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Objectives: Clostridium difficile is a major global human pathogen divided into five clades, of which clade
3 is the least characterized and consists predominantly of PCR ribotype (RT) 023 strains. Our aim was to
analyse and characterize this clade.
Methods: In this cohort study the clinical presentation of C. difficile RT023 infections was analysed in
comparison with known ‘hypervirulent’ and non-hypervirulent strains, using data from the Netherlands
national C. difficile surveillance programme. European RT023 strains of diverse origin were collected and
whole-genome sequenced to determine the genetic similarity between isolates. Distinctive features were
investigated and characterized.
Results: Clinical presentation of C. difficile RT023 infections show severe infections akin to those seen
with ‘hypervirulent’ strains from clades 2 (RT027) and 5 (RT078) (35%, 29% and 27% severe CDI,
respectively), particularly with significantly more bloody diarrhoea than RT078 and non-hypervirulent
strains (RT023 8%, other RTs 4%, p 0.036). The full genome sequence of strain CD305 is presented as a
robust reference. Phylogenetic comparison of CD305 and a further 79 previously uncharacterized Eu-
ropean RT023 strains of diverse origin revealed minor genetic divergence with >99.8% pairwise identity
between strains. Analyses revealed distinctive features among clade 3 strains, including conserved
pathogenicity locus, binary toxin and phage insertion toxin genotypes, glycosylation of S-layer proteins,
presence of the RT078 four-gene trehalose cluster and an esculinase-negative genotype.
Conclusions: Given their recent emergence, virulence and genomic characteristics, the surveillance of
clade 3 strains should be more highly prioritized. H.A. Shaw, Clin Microbiol Infect 2020;26:492
© 2019 The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and
Infectious Diseases. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
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Introduction

Clostridium difficile remains a major global pathogen; disease
severity and relapse incidence have not abated, and community-
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acquired infections have increased [1]. It can be divided into five
clades of virulent strains [2]. The most understudied is clade 3,
dominated by PCR ribotype (RT) 023 strains [2]. RT023 has been
reported primarily in Europe [3] and is among the top ten most
common C. difficile PCR ribotypes in England [4] (CDRN report
2013e2015) and the Netherlands (unpublished data of the Dutch
C. difficile Reference Laboratory). RT023 infections are not associ-
ated with increased mortality despite causing a high level of
deleterious biomarkers (e.g. neutrophil counts) in patients and
having toxin profiles similar to clade 2 (RT027) and clade 5 (RT078)
strains [5,6]. However, disease severity with RT023 has been re-
ported as similar to ‘hypervirulent strains’, particularly in elderly
individuals [7], and is frequently associated with a relapse of
C. difficile infection (CDI) [3].

This study investigates the clinical presentation and phylogeny
of C. difficile clade 3, uncovering and characterizing unique features
of these strains.

Methods

Clinical data collection and analysis

A cohort study was performed. Clinical data from the Dutch
national CDI sentinel surveillance from May 2009 until February
2018 were used to analyse the clinical characteristics of CDI epi-
sodes due to RT023. For this sentinel surveillance, all hospitalized
patients >2 years old, with clinical signs or symptoms of CDI in
combination with a positive test for C. difficile toxins or toxigenic
C. difficile, in Dutch participating hospitals, were registered. The
indication for testing for CDI and the assay or algorithm that is used
to diagnose CDI is chosen by the local laboratory.

Using classification criteria based on expert opinion that were
previously used [8], CDI is classified as severe if one or more of the
following conditions was present; fever (temperature of 38�C or
higher) and leucocytosis (>15 � 109/L), diarrhoea with hypo-
albuminaemia (<20 g/L) and/or dehydration, pseudomembranous
colitis and/or bloody diarrhoea. A complicated course is defined as
the need for surgical procedure, admission to intensive care unit
and/or mortality (CDI-related or non-CDI-related) within 30 days
after CDI diagnosis [8].

Our primary aim was to test the null hypothesis that RT023
causes the same proportion of severe CDI as non-hypervirulent
ribotypes. Therefore, clinical characteristics and 30-day outcome
of CDI episodes due to RT023 were compared with CDI episodes
due to other ribotypes (excluding hypervirulent strains RT027 and
RT078/126). Thereafter, the results of the RT023 group were
compared with the results of four pre-specified groups; RT027 and
RT078/126, which are well-known hypervirulent strains, and
RT001 and RT014/020/295, which are non-hypervirulent strains
that are common in the Netherlands. Each time, the results of the
RT023 group were compared with the results of one other group.
Some ribotypes were merged into one group because they are hard
to distinguish with PCR ribotyping. Further details are given in the
Supplementary material (Appendix S1).

Data are presented as number of cases (percentage) or per-
centage (95% confidence interval). Age is presented as median (first
quartile, third quartile), because of the skewed distribution. Cate-
gorical variables were compared by a Pearson's chi-square test or
Fisher's exact test for expected frequencies <5, and numerical
variables were compared by a Wilcoxon rank-sum test. To identify
the effect of RT023 on CDI severity, a multivariable logistic
regression analysis was performedwith age and sex as covariates. A
p value of <0.05 was considered statistically significant. STATA SE
version 12.1 statistical software (StataCorp, College Station, TX,
USA) was used for statistical analysis.
Ethics

This was an observational study, using data that are already
collected in the Dutch national CDI surveillance. This national
surveillance programme has existed since 2009 and collects
microbiological and clinical data from all hospitalized patients with
CDI in the participating hospitals in the Netherlands. The surveil-
lance has been developed by our National Institute of Public Health.
There were no additional data or isolates/materials specifically for
this study collected and no actions were requested from patients.

Whole-genome sequencing

CD305 genomic DNA was sequenced using 454 pyrosequencing
(GS-FLX pyrosequencing) to generate 3-kb paired-end libraries and
Illumina GAII paired-end libraries of 400-bp insert size and 108-bp
read length. The resulting sequence was assembled using NEWBLER

and VELVET and the assemblies were combined using NEWBLER [9,10].
Identification and annotation of coding sequences (CDS) were
generated using PROKKA [11] with a bespoke C. difficile library. The
assembled and annotated genome is available at ERS2502454. For
79 study isolates, genomic DNA libraries were created using a
Nextera XT kit (Illumina, San Diego, CA, USA) and data were ob-
tained using the MiSeq sequencing system (Illumina).

Whole-genome bioinformatics analysis

The sequence data were processed according to a standard
protocol as previously described [12] (see Supplementary material,
Appendix S1). Single nucleotide polymorphism (SNP) loci were
identified with a SAMTOOLS Q-score �30, coverage �10 and 80% of
contributing reads. Pipeline, phylogenetic and post-analyses were
carried out using PERL, R and RAXML [13].

Glycoprotein detection

Glycosylated proteins were detected using a Pierce Glycoprotein
Staining Kit according to the manufacturer's instructions (Pierce
Biotechnology, Rockford, IL, USA) (see Supplementary material,
Appendix S1).

Results

CDI in hospitalized patients due to RT023 strains is severe
comparable with RT027 and RT078 strains

Between May 2009 and February 2018, 5359 samples from
hospitalized patients in 24 hospitals in the Netherlands were PCR-
ribotyped within the context of the national C. difficile surveillance
programme. Clinical data were complete in 4387 cases. RT023
accounted for 141 cases of CDI, a mean proportion of 2.4% (95% CI
2.0%e2.8%), which remained consistent within the study period.

Demographic data, clinical characteristics and 30-day outcome
of patients with CDI due to RT023 were compared with data of five
other pre-specified ribotype groups, shown in Table 1. There were
no significant differences in age and sex between the RT023 group
and the other groups, except for higher age in the RT001 group.

The primary question was whether CDI due to RT023 was more
severe when compared with all non-hypervirulent ribotypes,
which was confirmed by our results (p 0.000: 35% (27%e44%)
versus 22% (21%e23%)), also after correcting for sex and age. No
significant differences of severity were found when RT023 was
compared with ‘hypervirulent’ strains RT027 and RT078/126 (p
0.310 and p 0.065, respectively, RT023: 35% (27%e44%), RT027: 29%
(20%e38%), RT078/126: 27% (24%e31%)), also not after correction



Table 1
Comparison of clinical characteristics of patients with RT023 versus other ribotypes (excluding RT027 and RT078/126), RT027, RT078/126, RT014/020/295 and RT001

RT023 (n ¼ 141) Primary outcome Hypervirulent strains Non-hypervirulent strains All info available

Others (n ¼ 4368) RT027 (n ¼ 116) RT078/126
(n ¼ 734)

RT014/020/295
(n ¼ 962)

RT001 (n ¼ 699)

Age 71.4 (10.0e97.7) 71.3 (1.9e102.3) 73.2 (11.2e91.5) 70.9 (5.2e100.7) 70.4 (2.1e99.2) 76.0 [3.3, 96.7]* 5359/5359
Men 71 (50) 2095 (48) 63 (54) 365 (50) 444 (46) 344 (49) 5356/5359
Severe CDI 45 (35) 880 (22)* 30 (29) 188 (27) 185 (21)* 104 (16)* 4948/5359
Dehydration and/or
hypoalbuminaemia

25 (20) 450 (11)* 14 (14) 100 (15) 97 (11)* 44 (7)* 4940/5359

Bloody diarrhoea 10 (8) 192 (5) 6 (6) 25 (4)* 34 (4)* 24 (4)* 4948/5359
Pseudomembranous
colitis

8 (6) 159 (4) 6 (6) 41 (6) 28 (3) 21 (3) 4948/5359

Fever and leucocytosis 11 (9) 295 (7) 9 (9) 76 (11) 64 (7) 36 (6) 4940/5359
Complicated course 13 (12) 485 (14) 21 (23)* 104 (17) 78 (10) 95 (17) 4387/5359
Overall mortality 10 (9) 428 (12) 18 (19)* 98 (16)* 68 (9) 86 (15) 4387/5359
CDI mortality 2 (2) 104 (3) 4 (4) 29 (5) 16 (2) 27 (5) 4387/5359

Community onset 75 (54) 1545 (36)* 31 (27)* 272 (37)* 356 (38)* 155 (23)* 5283/5359
CDI last 8 weeks 22 (27) 684 (25) 12 (20) 133 (29) 161 (27) 115 (25) 3312/5359

Abbreviations: CDI, Clostridium difficile infection; HCF, health-care facility; LTCF, long-term-care facility; RT, ribotype.
Data are presented as number of cases (percentage). Age is presented as median (first quartile, third quartile), because of the skewed distribution. Categorical variables were
compared by a Pearson's chi-square test and numerical variables were compared by a Wilcoxon rank-sum test. An asterisk (*) represents a p < 0.05, when comparing with
RT023.

H.A. Shaw et al. / Clinical Microbiology and Infection 26 (2020) 492e498494
for sex and age. Bloody diarrhoea was more frequently reported in
RT023 infections compared with RT078/126 infections (p 0.031),
RT014/020/295 (p 0.036) and RT001 (p 0.037) (RT023: 8% (3%e
13%), RT078/126, 4% (2%e5%), RT014/020/295 4% (3%e5%), RT001
4% (2%e5%)). When compared with non-hypervirulent RT001 and
RT014/020/295 isolates, with or without correcting for sex and age,
RT023 presentedwith significantlymore severe symptoms (p 0.000
for both, RT023: 35% (27%e44%), RT001: 16% (13%e19%), RT014/
020/295: 21% (18%e23%)), such as more frequent diarrhoea with
dehydration and/or hypoalbuminaemia. However, the outcomes of
CDI due to RT023 in terms of a complicated course, including
mortality, were comparable with outcomes of CDI due to RT001,
RT014/020/295 and all non-hypervirulent ribotypes. RT027 and
RT078/126 infections showed higher overall mortality than RT023
(p 0.032, p 0.049, respectively, RT023: 9% (4%e14%), RT027: 19%
(11%e27%), RT078/126: 16% (13%e19%)) but CDI-attributable mor-
tality was similar between these groups (p 0.415, p 0.206, respec-
tively, RT023: 2% (0e6%), RT027: 4% (1e11%), RT078/126: 5% (3%e
7%)). There were significantly more complicated courses in patients
with CDI due to RT027 compared with RT023 (p 0.038, 23% (14%e
31%) versus 12% (6%e18%) respectively), but no significant differ-
ences were observed between RT078/126 and RT023 (p 0.144,
RT078/126 17% (14%e20%)).

Comparison of RT023 with all groups in this study revealed that
the onset of symptoms of CDI due to RT023 was more frequently at
home and less often in healthcare facilities (p 0.000 compared with
all other groups). Subgroup analysis of community-onset and
hospital-onset CDI can be found in the Supplementary material
(Table S1). The number of episodes that were recurrences of a
previous CDI episode 2e8 weeks earlier was the same in RT023
episodes compared with all other groups (Table 1).
Clade 3 strains are highly related

A high-quality [14] draft genome of strain CD305 (RT023) was
generated and is presented here as a robust reference for this
lineage. Further strains were sourced from across Europe (see
Supplementary material, Table S2), with this study comprising 86
strains: CD305 (reference); 79 (out of 170 strains with the whole-
genome sequence (WGS) available); and six published clade 3
strains [15,16] (see Supplementary material, Table S3), the largest
RT023 genomic collection. Multilocus sequence types (MLST) were
identified in silico from de novo assemblies. The six published
strains matched their published MLST with new strains composed
of 68 ST005, ten ST022 and one novel sequence type (strain
OUS23024) (Fig. 1).

The 79 core strains were aligned to the CD305 reference strain
and a set of 19 262 (<0.5% of the 4.2-Mbp genome) high-quality
SNP loci was identified. The individual strains were very closely
related with only between 58 and 7876 pairwise SNP differences,
with a mean of 1767 SNPs (mean 9.2% of 19 262 SNPs; maximum
40.9%) equating to >99.8% pairwise identity between strains. A
phylogeny was created from the SNPs of all 86 strains that re-
inforces the conclusion of little genetic diversity within clade 3
strains (Fig. 1). From our 80 strains there were two outliers: strains
91 and 108698, which are not RT023 (Fig. 1a, see Supplementary
material Appendix S1 and Fig. S3). The unassigned MLST strain
(OUS23024) diverged slightly from the main population (Fig. 1b).
No significant relationship was found with any phenotypes,
including the infection date (2007e2014) or geographic origin (see
Supplementary material, Table S2 and Fig. S1). Details on MLST and
ribotype divergence can be found in the Supplementary material
(Appendix S1).

There is high conservation in all 86 strains of larger clade-
specific genetic features such as the pathogenicity locus (PaLoc),
binary toxin C. difficile toxin (CDT), PaLoc phage insertion and type
B flagella glycosylation cluster (see Supplementary material, Tables
S3 and S4). The only common antibiotic resistance marker is gyrB
(V426D) related to fluoroquinolone resistance. Analysis of 12 Polish
RT023 strains for fluoroquinolone resistance revealed resistance to
ciprofloxacin but sensitivity to moxifloxacin (see Supplementary
material, Table S5).
A unique trehalose metabolism genotype is present in clade 3 strains

Analysis of clade 3 strains for two trehalose clusters described as
being important in global dissemination and virulence of C. difficile
[17] showed a trehalose genotype unique to these strains. The
primary cluster, in which SNP L172I defines increased metabolism
in RT027 (clade 2) (Fig. 2a), was absent from all clade 3 genomes
analysed. This coincides with polymorphisms and a large deletion
in sugar metabolism genes in clade 3, including b-glucosidase
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Fig. 2. Clade 3 show a unique trehalose genotype. Schematic demonstrating the three trehalose metabolism genotypes observed in Clostridium difficile with clade 3 strains lacking
the primary trehalose metabolism cluster. (a) RT012 630 and RT027 R20291 genotypes of a primary trehalose cluster, with the L172I single nucleotide polymorphism associated
with increased metabolism of trehalose. (b) RT078 M120 genotype with primary and secondary trehalose metabolism gene clusters observed. (c) RT023 CD305 trehalose genotype
with only the secondary cluster including a truncated treX gene.
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genes (see Supplementary material, Appendix S1 and Fig. S4).
However, the RT078 (clade 5) second cluster (Fig. 2b) was observed
in all strains. Polymorphisms exist between the RT078 cluster in
M120 cluster and RT023 CD305, with the most significant differ-
ence being a truncation of treX (Fig. 2c). Between clade 3 strains
there are only a small number of SNPs, predominantly in strain 91
(see Supplementary material, Appendix S1).
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feature (see Supplementary material, Table S3 and Fig. S2). Strains
91, Ox2183 and WCHCD103, from which this feature is absent, are
genetically distinct from other strains within this clade, with
alternative slpA genes. In RT023 the slpA gene encodes a smaller
LMW SLP than in other clades, predicted at approximately 18 kDa
(Fig. 3b). S-layer extracts of representative strains from each of the
five clades of C. difficile show two distinct bands of equimolar ratio
representing the HMW and LMW SLPs in clades 1, 2, 4 and 5 by
Coomassie brilliant blue staining (Fig. 3c). Strain Ox247 (RT005,
clade 1) containing SLCT11 [20] along with S-layer preparations
from three representative RT023 strains show an alternative
pattern of SLPs. HMW SLP migrates at its expected molecular
weight, but a band at 18 kDa for LMW SLP is absent. A periodic
acideSchiff assay to stain for glycans on S-layer preparations
showed glycosylated proteins at ~45 kDa only in strains containing
the glycosylation cluster, demonstrating the presumed function-
ality of the cluster and glycosylation of S-layer proteins.

Discussion

This study provides a comprehensive analysis of clade 3 strains
of C. difficile with an extensive report of RT023 CDI and detailed
WGS analysis. The clinical characteristics of hospitalized patients
with CDI due to RT023 showed CDI severity similar to the ‘hyper-
virulent’ RT027 and RT078/126, with comparable CDI-related
mortality, although overall mortality was lower in RT023 as pre-
viously reported [6]. The phylogeny of clade 3 strains is compact,
barring six distinct outliers. In contrast to clade 2 strains (RT027),
clade 3 strains show great similarity consistent with a recently
emerged clade under little selective pressure to evolve [21]. WGS
analysis revealed a unique trehalose genotype and conserved
incorporation of a glycosylation cassette into the clade 3 genomes,
which was shown to glycosylate the S-layer.

Considering previous investigations, the severity of disease is
probably due to the production of binary toxin and the TcdC stop
codon in RT023 [5]. Recurrent infections due to RT023 were similar
to other ribotypes. This contrasts with an earlier study, where
RT023 was dominant among recurrent infections [22]. We also
observed more community acquisition of RT023 symptoms, but
current reports cannot explain this observation. Circulating strains
are unlikely to be the source of RT023 with no representation of
RT023 in a small group of C. difficile carriers [23] and a low repre-
sentation in C. difficile infections in the community [24]. The low
proportion (2.4%) of CDI due to RT023 observed in this study in the
Netherlands is consistent with a previous study on CDI in Europe
[3].

Strengths of this study are the high sample size, multicentre
design with high number of hospitals in different geographic re-
gions, and 10 years of available data, making the data generalizable
for hospitalized patients. Similarly, a sample size of over 80 strains
across 8 years from a variety of pan-European sources for WGS, as
well as published strains including Chinese strains, enabled us to
understand the phylogeny of clade 3 in much greater detail. Limi-
tations of the clinical data include the location of symptoms onset
being documented but not the location of C. difficile acquisition.
Furthermore, no datawere available regarding co-morbidity, which
might affect the outcome. Regarding severity of disease, occasion-
ally not all laboratory parameters needing laboratory results were
measured and included.

It has recently been shown that S-layer glycosylation is impor-
tant for adherence to Caco-2 intestinal epithelial cells but not for
biofilm formation [20]. Therefore, glycosylation of the S-layer in
clade 3 may be important for colonization but not persistence,
explaining a low level of carriage and recurrence of these strains.
Despite severe clinical presentation this clade is not as widely
disseminated as other clades. The emergence of RT027 and RT078
strains has been linked to an increased ability to metabolise the
food additive trehalose [17]. RT023 strains contain the second four-
gene cluster, corroborated by a recent study of trehalose genes in all
clades of C. difficile. The presence of only the secondary cluster and
the SNPs between RT023 and RT078 may result in a difference in
uptake and metabolism of trehalose between these strains, which
could explain the relatively reduced prevalence of RT023 strains
compared with RT078 and RT027 strains globally. No link between
trehalose and adverse disease outcomes has been suggested [25].
Meanwhile, the emergence of epidemic clade 2 strains has also
been linked to environmental spore contamination and the acqui-
sition of fluoroquinolone resistance, which is less pronounced for
clade 3 strains [21]. More analysis on sporulation in clade 3 is
required because reduced sporulation efficiency and survival
outside the human host have been reported [26]; however, a recent
study highlighted a clade 3 strain in China that had high sporula-
tion and germination rates [27].

It remains to be determined why evolutionarily distinct clades
of C. difficile are emerging simultaneously to cause disease in hu-
man populations, or if C. difficile is evolving into subspecies [28].
Our study suggests that a heightened awareness and continued
surveillance of RT023 strains globally should be a current
imperative.
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