
LAMPA, LArge Multidomain Protein Annotator, and its application to
RNA virus polyproteins
Gulyaeva, A.A.; Sigorskih, A.I.; Ocheredko, E.S.; Samborskiy, D.V.; Gorbalenya, A.E.

Citation
Gulyaeva, A. A., Sigorskih, A. I., Ocheredko, E. S., Samborskiy, D. V., & Gorbalenya, A. E.
(2020). LAMPA, LArge Multidomain Protein Annotator, and its application to RNA virus
polyproteins. Bioinformatics, 36(9), 2731-2739. doi:10.1093/bioinformatics/btaa065
 
Version: Publisher's Version
License: Creative Commons CC BY-NC 4.0 license
Downloaded from: https://hdl.handle.net/1887/3181262
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by-nc/4.0/
https://hdl.handle.net/1887/3181262


Sequence analysis

LAMPA, LArge Multidomain Protein Annotator, and its

application to RNA virus polyproteins

Anastasia A. Gulyaeva1, Andrey I. Sigorskih2,†, Elena S. Ocheredko2,†,

Dmitry V. Samborskiy3 and Alexander E. Gorbalenya 1,2,3,4,*

1Department of Medical Microbiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands, 2Faculty of Bioengineering

and Bioinformatics and 3Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119899,

Russia and 4Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden 2300 RC, The Netherlands

*To whom correspondence should be addressed.
†The authors wish it to be known that these authors contributed equally.

Associate Editor: Yann Ponty

Received on October 11, 2019; revised on January 2, 2020; editorial decision on January 21, 2020; accepted on January 23, 2020

Abstract

Motivation: To facilitate accurate estimation of statistical significance of sequence similarity in profile–profile
searches, queries should ideally correspond to protein domains. For multidomain proteins, using domains as
queries depends on delineation of domain borders, which may be unknown. Thus, proteins are commonly used as
queries that complicate establishing homology for similarities close to cutoff levels of statistical significance.

Results: In this article, we describe an iterative approach, called LAMPA, LArge Multidomain Protein Annotator, that
resolves the above conundrum by gradual expansion of hit coverage of multidomain proteins through re-evaluating
statistical significance of hit similarity using ever smaller queries defined at each iteration. LAMPA employs
TMHMM and HHsearch for recognition of transmembrane regions and homology, respectively. We used Pfam data-
base for annotating 2985 multidomain proteins (polyproteins) composed of >1000 amino acid residues, which dom-
inate proteomes of RNA viruses. Under strict cutoffs, LAMPA outperformed HHsearch-mediated runs using intact
polyproteins as queries by three measures: number of and coverage by identified homologous regions, and number
of hit Pfam profiles. Compared to HHsearch, LAMPA identified 507 extra homologous regions in 14.4% of polypro-
teins. This Pfam-based annotation of RNA virus polyproteins by LAMPA was also superior to RefSeq expert annota-
tion by two measures, region number and annotated length, for 69.3% of RNA virus polyprotein entries. We rational-
ized the obtained results based on dependencies of HHsearch hit statistical significance for local alignment similarity
score from lengths and diversities of query-target pairs in computational experiments.

Availability and implementation: LAMPA 1.0.0 R package is placed at github (https://github.com/Gorbalenya-Lab/LAMPA).

Contact: a.e.gorbalenya@lumc.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Due to high-throughput next-generation sequencing, genomics is
outpacing functional and structural characterization of proteins
(Brister et al., 2015). This gap is especially pronounced and fast
growing for viruses, whose discovery and characterization in diverse
habitats has been driven by metagenomics over the last 10 years
(Suttle, 2007; Zhang et al., 2019).

In genomics projects, conceptually translated open reading frames
(ORFs) are functionally characterized by bioinformatics tools which
use homology recognition for annotation. To improve accuracy of
protein annotation, bioinformatics tools use iterative searches of data-
bases of individual sequences [e.g. PSI-BLAST (Altschul et al., 1997)

versus GenBank (Sayers et al., 2019)], search profile databases [e.g.
HMMER (Finn et al., 2011) or HHsearch (Remmert et al., 2012;
Söding, 2005) versus Pfam (El-Gebali et al., 2019) or HHblits
(Remmert et al., 2012) versus Uniclust30 (Mirdita et al., 2017)], and
may involve comparison of query and target secondary structure [e.g.
HHsearch versus SCOP (Fox et al., 2014)]. Annotation pipelines favor
selectivity over sensitivity by imposing stringent cutoffs on similarity
between query and database entries. Scores of similarity are inter-
preted in statistical frameworks using either expectation values (de-
fault cutoff E¼0.001, BLAST, HMMER, HHsearch) or homology
Probability (default cutoff P¼95%, HHsearch).

To recognize distant homologs, popular HHsearch was fine-
tuned based on a subset of SCOP 1.63 database with less than 20%
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pairwise sequence identity of structural domains (Söding 2005),
where mean sequence length is equal 178 aa (Fox et al., 2014;
Fig. 1), typical of functional and structural domain (Wheelan et al.,
2000). Its hit statistical significance increases with score of similarity
between query and target, and it depends on sizes and diversities of
query and target (Remmert, 2011). Specifically, large size increases
likelihood of a hit score emerging by chance, while the opposite is
true for small size. Notwithstanding HHsearch training on protein
domains, it has been routinely used in analysis of proteins of un-
known domain organization. For a single-domain protein, statistical
significance of hit similarity must be applicable to its domain, since
sizes of both are similar. On the other hand, for multidomain
queries, statistical support of a hit associated with individual do-
main may be underestimated due to inflated search space that
encompasses other domains of the query protein (Altschul et al.,
1997; Söding, 2005).

The query size issue could be of little practical consequence for
proteins having closely related homologs in sequence databases.
However, for identification of distant relationships, accurate estima-
tion of statistical significance could be impactful. The above prob-
lem may be particularly acute for RNA viruses (Baltimore, 1971),
which typically encode large multidomain proteins (>1000 aa) (Das
and Arnold, 2015). (Hereafter and for sake of simplicity, we will use
polyprotein to refer to virus multidomain proteins). They are much
larger than most proteins of cellular organisms, whose length distri-
butions resemble lognormal, with a mean below 500 aa (Zhang,
2000). Human immunodeficiency virus, Ebola virus, severe acute re-
spiratory syndrome coronavirus and poliovirus, and very many
other eukaryotic viruses encode polyproteins (Dougherty and
Semler, 1993; Gorbalenya and Snijder, 1996). These polyproteins
mediate replication/transcription and promote virus particle forma-
tion in either the synthesized form or after being proteolytically
processed. Furthermore, the already known proteomes of RNA
viruses are exceptionally diverse due to high mutation rate of RNA
viruses (Sanjuan et al., 2010), with many relationships in twilight
and midnight zones of homology (Habermann, 2016; Kuchibhatla
et al., 2014).

In our recent HH-suit-mediated analysis of the largest known
polyprotein of RNA virus (PSCNV, 13 556 aa) (Saberi et al., 2018),
we initially annotated only three regions by homology (polyprotein
7.1%). To check whether this result could be partially attributed to
an underestimation of genuine statistical significance of the

similarity between polyprotein domains and target protein profiles,
we split the polyprotein using comparative genomics and, indeed,
identified three other homologs with high confidence (Saberi et al.,
2018).

The above positive experience led us to formalize this approach
in R package, called LAMPA, LArge Multidomain Protein
Annotator, that we describe in this article. Also, we present proof-
of-the principle for LAMPA in study of homology between RNA
virus polyproteins and pfamA_31.0 database. It was further sup-
ported and expanded by evaluation of dependences of HHsearch
statistics for fixed similarity score from lengths and diversities of
query and target in computational experiments.

2 Materials and methods

2.1 Databases and virus protein dataset
We used pfamA_31.0 database (El-Gebali et al., 2019), accompany-
ing HH-suite (Remmert et al., 2012), as target database to identify
homology by profile searches and transfer annotation. We were
interested in annotating virus proteins and selected a subset of NCBI
Viral Genomes Resource database (RefSeq) (Brister et al., 2015) to
serve as queries in homology searches and the source of expert anno-
tation (Supplementary Text S1.1). Only proteins of true RNA
viruses that use RNA-dependent RNA polymerase (RdRp), positive
and negative single-strand ed RNA viruses, (þ)ssRNA and
(�)ssRNA, respectively, and double-stranded RNA viruses, dsRNA,
were included in the query protein dataset (Supplementary Fig. S1).
Protein sequences were obtained from ‘translation’ qualifiers of
‘CDS’ features in RefSeq genome entries. The query database
included all 2985 protein sequences of RNA virus genomes listed in
‘Viral genome browser’ table on 26 July 2018 (Supplementary Table
S1), that were 1000 aa or longer (protein length ranged from 1001
aa to 8572 aa, median¼2081 aa; Fig. 1). It was further grouped
into 884 clusters using MMseqs2 (Steinegger and Söding, 2017), fol-
lowing the authors recommendations for multidomain proteins and
defining sequence identity rate (–cluster-mode 1 –min-seq-id 0.3 –
alignment-mode 3) and local alignment coverage (–cov-mode 0 -c
0.8) (see Supplementary Text S1.2 and Table S1). Most of these pro-
teins are encoded in a single ORF (Firth and Brierley, 2012). We
parsed RefSeq entries corresponding to the analyzed proteins to ex-
tract region annotations from ‘Region’ features (O’Leary et al.,
2016). Other annotation features, such as ‘CDS’, ‘Protein’ and
‘Site’, which were not taken into analysis, may overlap with the
‘Region’ or include extra information. For further details about pol-
yprotein query dataset see Supplementary Text S1.1.

2.2 Comparative sequence analysis
Transmembrane (TM) helices in protein sequences were predicted
by TMHMM 2.0c (Sonnhammer et al., 1998). Secondary structures
(SS) of query sequences, regardless of their length, were derived
from the predictions made for the respective entire polyproteins by
script addss.pl from HH-suite 3.0.0 (15 March 2015) (Steinegger
et al., 2019), which used PSIPRED 3.5 tool (Jones, 1999). Query
profiles were built and compared to a database by programs
HHmake and HHsearch from HH-suite 2.0.16, respectively
(Söding, 2005; http://wwwuser.gwdg.de/~compbiol/data/hhsuite/
releases/all/). In all analyses, parameters of HH-suite programs were
left at default values, with the exception of HHmake parameter ‘-M
first’, indicating that columns with residue in the first sequence of
the FASTA file are considered match states, and HHsearch three
parameters: ‘-p 0’, allowing hits with Probability as low as zero; ‘-
norealign’, blocking realignment of reported hits using maximum
accuracy algorithm; ‘-alt 10’, enabling reporting up to 10 significant
alternative alignments between a query and a target profile (Söding,
2005) (Supplementary Text S1.3). To identify statistically significant
hits and homologous regions, HHsearch hits were subjected to post-
processing under three cutoffs: Probability >95%, E-value <10 and
hit length of >50 aa of the query sequence. Hits satisfying these
thresholds and overlapping on query were combined into a cluster,
extreme N- and C-terminal residues of which defined boundaries of

Fig. 1. Length distribution of proteins in datasets relevant to comparison of

HHsearch and LAMPA. This plot depicts sizes of six protein datasets labeled from

A to F and used or cited in this study. (A) 6271 SCOP domains used for HHsearch

training (range: 21–1504 aa); (B) 2985 RefSeq virus polyproteins (range: 1001–

8572 aa); (C) 431 RefSeq virus polyproteins which include 507 regions exclusively

annotated by LAMPA (range: 1039–8572 aa); (D) 507 hit regions generated by

LAMPA from 431 RefSeq polyproteins (range: 88–2172 aa); (E) 507 domains tenta-

tively demarcated around LAMPA hits (range: 164–732 aa); and (F) 41 designed

sizes of each of three proteins, 123 in total, tested in computational experiments

(range: 10–100.000 aa)
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region in the query that was homologous to target(s). Statistics of
the top-scoring hit in the cluster defined the entire cluster, and name
of the top-scoring target profile in the cluster annotated the query re-
gion. Unless stated otherwise, all reported analyses used the hits
post-processing. Also, we used HHblits v.3 (Remmert et al., 2012)
for analysis of selected polyproteins as detailed in Supplementary
Text S1.4. Analysis and visualization were performed using R 3.3.0
(R Core Team, 2018, https://www.R-project.org/).

2.3 Statistics
P-value of Wilcoxon signed-rank test (PW) was calculated using
function ‘wilcox.test’ from R package ‘stats’, with arguments
‘paired’ and ‘alternative’ set to values ‘TRUE’ and ‘greater’, respect-
ively (R Core Team, 2018, https://www.R-project.org/).

2.4 Calculation of HHsearch P-value and Probability

dependence from lengths and diversities of query-

target pair for fixed hit score
HHsearch uses extreme value distribution (EVD) model for estimat-
ing hit’s P-value, E-value, and Probability from query-target local
alignment similarity score. P-value for a given score is defined as:

PvalueðscoreÞ ¼ 1� exp
�
� exp

�
� k � ðscore� lÞ

��
; (1)

where k and l are the EVD parameters that optimally approximate
the score distribution of false positives for a given pair of query and
target profiles. E-value is defined as Pvalue(score)*NDB, where NDB

is the number of searched target profiles in the database. For calcu-
lations of k and l, HHsearch uses ‘profile auto-calibration’ that
employs two simple artificial neural networks (Remmert, 2011).
This default procedure makes use of dependence of k and l on four
characteristics: profile lengths and sequence diversities of both query
and target. The parameters of the neural networks were derived by
training on a set of profiles based on 6271 sequences of SCOP20
v1.73 database (minimal, median and maximal protein lengths ¼ 21
aa, 142 aa and 1504 aa, respectively; 5-to-95% range ¼ 48-to-392
aa) (Fig. 1). Estimation for Probability of detecting homologous re-
lationship (true positives) is also based on the EVD distribution but
involves correction by the SS alignment score.

To learn how HHsearch performs on queries of our study with
sizes close to or exceeding the largest protein in the training SCOP
database, we conducted computational experiments using the
HHsearch procedure that generates EVD parameters by adapting cor-
responding Cþþ source code into a Python Jupyter notebook (https://
github.com/Gorbalenya-Lab/hh-suite-notebooks/tree/LAMPA). We
approximated P-value and Probability of hit for fixed local alignment
similarity score (including also SS alignment score for Probability) in
relation to lengths and/or diversities of the corresponding query and
target profiles, one of which may have been set to vary in large range
of values (see Supplementary Text S1.5).

3 Results

3.1 LAMPA, iterative approach for homology

recognition and functional annotation of multidomain

proteins
LAMPA approach is aimed at improving detection of remote hom-
ology in large multidomain proteins (queries). Its multistage iterative
procedure includes prediction of TM regions in query by TMHMM
at the pre-iteration Stage #0 and comparisons of query and its
regions with HH-suite profile database(s) (targets) using HHsearch
for iterations at Stages #1–#3 (Fig. 2). As query, intact protein is
used for Stages #0 and #1, and various protein regions are used for
Stages #2 and #3. Iteration is a single execution of a procedure
involving protein regions demarcation and submission of regions to
HHsearch-mediated homology searches to identify statistically sig-
nificant hits (values of post-processing cutoffs, specified in Section
2.2, are default). The approach stages are detailed below:

Stage #0. Detection of TM regions in original query. TM region
(domain) may include either single or few helices predicted by
TMHMM. By default, more than one helix is included in a region if
each helix is separated from its neighbor by <100 aa. Region boun-
daries are defined by either helix boundaries (single-helix region) or
opposite boundaries of two respective terminal helices (multiple-
helix region). TM regions are used to split original query into
smaller regions (see Stage #2).

Stage #1. Detection of homology regions in original query. This
is the first iteration of the annotation procedure that uses
HHsearch-mediated homology search. Its input and output are the
original query and hit-annotated regions, respectively.

Stage #2. Detection of homology regions in split query: query-
protein-specific (QP-specific) iterations. To initiate this stage, the pro-
cedure selects regions of the original query that are flanked by either
of the following: N- or C-terminus of the original query, TM regions
and hits clusters identified at the Stages #0 and #1, respectively. These
regions are used as input to HHsearch-mediated homology searches.
Obtained hits are used for annotation and to demarcate flanking
smaller non-annotated regions. The latter are used to initiate a new it-
eration in the manner described above. The iterations are repeated
until no hits satisfying the cutoffs are identified.

Stage #3. Detection of homology regions in split query: average-
protein-size-specific (AP-specific) iterations. Non-annotated regions
after the Stage #2 are split into two overlapping sets of 300 aa
queries (default). The most C-terminal queries of both sets are
extended to include the remaining part of the respective region, if
the remaining part is shorter than 300/2¼150 aa (default) and if the
extended query does not cover the entire region. The default 300 aa
size is close to that of an average protein (AP), hence respective itera-
tions are called AP-specific. Queries are defined starting from either
the N-terminus (first AP-specific iteration) or 300/2¼150 aa (de-
fault) downstream the N-terminus (second AP-specific iteration) of
the non-annotated regions of Stage #2. They are run independently.
During this stage, one and the same region of polyprotein may be
found to have homolog and be annotated on both AP-specific itera-
tions since two sets overlap.

3.2 LAMPA implementation
The above approach was realized as LAMPA 1.0.0 R package (see
also Supplementary Text S1.6) that includes a single command
‘LAMPA’ with 15 arguments that allow user to specify a single

Fig. 2. LAMPA workflow and its application to RNA virus polyprotein. Presented is

outline of the LAMPA approach (blue background) applied to polyprotein 1a

(pp1a) of BPNV. Gray bars, regions of BPNV pp1a that served as TMHMM or

HHsearch queries. Iterations of the procedure and programs used are depicted on

the left; stages are indicated on the right. Clusters of TM helices are depicted in dark

red, clusters of hits—in dark blue. Hit double digits refer to iteration and hit pos-

ition on polyprotein from left to right, respectively, except for hits at Stage #0 which

are labelled with the position only. Hits and annotations obtained on Stage #1 rep-

resent output of conventional HHsearch. Q-rich, region rich in glutamine residue;

ZBD, zinc-binding domain; Pkinase, protein kinase; MTase, methyltransferase;

3CLpro, 3C-like protease. For other details see text. (Color version of this figure is

available at Bioinformatics online.)
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protein query sequence, target database(s), information required to
run HH-suit and TMHMM, and parameters of the LAMPA proced-
ure, which are detailed in the package manual (see https://github.-
com/Gorbalenya-Lab/LAMPA/blob/master/LAMPA_manual.pdf).
LAMPA package employs two external R packages: seqinr (Charif
and Lobry, 2007) and IRanges (Lawrence et al., 2013). Output of
the command is a directory, name of which is identical to the name
of the file with query sequence by default. This directory contains a
plot (similar to Fig. 2) and two tables summarizing TM predictions
and homology annotations made for the query sequence (overlap-
ping with Supplementary Table S2), as well as files with detailed in-
formation about hits constituting each cluster, and a folder with raw
data (see package manual for details). Analysis of 2985 virus poly-
proteins against pfamA_31.0, detailed below, required 2000 min on
16 CPUs for LAMPA to complete (with 0.3–2.5 min per query, and
approximately extra 1000 min compared to HHsearch). A separate
script, not included in the LAMPA package, was used to automate
analysis of multiple queries in this study.

3.3 Evaluation of LAMPA performance relative to

HHsearch in analysis of RNA virus polyproteins
We evaluated LAMPA performance under default parameter values
by querying pfamA_31.0 with 2985 RNA virus polyproteins (see
Section 2.1; Fig. 1). This analysis documents dependence of
HHsearch statistics on query size: split protein fragments or regions
(‘LAMPA’) relative to intact proteins (‘HHsearch’). Only the most
N-terminal cluster of hits was considered in 26 cases of overlapping
clusters from the LAMPA AP-specific stage. For annotation-related
statistics, we did not consider TM domains (LAMPA Stage #0,
Fig. 2). The output of the LAMPA Stage #1 represented also output
of the HHsearch run on intact proteins.

Additionally, HHsearch was also used for further statistical anal-
yses of the difference between outputs of two tools. For these analy-
ses, HHsearch output was not subject to post-processing (see
Section 2.2) that allowed to analyse hits with Probability �95%,
E-value � 10 and size on query �50 aa (see below). This use of
HHsearch was outside the LAMPA framework and required match-
ing of hits obtained by LAMPA and HHsearch for evaluation. We
restricted this matching to the top-scoring hits of LAMPA hit clus-
ters and HHsearch that overlapped on query and targeted the same
Pfam profile.

3.4 LAMPA outperforms HHsearch in recognizing

homology and facilitating annotation of RNA virus

polyproteins
Neither LAMPA nor HHsearch found homology between 163 pro-
teins (5.5% of the dataset) and pfamA_31.0. For 2391 proteins
(80.1%), LAMPA and HHsearch hit the same homologous regions,
from 1 to 18. For 420 proteins (14.1%), LAMPA annotated from 1
to 3 extra regions on top of 1 to 15 found also by HHsearch
(Fig. 3A). For each of the remaining 11 proteins (0.4%), a single re-
gion was hit by LAMPA only. Increase in number of annotated
regions per protein by LAMPA was statistically significant (PW ¼
9.5e�86). By design of the procedure, HHsearch outperformed
LAMPA for none of the polyproteins. For the three virus genome
classes (2273 proteins in total), share of proteins, for which gain in
number of annotated regions by LAMPA was observed, varied five-
fold: (�)ssRNA viruses (3.1%), dsRNA viruses (10.2%) and
(þ)ssRNA viruses (15.9%). Among the 712 proteins with unknown
virus genome class, LAMPA outperformed HHsearch for 22.2% of
polyproteins. Increase in the number of annotated regions (Fig. 3D)
was accompanied by the increase in the polyprotein coverage by
annotations, which ranged from 1.0% to 25.5% of polyprotein
length (Fig. 3B; PW ¼ 1.18e�72).

Also, we compared lists of Pfam profiles hit by LAMPA and
HHsearch and were used for region annotation (Fig. 3C,
Supplementary Table S2). Both tools selected 173 profiles to anno-
tate 5737 virus regions, and extra 67 profiles were used to annotate
5508 and 5947 virus regions by HHsearch and LAMPA,

respectively. Also, additional 35 profiles were solely used by
LAMPA to annotate 68 virus regions. Key enzymes of RNA viruses
(RdRp, helicases, proteases and methyltransferases) dominated the
shared part of the LAMPA and HHsearch Pfam profile lists
(Supplementary Fig. S2A). In contrast, the LAMPA-restricted pro-
files did not include RdRp but included types of enzymes and non-
enzymatic proteins not found in the shared list, e.g. seven kinase
profiles (Supplementary Fig. S2B and Table S2). Many protein
regions exclusively annotated by LAMPA were from most divergent
RNA viruses (Shi et al., 2016).

3.5 Both QP- and AP-specific stages of LAMPA proced-

ure contributed to gain of annotation
Gain of annotation by LAMPA compared to HHsearch is fully
attributed to QP- and AP-specific stages. The gain was observed for
431 polyproteins, with the share of regions exclusively annotated by
LAMPA varying from 6.2% to 100.0% (mean ¼ 27.2%) of all rec-
ognized regions. Mean percentage of regions annotated in these pro-
teins during the Stages #1–#3 were 72.8%, 17.1% and 10.2%,
respectively (Fig. 4). During QP- and AP-specific stages, regions
were identified in 322 proteins (10.8% of the whole dataset) and
126 proteins (4.2%), respectively.

3.6 Increase of hit statistical significance by LAMPA

compared to HHsearch is modest but common
LAMPA identified 507 clusters of hits on 431 proteins, HHsearch
counterparts of which were removed by post-processing under the
used thresholds (see Section 2.2; Fig. 3D). We used the top-scoring
hits in these clusters to estimate the gain of statistical significance
(Probability and E-value) by LAMPA compared to HHsearch and
represent clusters in all analyses described below. We identified
matching HHsearch hits for all 507 LAMPA hits (Supplementary
Table S2) with 437 hits (86.2%) having identical coordinates on

Fig. 3. Gain of homology recognition by LAMPA compared to HHsearch. Presented

are four depictions of results of querying pfamA_31.0 with 2985 RNA virus pro-

teins using LAMPA and HHsearch. (A) Number of regions (hit clusters) per query

protein annotated by the two tools. Each protein is depicted by a transparent gray

dot. Since multiple proteins may have the same or similar number of regions anno-

tated by the two tools (x and y dot coordinates), dots may overlap. Gray density is

proportional to the number of overlapping dots. Black line, diagonal. (B) Share of

protein length (%) annotated by the two tools. For other details, see panel A. (C)

Overlap between Pfam profiles that were linked to RNA virus proteins by the two

tools. (D) Overlap between RNA virus polyprotein regions annotated by the two

tools
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query. In each pair of hits, LAMPA hit was characterized by higher
Probability and lower E-value (Fig. 5A and B). Probability increase
by LAMPA compared to HHsearch was in the range from 0.5% to
37.6%, with mean 5.3% (Fig. 5A). Decimal logarithm of LAMPA
to HHsearch E-values ratio ranged from �3.4 to �0.2 with mean
�1.5 (Fig. 5B). Positive correlation between Probability and �logE-
value was accompanied by E-value variation around two orders of
magnitude for most Probabilities before and after they were elevated
above the cutoff by LAMPA (Supplementary Fig. S3). Likewise, for
E-values around 10�1, Probability varied approximately 65%, illus-
trating that choice of statistic in addition to significance cutoff may
affect output.

3.7 LAMPA-demarcated regions may approximate au-

thentic domains for purpose of homology detection
The LAMPA region queries may still be (much) larger than the ac-
tual domains, natural borders of which remain unknown. Because
of this uncertainty, we reasoned that the gain of statistical signifi-
cance by LAMPA compared to HHsearch might provide only a
lower estimate for the actual difference between Probabilities and
E-values of the respective hits obtained for the polyprotein and
expected for its domains. To improve understanding about how
close the obtained LAMPA Probabilities and E-values for protein
regions may be to those of the actual domains, we adopted an oper-
ational definition of polyprotein domain in relation to homology hit
and used it to approximate borders of the actual domains; in total
507 hits on 431 polyproteins (see above) were considered for this
purpose. Operational domain was demarcated as LAMPA hit that
was extended by 100 aa to the N- and C-terminus; if distance to the
polyprotein terminus was <100 aa, extension was adjusted accord-
ingly (which was used in 48 of 507 cases). The demarcated domain
sizes ranged from 164 to 732 aa (mean¼315 aa) that was close to
dominant domain size in public databases and narrower compared
to the range of 88–2172 aa (mean¼479 aa) of region queries that
produced the original LAMPA hits (Fig. 1). For each of 507 hits, we
then compared Probability and E-value values, assigned by LAMPA,
to those obtained by HHsearch for a matching hit in a separate ana-
lysis that used demarcated domains as queries and involved no hits
post-processing (see Section 2.2; Supplementary Table S2).

We obtained data for all 507 hits, with 457 hits (90.1%) having
identical coordinates on query in LAMPA and HHsearch analyses.
The difference between the two Probability values ranged from

�1.8% to 4.6% with mean and median close to zero (both were
equal �0.2%); absolute value of the difference did not exceed 2% in
99.8% of cases (Fig. 5C). Decimal logarithm of the E-values ratio
ranged from �1.3 to 1.8, mean 0.2 (Fig. 5D). These differences were
evenly distributed and much smaller than those observed in com-
parison of LAMPA hits to region queries and HHsearch hits to poly-
protein queries (Fig. 5A and B). Based on these results, we
concluded that sizes of queries used by LAMPA during iterative
stages may be close to those of the respective authentic domains for
the purpose of statistical evaluation of homology and annotation
transfer under the employed cutoff.

3.8 Increase of statistical significance of hits by LAMPA

compared to HHsearch is proportional to respective

decrease of query length
We then asked how LAMPA-based increase of statistical signifi-
cance in 507 hits of 431 proteins in 504 pairs of polyprotein and
Pfam profile depended on lengths of polyprotein (original query,
varied between 1039 aa and 8572 aa) and its fragments (queries var-
ied between 88 aa and 2172 aa at LAMPA Stages #2 and #3)
(Fig. 1). We observed steady but highly uneven increase of
Probability gain for polyproteins in the size range between 1001 aa
and �3000 aa which then leveled (Fig. 6A). That positive depend-
ence was stronger and more common when Probability gain was
plotted against relative length decrease in queries of LAMPA com-
pared to HHsearch, which varied in the range from 1� to 45.3�,
with 68.2% of the decreases of query length being in the 1–10�
range (Fig. 6B). Accordingly, Probability gain fall steeply with in-
crease of the LAMPA query length up to 2172 aa; it was below 10%
and 5% for LAMPA queries including >448 aa and 747 aa, respect-
ively (Fig. 6C).

3.9 Estimation of hits Probability by LAMPA may be

approximated in computational experiment
Non-uniform dependence of Probability gain from query length
(Fig. 6A and C) implied other characteristics are involved. Indeed,
besides query length, target length and diversities of query and target

Fig. 4. Contribution of different stages of LAMPA procedure to protein annotation.

Contribution of three LAMPA stages to annotation of 431 proteins, including

regions exclusively annotated by LAMPA, was measured by percentage of regions

annotated in each protein. Total number of regions annotated in each protein was

considered 100%, regardless of their actual number and share in the protein. The

box plots, lower and upper limits of the box delimit the first (25%) and third (75%)

quartiles, midline limit of the box—median, whiskers extend to the most extreme

data point which is no >1.5 times the interquartile range from the box, data beyond

that distance are represented by points

Fig. 5. Gain of hit statistical significance by LAMPA compared to HHsearch.

LAMPA hits to region queries, obtained during the QP-specific and AP-specific

stages of LAMPA procedure, are compared with matching HHsearch hits to poly-

protein queries, in respect to hit Probability (A) and E-value (B); and with matching

HHsearch hits to putative domain queries (operational definition, see text for

details), in respect to hit Probability (C) and E-value (D). Analyzed HHsearch hits

were not subject to post-processing
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are used by HHsearch for the calculation of k and l that affect hit
score P-value (see Section 2.4). Accordingly, we analyzed the rela-
tionship between estimates of hit statistical significance and possible
lengths of the corresponding query and target profiles systematically
using computational experiments. They used local alignment simi-
larity score of HHsearch hit of full-length query-target pair for
approximating hit Probability on queries of other observed and
computationally generated sizes, assuming that hit score may not
change with query size. This assumption proved to be accurate with-
in a margin of error (see below).

We used the HHsearch neural networks to generate EVD param-
eters, followed by calculation of Probability, as well as P-value, of
hit to polyprotein region from local alignment similarity score of
this hit in every full-length query-target pair for which hit
Probability gain was observed (in total 507 hits; Figs 3D and 6; for
details see https://github.com/Gorbalenya-Lab/hh-suite-notebooks/
tree/LAMPA). First, we noted good agreement between gains of
Probabilities obtained in computational experiments and LAMPA
runs (Fig. 6). They are within of þ0.7%/�0.4% deviation of
Probability gain estimation by LAMPA for the 95 percentile of hit
scores in the dataset (Supplementary Fig. S4A). The modest differ-
ence between the two values is explained by respective deviation of
the underlying similarity score of the pairwise HHsearch hit align-
ment for polyprotein, which was fixed in computational experi-
ments, from region-specific score that is calculated for actual query
and target profiles by LAMPA. Thus, by default, the same hit align-
ment involving polyprotein and its part as queries might have slight-
ly different scores and also coordinates, further contributing to
difference between the respective Probabilities (and P-values,
Supplementary Fig. S4B) in computational experiments.

3.10 P-value and Probability of HHsearch hits depend

non-linearly on the lengths and diversities of query and

target profiles in computational experiments
The increase of the hit Probability during QP- and AP-specific itera-
tions (Fig. 6) is likely explained by the use of query length in the
auto-calibration procedure of HHsearch (see Section 2.4). We then
conducted four computational experiments for three selected query-
target pairs (Supplementary Text S1.5) that were characterized by
the largest Probability gain of LAMPA hit at Stages #2 (37.6%) and
#3 (25.8%), respectively, and associated with the largest decrease of
query size (47 fold) (Fig. 7, Supplementary Fig. S5 and Table S3).
They also represent considerable ranges of hit scores (40.2, 41.1 and
67.2 for three pairs) and target diversities (6.7, 11.5 and 7.7). Forty-
one computationally designed lengths of each of three queries were
tested (Fig. 1 and Supplementary Text S1.5).

In the three query-target pairs, both P-value and Probability
showed strong non-linear dependence on designed sizes of query
and target (Fig. 7) (hereafter we use ‘designed’ to distinguish compu-
tational experiment from LAMPA). Specifically, P-value changed
steeply, with curves of designed queries and targets running in paral-
lel relative to each other (Fig. 7A–C). In the designed length range
from 100 aa to 10 000 aa, which encompasses most queries and tar-
gets of this study, P-value increased by approximately four orders of
magnitude for queries of three pairs. This increase was limited to
two orders of magnitude for the three selected queries illustrating
LAMPA gain versus HHsearch. In contrast, dependence of
Probability on length of designed queries and targets followed
inverted logistic curve and differed between target and query as well
as between the three pairs (Fig. 7D–F). Dependence of Probability
on designed query size was most noticeable only below the 95%
threshold, where it followed growth phase of logistic. The selected
LAMPA and HHsearch queries were at different places of this
growth phase in two query-target pairs (Fig. 7D and E) and outside
the growth phase in third pair (Fig. 7F) which explained different
Probability gains of LAMPA hit in these pairs. Hit score and target
diversity contributed to variable Probability gain in three pairs
(Supplementary Text S1.5).

Fig. 6. Relationship between Probability gain by LAMPA and query lengths.

Difference between Probabilities of hit to region query (LAMPA Stages #2 or #3)

versus polyprotein query (HHsearch without hits post-processing) (empty circle), is

compared with difference between the respective approximated Probabilities for the

matching hit in computational experiments (cross) at the y axis, for 507 hits in total.

These values are plotted against values of three characteristics of respective queries

at the x axis: (A) polyprotein length (Stage #1), (B) ratio of polyprotein to query re-

gion length (Stage #1 versus Stage #2/3) and (C) query region length (Stage #2/3)

2736 A.A.Gulyaeva et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/9/2731/5719022 by Jacob H
eeren user on 25 August 2022

https://github.com/Gorbalenya-Lab/hh-suite-notebooks/tree/LAMPA
https://github.com/Gorbalenya-Lab/hh-suite-notebooks/tree/LAMPA
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa065#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa065#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa065#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa065#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa065#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa065#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa065#supplementary-data


3.11 LAMPA can significantly expand RefSeq expert

annotation of RNA virus polyproteins
Finally, we compared annotations of the RNA virus polyproteins by
LAMPA and HHsearch versus RefSeq experts (Fig. 8 and
Supplementary Fig. S6). Concerning the number of annotated
regions per polyprotein, LAMPA and HHsearch were as good as
RefSeq for 38.8 and 41.4% of polyproteins, respectively, while
RefSeq expert or LAMPA/HHsearch outperformed the other for
23.3/27.0% and 37.9/31.6% of polyproteins, respectively (Fig. 8A
and Supplementary Fig. S6A). Notably, LAMPA and HHsearch
annotated regions in 298 and 291 out of 426 polyproteins with no
RefSeq annotation and increased the number of annotated region(s)
for further 833 and 652 polyproteins. Increase in the number of
annotated regions per protein by LAMPA but not HHsearch was
statistically significant (PW ¼ 3.11e�08 and 0.752, respectively).
LAMPA and HHsearch annotations covered larger share of polypro-
tein (mean region length was 312 aa, 321 aa and 265 aa for
LAMPA, HHsearch and RefSeq annotation, respectively). This
coverage increase was observed for 78.7% and 77.5% proteins, re-
spectively, (Fig. 8B and Supplementary Fig. S6B) and was statistical-
ly significant (PW ¼ 1.07e�291 and 3.81e�273). We note that the
above numbers apply to annotation in the ‘Region’ fields of RefSeq
entries. Other fields may record non-redundant annotation which is
particularly likely for RefSeq entries with zero regions annotated in
the ‘Region’ field. These entries are in minority in the dataset. In
summary, LAMPA expands further HHsearch annotation that may
already improve RefSeq annotation of RNA virus polyproteins.

4 Discussion

In this article, we present an iterative LAMPA pipeline for advanced
homology detection in large multidomain proteins and proof-of-the-
principle for LAMPA in its application to RNA virus polyproteins.
Statistical apparatus of HHsearch, used in LAMPA, was trained on
a dataset of structurally defined domains with the median size of
142 aa to ascertain high sensitivity and selectivity, although
HHsearch is used for annotation of proteins, regardless of their do-
main composition and size. This expand ed application of HHsearch
is due to two factors: (i) in contrast to sequence diversity of query
(profile) (see HHblits), domain composition of query received

relatively little attention in relation to HHsearch sensitivity; (ii) con-
siderable complexity and uncertainty of domain delineation in pro-
tein sequences. We have addressed both aspects in this study and
offer a practical solution to the detection of distant homology in
multidomain proteins using conventional profile-based tools in the
LAMPA pipeline, which could be particularly useful in the on-going
exploration of the Virosphere (Saberi et al., 2018; Suttle, 2007;
Zhang et al., 2019).

Length along with diversity are the two characteristics of query
and target that determine hits Probability and P-value in HHsearch
profiles’ auto-calibration procedure (Remmert, 2011). We employed
this procedure in computational experiments of high accuracy to
plot the dependence of hits Probability and P-value from designed
query/target lengths of several query-target pairs over a large size
range that was beyond those used for tuning the auto-calibration
procedure (12–1504 aa) and this study (1001–8572 aa) (Fig. 1). The
produced plots revealed constrained statistic-specific shape of con-
siderable variation for the two statistics characterizing a hit score in
relation to query size (Fig. 7). Due to training of the auto-calibration
procedure on the domain dataset, this variation informs about hit
score statistics in application to single-domain proteins. When
applied to multidomain proteins, like those used in this study, it
illustrates how statistical significance of hit scores may be underap-
preciated depending on difference of sizes of the intact protein and
its domains. This underappreciation is realized regardless of multi-
domain protein size, although it may be consistently considerable
only for large proteins.

In line with the Formula 1 (see Section 2.4), the computational
experiments revealed also complex dependencies of statistical sig-
nificance of HHsearch hits on designed target length and profile
diversities of query and target (Fig. 7 and Supplementary Fig. S5).
These dependencies explained variable gains of hit statistical signifi-
cance by LAMPA compared to HHsearch in different query-target
pairs. They also provide theoretical foundation for further efforts of
improving the homology recognition by LAMPA through enriching
queries using HHblits and targeting several databases, as is dis-
cussed below.

For queries including single domain or larger, false-positive rate
of LAMPA may not be different from that of HHsearch (Remmert
et al., 2012; Söding, 2005), which is used for calculation of hit stat-
istical significance. Our results were obtained with Probability

Fig. 7. Relationship between hit statistical significance and profile lengths in computational experiments. HHsearch hit P-value (A–C) and Probability (D–F) were estimated for

41 designed lengths of query or target, each of which was equidistant from its immediate neighbor on base 10 logarithmic scale (see Supplementary Text S1). The 41 pairs of

values were plotted to reveal relationship between two characteristics. These plots used hit score values of three query-target pairs, which are specified at the bottom of the fig-

ure and whose respective hit statistics values at the Stage #1 (HHsearch), and Stage #2 or #3 (LAMPA) are also depicted
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cutoff of 95%, which was chosen to ascertain homology detection
and suppress false positives. The user may use E-value instead of
Probability or lower the cutoff that will trade confidence in hom-
ology detection for increasing polyprotein coverage. We expect
LAMPA to outperform HHsearch at these lower cutoffs as well.
Due to logistic dependence between Probability and query length
(Fig. 7D–F), Probability gains with under 95% cutoffs could be big-
ger than reported here.

We used TMHMM and HHsearch to functionally annotate poly-
proteins on structural grounds and by homology, respectively; they
were used by LAMPA to delimit uncharacterized polyprotein regions
that queried Pfam 31.0 further. (As discussed in Supplementary Text
S1.3, the use of HHsearch in the LAMPA framework was adjusted
for analysis of RNA virus polyproteins). Once this iterative query-
specific characterization at the QP-stage was exhausted, we used aver-
age protein domain size to delimit the remaining non-annotated
regions during further database searches. This AP-stage has elements
of arbitrariness which were partially addressed ad hoc by using two
alternative starting points for query delimitation.

This aspect and the entire pipeline may be advanced further. At
the Stage #0, other programs in addition to TMHMM may assist

with functional annotation, e.g. mapping disordered regions, or
regions anomalously enriched with certain amino acid residues, or
cleavage sites for particular proteases like it was demonstrated in
our recent study (Saberi et al., 2018). In that study, HHsearch was
used to scan several databases, and this provision is also available in
the LAMPA 1.0.0 package. Also, iterative profile programs, e.g.
PSI-BLAST or HHblits, could be incorporated in the LAMPA to en-
rich query and improve homology recognition by targeting proteins
that are not part of curated profile databases. These improvements
could increase relative share of the QP-stage in homology detection
and region annotation. In theory, the LAMPA may identify all
domains at the #1 and QP-stage, with the AP-stage generating no
hits, either due to the lack of queries or homology. Notwithstand
ing future advances, the current LAMPA version may already com-
plement HHblits, the current top homology search tool. Indeed,
under the 95% Probability cutoff HHblits failed to annotate 195 of
507 regions that LAMPA but not HHsearch annotated in 431 poly-
proteins of this study (Supplementary Table S2 and Text S1.4).

The reported gain of hit statistical significance by LAMPA com-
pared to HHsearch was modest but sufficient to elevate many hits
above the Probability 95% cutoff. It improved homology detection
and hit coverage in 14.4% of polyproteins which were enriched
with sequences that share not >30% identity with others in the
dataset. Thus, gain of hit statistical significance by LAMPA com-
pared to HHsearch could be larger for viruses that prototype genera
or higher rank taxa rather than species dominating our dataset (see
Supplementary Text S1.2).

LAMPA annotation was most frequent for (þ)ssRNA viruses,
which correlates with their abundance and expand ed diversity rela-
tive to dsRNA and (�)ssRNA viruses. Most newly detected homo-
logs may already be known in other related viruses, which is evident
from names and descriptions of hit Pfam profiles that often refer to
viruses and their proteins (Supplementary Table S2). However, they
also include those not reported in literature, e.g. ZBD and MTase
domains in pp1a (YP_009052476.1) of BPNV, python tobanivirus
(Fig. 2 and Supplementary Table S2). The detection of the MTase
domain, which is apparently conserved in the distantly related fish
WBV (YP_803214.1) in this genome location, is particularly intrigu-
ing. These viruses and other nidoviruses with genomes >20 kb are
known to encode one or two MTases far downstream in the pp1b
part of the pp1ab polyprotein (Saberi et al., 2018; Schutze et al.,
2006; Stenglein et al., 2014) that were implicated in the 5’-end
mRNA cap formation (Decroly et al., 2012). These and other func-
tional assignments (Supplementary Table S2) could be used to direct
experimental research and in reconstruction of evolution of RNA
viruses.

LAMPA facilitates homology detection and may be used to im-
prove annotation coverage by other tools and experts in genomic
projects, as well as in curated databases, including RefSeq.
However, other factors besides detection of homology may affect
quality of annotation (Punta and Ofran, 2008; Radivojac et al.,
2013) and they were outside the scope of this study.
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