 τ12

τ02 τ12 τ22

2
64

3
75

0
B@

1
CA

Parameters are as in Equation (1), except for a ran-
dom study intercept and a baseline adjustment coeffi-
cient; with τ21 denoting the variance of the treatment
effect. In the literature, is it often assumed that the

random effects are independent (ie, τij = 0 for i 6¼ j),
although under the LMM it is possible to estimate their
covariances.

3.2 | ANCOVA including treatment-by-
baseline interaction

To investigate potential treatment effect modification by
the baseline value, the Equations (1) and (2) can be
extended by including the interaction term between base-
line and treatment effect. The stratified study model (1)
incorporating the “treatment-covariate interaction” is as
follows:

YFij=β0i+ β1 +b1ið ÞXij+β2i YBij− �YBi
� �

+ β3ð

+b3iÞ YBij− �YBi
� �

Xij
� �

+β4i �YBiXij
� �

+ ϵij ð3Þ

While the other parameters are as in Equation (1), β3
denotes the mean increase in treatment effect for a one-
unit increase in the baseline values and the random effect
b3i allows for between studies heterogeneity in the treat-
ment-covariate interaction. This estimate reflects the
within-trial interaction effect and β4i estimates the
increase in the treatment effect associated with a one-

FIGURE 1 Obstructive sleep apnea meta-analysis example: forest plot of three different summary measures: A, difference in final

values between mean AHI in the active CPAP group and mean AHI in the sham CPAP group (green/square); B, between groups difference

in mean change from baseline (blue/triangle); C, between groups difference in mean AHI score at baseline (red/circle). The estimates at the

bottom of the plot correspond to the standard random effects meta-analysis results [Colour figure can be viewed at wileyonlinelibrary.com]
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unit increase between the mean baseline of two studies,
which reflects the across-trial interaction. Centering the
baseline values and appropriately separating within- and
across trial-associations avoids ecological bias, a phenom-
enon where the associations are erroneously equated.29

Note that if the β4i �YBiXij
� �

is omitted from model (4),
then the interaction term will reflect a weighted average
of β3 and the magnitude of the ecological bias.30

Similarly, Equation (2) can be extended yielding a
random study ANCOVA model allowing for the interac-
tion between baseline and treatment, which is formu-
lated as follows:

YFij= β0 +b0ið Þ+ β1 +b1ið ÞXij+ β2 +b2ið Þ YBij− �YBi
� �

+ β3 +b3ið Þ YBij− �YBi
� �

Xij
� �

+β4i �YBiXij
� �

+ ϵij ð4Þ

This model has four random effects (b0i, b1i, b2i, b3i),
the covariance matrix of which may either be completely
unspecified or may be modeled, for example by assuming
independence of the different random effects.

Although, many other modeling specifications are
possible, in this work we consider models (1) to (4).

3.3 | Within-study residual variances

The within-study residuals ϵij are assumed to follow a normal
distribution with mean 0. The within-study residual variance
σ2ik may depend on the study i and group k. We explore
four structures for modeling σ2ik : all variances assumed
different (arm- and study-specific): ϵik �N 0,σ2ik

� �
, study-

specific variances: σ2ik=σ2i: , one variance for control and
one variance for treated group σ2ik=σ2:k , which are the
same for all studies and one overall variance: σ2ik=σ2.

4 | TWO-STAGE IPD META-
ANALYSIS APPROACH

Instead of modeling all IPD in one model, in practice it
may be more convenient to use a two-step approach. In
the first stage, a separate ANCOVA is fitted in each of the
studies i = 1 to N.

YFij=β0i+β1iXij+β2iYBij+ ϵij ð5Þ

This yields N treatment effects β̂1i with standard
errors sei.

At the second stage a common (fixed)-effect or ran-
dom-effects meta-analysis is run on the estimated study-
specific β1is.

In principle, the one-stage and two-stage approaches
produce very similar results yet minor differences may
arise as the former estimates the within-study residual
variances simultaneously with β1i and τ21 while under the
two-stage approach the within-study residual variances
are estimated separately as seen in Equation (5) and inde-
pendently of β1i and τ21 in the second stage. In particular,
the stratified study one-stage model (1) and two-stage
IPD meta-analysis approaches will yield very similar
results, under the same underlying (modeling) assump-
tions, for example, equal variance for treatment and con-
trol within studies.8 For small sample sizes the results
may deviate slightly. Equation (5) can also be extended to
estimate the interaction between baseline values and
treatment effect by introducing an interaction term simi-
lar to term β3 from Equation (3).

5 | CONSTRUCTION OF PSEUDO
IPD FROM AGGREGATE DATA

In our previous work we developed a method to generate
pseudo IPD for a single continuous outcome per subject
without baseline values.16 The method generates data
with the same observed means, standard deviations and
sample sizes, the so-called pseudo IPD. Because the
means and standard deviations are the sufficient statis-
tics, the likelihood function for the IPD, using the linear
mixed model is identical to the likelihood of the
unknown true IPD. This means that analyzing the
pseudo IPD with LMM will yield identical results to the
analysis of the true IPD.

In this article we extend our method to creating
pseudo IPD from available aggregate data for a continu-
ous outcome, reported at two timepoints, at baseline and
follow-up. Appropriate sufficient statistics for an analysis
of covariance (ANCOVA) approach are, for each study
separately, the means and standard deviations of the con-
tinuous outcome at baseline and follow-up in each group,
together with the group correlation of the baseline and
follow-up values. Our premise is to create pseudo IPD
that have exactly these sample means, standard devia-
tions, and correlations, so that the subsequent pseudo
IPD meta-analysis will produce the same results as if the
original IPD were analysed.

The algorithm to construct pseudo data for each of
the studies and groups, with exactly the same mean, stan-
dard deviation and group correlation between baseline
and follow-up measurement is as follows: let in a certain
study arm, �YB , sdB and �YF , sdF be the observed means
and SDs at baseline and follow-up, respectively and let r
be the correlation between baseline and follow-up
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measurement, and let n be the sample size. Then for each
group in each study separately, execute the following steps:

1. Simulate two samples Y *
i1 i=1,…,nð Þ and

Y *
i2 i=1,…,nð Þ, from a certain distribution, for example

a standard normal distribution.
2. Standardize both samples to obtain �Y *

1 =0 and �Y *
2 =0,

and sd*1 = sd*2 =1 and calculate the correlation r*

between Y *
i1 and Y *

i2.
3. Regress Y *

i2 on Y *
i1 and keep the regression coefficients

β̂ and the residuals ϵ̂i . Note that since sd*1 = sd*2 =1, it
follows that β̂i= r* and ϵ̂i=Y *

i2−r*Y *
i1 . Also note that

the residuals are uncorrelated to Y *
i1 and have vari-

ance 1− r*2.
4. Generate Y *

i3 =Y *
i1r+ ϵ̂i

ffiffiffiffiffiffiffiffiffiffiffi
1−r2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1−r*2

ph i−1
. Note that

var Y *
i3

� �
=1 and its correlation with Y *

i1 is r.
5. Generate the pseudo baseline as follows:

YBi=Y *
i1sdB+ �YB.

One can immediately verify that the pseudo baseline
measurements have mean �YB and standard deviation sdB.

1. Generate the pseudo follow-up outcome as follows:
YFi=Y *

i3sdF + �YF .

Similarly, the pseudo follow-up outcomes have mean
�YF and standard deviation sdF and cor(YBi,YFi) = r.

This algorithm can be easily carried out in standard
statistical software. In the Supporting Information we
show how this algorithm can be carried out in R31 and
SAS.32 The pseudo IPD can now be analysed using the
LMM methods for IPD of Sections 3 and 4.

In practice, the group correlations are rarely reported.
However, the mean change from baseline, with the stan-
dard deviation or standard error are more often provided.
When the standard deviation at baseline, at follow-up
and the change from baseline sdChange are reported, the
group correlation can be directly calculated as follows:

r=
sd2B+ sd2F−sd2Changescores

2sdBsdF
ð6Þ

For more details see the Cochrane Handbook,33 Chapter
16. Alternatively, if the standard error of the difference
between groups in mean change scores is provided and the
pre/post correlations are assumed to be equal between the
two groups; the correlation can be calculated as:

r=
sd2BT=nT + sd2FT=nT + sd2BC=nC+ sd2FC=nC−se2difChangescores

2sdBTsdFT=nT +2sdBCsdFC=nC
ð7Þ

where T and C are the indexes for treatment and control
group, respectively.21 When the group correlation cannot
be derived from the available data, one could resort to
imputation methods.34,35,36

6 | APPLICATION OF THE
METHODS TO THE DATA

We generated pseudo IPD baselines and outcomes for the
aggregate hypertension data of Table 1, the aggregate hyper-
tension dataset with artificial baseline imbalance and the
AD of the obstructive sleep apnea example (given in the
Supporting Information). Using these pseudo IPD we subse-
quently fitted the LMM models (1) to (4) discussed in Sec-
tion 3; stratified study models and random study models,
both with and without the interaction between treatment
and baseline measurements. For the stratified models
including the interaction term of baseline with the treat-
ment effect, we assumed an unstructured variance-covari-
ance matrix for the two random effects. For the random
study models, we centered the groups when specifying the
random effects, and assumed independent random effects
due to memory issues. The parameters in the models were
estimated using restricted maximum likelihood (REML37).

We fitted all models using the LMM program of SAS,
PROC MIXED because SAS has explicit options for model-
ing the within-study residual variances and allows for
additional flexibility using different methods to calculate
the degrees of freedom and hence confidence intervals of
the treatment effect. We used two different approaches, the
default method where the degrees of freedom are calculated
using the “between within” method in SAS, as it was the
method also used in our previous work and also the
Satterthwaite approximation method,38 following the rec-
ommendations of Legha et al,11 who performed an exten-
sive simulation study comparing the models in Section 3
under different CI derivations options.

In the Supporting Information we provide details on
the SAS code and on how to fit the same models in R
using nlme.39 For comparison purposes with the results
of Riley et al,21 we present only the CIs derived using the
between-within method.

6.1 | Results of the hypertension
example with baseline balance

Results of the analyses using the pseudo IPD generated
from the aggregate data on hypertension were compared
with the two-stage IPD meta-analysis results of Riley
et al,21 who (unlike us) had access to the original IPD. As
mentioned a two-stage IPD meta-analysis is very similar
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to the stratified study model of Equation (1) assuming
equal residual variances between the treatment and the
control group per study, that is, study-specific variances:
σ2ik=σ2i: . We also performed a two-stage ANCOVA using
the pseudo IPD. For completeness we also present the
results of an AD meta-analysis using the change scores.

The results for the baseline balanced example are
shown in the top two rows of Table 2. Across all compet-
ing models, the treatment effect estimates were negative
indicating that the hypertension treatment reduced sys-
tolic blood pressure values.

The estimated treatment effect and corresponding
standard error of the one-stage pseudo IPD ANCOVA
analysis assuming study-specific residual variances, were
identical to the results based on the analysis of the true
IPD by Riley et al21; −10.17 (SE = 0.93) vs −10.17
(SE = 0.93). There are slight differences in the 95% CIs as
they were derived by different methods; under the
Satterthwaite correction method were slightly wider. In
addition, a two-stage analysis on the pseudo IPD assum-
ing study-specific residual variances yielded identical
results to model (1) and the analysis of the true IPD21: a
summary treatment effect of −10.17, SE = 0.93.

We compared the AIC values40 of different within-
study residual variance structures for the stratified study
models and for the random study models. In both model
blocks the lowest value was found for the assuming all
within-study residual variances to be free (arm-specific
and study specific; 243 387.2), although AIC values were
found to be very similar across the different within-study
variance options, suggesting that one could potentially
adopt a simpler model when opting for a more parsimo-
nious model. The study stratified model assuming
within-study variances to be study-specific had the sec-
ond lowest AIC value (243 411.9) in that model block
and was adopted as the final model. This model showed
a summary treatment effect of −10.17 [95% CI: (−12.27,
−8.06)], indicating that on average antihypertension
treatments have a positive effect on SBP levels, reducing
them by 10.17 mmHg more compared with control/no
treatment.

The last column of Table 2 shows the results of the
standard AD analysis following a change scores
approach; a summary treatment effect −10.10 [95% CI:
(−12.33, −7.87)], slightly lower than the ANCOVA esti-
mate using one-stage or two-stage pseudo IPD.

6.2 | Results of the hypertension
example with baseline imbalance

For the aggregate data with baseline imbalance, the effect
of the active hypertension treatments compared with

control is more pronounced (bottom rows of Table 2). We
adopt the stratified study model as the final model which
produces a summary treatment effect of −14.55 [95% CI:
(−18.31, −10.80)], identical to the ANCOVA result of the
true IPD presented in Riley et al.21 Using a two-stage
analysis of the pseudo IPD assuming study-specific resid-
ual variances resulted also in a summary treatment effect
of −14.55 [95% CI: (−18.30, −10.80)].

The results of the pseudo IPD analysis were substan-
tially different from the standard AD meta-analysis of
change scores, because of the induced baseline
imbalance.

6.3 | Including the interaction between
baseline and treatment effect

To investigate potential treatment-by-baseline modifica-
tion, we included the interaction term β3 between base-
line and treatment effect in the pseudo IPD LMM
models. We compared the pseudo IPD models (3) and (4)
with the two-stage IPD meta-analysis of Riley et al21 with
interaction, and with a random-effects meta-regression of
the final values on the mean baseline of the treatment
group. The estimate obtained from the AD meta-regres-
sion is actually comparable to the β4 term, which quan-
tifies the across-trial interaction. In the results we focus
on the within-trial interaction estimate β3 which reflects
the treatment-by-baseline interaction.

In the balanced example case, the derived pseudo IPD
ANCOVA interaction term under the stratified study
model assuming all within-study residual variances to be
free was equal to −0.09 [95% CI: (−0.17, −0.01)], provid-
ing some evidence that the treatment effect is slightly
higher for the more severe hypertensive patients at base-
line with higher SBP baseline values (top row of Table 3).
In addition, the result from model (3) assuming study-
specific residual variances was found to be identical to
the two-stage model fitted in Riley et al,21 −0.09 (SE:
0.038). Using a two-stage analysis of the pseudo IPD
assuming study-specific residual variances in SAS yielded
a summary treatment-by-baseline interaction effect of
−0.09 [95% CI: (−0.18, −0.00)]. We also replicated the
two-stage analysis in STATA using the DerSimonian-
Laird method41 to combine the effects, where the results
were found identical to the analysis in Riley et al.21

The meta-regression results using the mean baseline
value of the treatment group were higher compared with
the pseudo IPD ANCOVA model (−0.16 vs −0.09).

The estimates of the interaction effect in the imbal-
anced baseline dataset using the pseudo IPD were found
to be very similar to the ones in the balanced case. How-
ever, the meta-regression estimate was in the opposite
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direction of the effect compared with the ANCOVA
pseudo IPD results. The across-trial interaction as esti-
mated from a standard AD meta-analysis can differ from
the within-trial interaction, that is, the difference in treat-
ment effect of two patients in the same study differing
one unit at baseline, as estimated from a true IPD or
pseudo IPD meta-analysis. The assumption that they are
the same is often not plausible due to the fact that across-
trial interaction can suffer from confounding.5 This
phenomenon is called ecological or aggregation bias.
Therefore the across-trials interaction should be carefully
interpreted. Also note that the statistical power for the
estimation of the within-trial interaction is usually much
larger than for the across-trials interaction, as reflected
by the standard errors (Table 3).

6.4 | Results of the obstructive sleep
apnea example

In this second example, it was possible to calculate the
group correlations (assumed to be equal between active
and sham) using Equation (7); the derived correlations
values varied slightly across studies [median: 0.498, IQR:
0.496-0.503]. We additionally performed sensitivity ana-
lyses by imputing three values of r (0.5, 0.6 and 0.7), to

simulate cases where deriving the correlations from avail-
able data would not be possible. The R package ggplot242

was used to visualize the results of the competing
models.

Figure 2 shows the results of the one-stage stratified
study model assuming different options for the within-
study residual variances. Results consistently showed that
CPAP statistically significantly reduces AHI compared
with the sham device (�41 events/hour). When r was cal-
culated from the summary data (blue line/circle esti-
mate), the point estimates across competing models
varied slightly between 41 and 42 less events per hour in
favor of active CPAP. The lowest AIC value was found
for the most flexible model assuming arm and study
residual variances to be free (AIC = 2273). Overall, AIC
values did not differ greatly across the models hence sim-
pler structures can also be adopted, for example, study-
specific within-study residual variances model.

The point estimates and 95% CIs were found to vary
little across the imputed values of r, and the differences
were not deemed to be clinically significant. The differ-
ences within the blocks of the more flexible modeling
options (study- and arm-specific, and study-specific
within-study residual variables) were more pronounced
compared with the results of the more restricted models
(group specific and one overall variance). Overall, the

FIGURE 2 Obstructive sleep apnea meta-analysis results: estimates of overall mean difference of active CPAP vs sham and 95% CI in

AHI across different residual variance models and varying group correlation coefficients between baseline and follow-up values [Colour

figure can be viewed at wileyonlinelibrary.com]
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results based on the different imputed values within the
same model block and across models did not seem to
materially differ.

For this example, no direct comparison is feasible
with the true IPD, thus we present the results of the one-
and two-stage pseudo IPD analysis (using the calculated r
value) and the original meta-analysis,22 and compare
them with each other (Table 4). The one-stage stratified
study model and the two-stage ANCOVA model, which
form a natural comparison with one another, produced
identical results when rounded in two decimal places
(rows 3-4, Table 4). The point estimate of the standard
AD change score analysis was larger compared with the
ANCOVA results of the pseudo IPD, which may be
explained by the negative correlation of the change scores
with the baseline scores and the worse baseline of the
subjects randomized in the active group. Generating the
pseudo IPD enabled us to explore the interaction of base-
line values with the treatment effect which in this exam-
ple was found to be statistically significant (last two rows
of Table 4), suggesting that the treatment effect is higher
for the patients randomized in the active CPAP arm who
were found to suffer more at baseline compared to the
control patients.

7 | DISCUSSION

We have shown how aggregate data from comparative
studies of continuous outcomes measured at baseline and
follow-up can be analysed by generating pseudo IPD.
These pseudo IPD enable us to use the complete palette
of techniques available for IPD meta analyses. In particu-
lar, we are able to (a) perform an ANCOVA, where we
can adjust for baseline imbalances between treatment
and control groups and to (b) explore interactions
between baseline values and treatment effects. Different
modeling approaches of increasing complexity can be
applied by using the linear mixed model (LMM) frame-
work. Since the LMM analyses are likelihood-based, one-

stage and two-stage results derived using the pseudo IPD
baseline and follow-up outcomes are identical to the ones
of the original IPD. The proposed methods can be applied
in any standard statistical software therefore eliminating
the need for training on a special purpose meta-analytic
software.

In this article we have described modeling situations
of comparing two treatment groups using the follow-up
and baselines values. However, the LMM is a broad
framework which offers rather staightfoward extensions
of this work; the algorithm is directly generalizable to
repeated measures meta-analysis and to multiple-treat-
ments meta-analysis. Extension of the method for meta-
analysis of cross-over trials is also applicable with some
modifications albeit beyond the scope of this work. In
addition, incorporation of non-linear covariates or non-
linear interactions of treatment with continuous
covariates could be a topic of future research as in this
work we included the baseline (our covariate of interest)
as a linear term in the ANCOVA model. Our algorithm
could be extended to incorporate other covariates than
only the baseline if the required summary statistics are
available, in this case the variance-covariance matrix per
group. These summaries are practically never reported
however it is much easier to request them from the
authors compared to the true IPD, as no privacy issues
are involved. Bonofiglio and authors recently proposed a
similar approach under distributed computing setting
framework using only IPD summaries to recreate the
marginal distributions of the original IPD considering
eight baseline predictors in a multivariable logistic
regression model.43

The proposed approach successfully addresses the
problem of IPD disclosure which is seldom possible due
to various reasons with respect to data privacy and data
security. In the case of continuous outcomes measured at
baseline and follow-up often the sufficient aggregate data
may be only partially available; for example often only
means and standard deviations at baseline and mean
change from baseline scores with the respective standard

TABLE 4 Meta-analysis results of summary treatment effect and interaction effect using the pseudo IPD approach compared with

standard change score AD methods

Approach Method Estimate Standard Error 95% CI

Standard AD Difference in change scores as in Balk et al22 −46.39 5.39 (−56.97, −35.81)

Pseudo IPD One-stage ANCOVAa Equation (1) −42.41 5.23 (−54.77, −30.05)

Two-stage ANCOVA Equation (5) −42.41 5.23 (−54.77, −30.04)

One-stage ANCOVA interaction effect Equation (3) −0.40 0.07 (−0.54, −0.25)

Two-stage ANCOVA interaction effect −0.40 0.07 (−0.54, −0.25)

Abbreviations: CI, confidence interval, Assumed rCPAP = rsham; �YBTi, mean baseline AHI values of the treated group per trial.
aA study-stratified model with study specific variances was used.
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deviation or standard error are reported. Less frequently
the mean and the standard deviation values at follow-up
are provided. In that case, we could resort to algebraic
calculations or imputation methods.36,34 In principle, the
minimally required set of aggregate data is the means
and standard deviations at baseline and follow-up and
also the standard deviation of the change from baseline.
If these three standard deviations are provided, the corre-
lation coefficient of baseline and follow-up can be calcu-
lated.33 If one of these standard deviations are missing,
they can potentially be algebraically extracted by other
commonly reported summary statistics, for example, con-
fidence interval of mean difference, standard error of
mean difference, paired t test or a p-value from a paired
t-test.44,45,46 In cases where the post-baseline standard
deviation is missing, it is common practice to assume it
equal to the standard deviation at baseline and thus
enable the calculation of the within-group correlation.
Another commonly used approach is to impute the miss-
ing SDs at post-baseline from other similar studies, with
respect to study and patient characteristics, included in
the meta-analysis. Recently, Weir and colleagues36 pro-
posed 15 methods for addressing missing standard devia-
tions (and by extension group correlations) in continuous
data meta-analysis, building on the empirical review of
Wiebe and colleagues in 2006.34 Interested readers are
referred to these reviews as a lengthy description of avail-
able methods for calculating or imputing the missing
summary data is beyond the scope of this work. We also
encourage contacting the authors of the original studies
to provide the aggregate data also at follow-up, when
confidentiality issues prohibit the direct provision of IPD.

We compared our pseudo IPD approach to standard
meta-analytic approaches for aggregate data: random
effects meta-analysis using change scores and meta-
regression of the final scores on the baseline values of the
treatment group to compare their performance with the
pseudo IPD models. In case of imbalanced baseline
values, the AD methods based on change scores tend to
provide biased treatment and interaction effect estimates
compared with the pseudo IPD ANCOVA methods.

Another advantage of the pseudo IPD approach is
that it allows us to make more realistic and flexible
assumptions regarding the within-study residual vari-
ances. In the absence of computational or estimations
issues, we propose to use a realistic structure of the
within-study residual variance. This flexibility is not pos-
sible in the standard AD analysis. Moreover, the standard
AD assumes the standard errors of the treatment effects
to be fixed and known, while using pseudo IPD
ANCOVA methods may account for the fact that these
are estimated.

When the appropriate AD are available (ie, two
means, standard deviations and correlation per group),
we strongly recommend our proposed methodology to
construct the pseudo IPD and perform an ANCOVA, if
needed including the treatment-by-baseline interaction
term. The advantage of our method is highlighted partic-
ularly in the case of baseline imbalance and in the case of
treatment-baseline interaction, as the standard AD
methods for interaction are known to suffer from low
power and the potential of ecological-bias.
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