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Abstract: Cancer immunotherapies, including checkpoint inhibitors, adoptive T cell transfer and
therapeutic cancer vaccines, have shown promising response rates in clinical trials. Unfortunately,
there is an increasing number of patients in which initially regressing tumors start to regrow due
to an immunotherapy-driven acquired resistance. Studies on the underlying mechanisms reveal
that these can be similar to well-known tumor intrinsic and extrinsic primary resistance factors that
precluded the majority of patients from responding to immunotherapy in the first place. Here, we
discuss primary and secondary immune resistance and point at strategies to identify potential new
mechanisms of immune evasion. Ultimately, this may lead to improved immunotherapy strategies
with improved clinical outcomes.
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1. Introduction

Despite major improvements in treatment, cancer remains a leading cause of death worldwide.
With the global cancer burden being estimated at 18.1 million new cases and 9.6 million deaths in 2018,
the need for improved treatment strategies is pressing [1]. In recent years, therapeutics that capitalize
on the power of the host’s immune system to control and eliminate cancer have been developed.
This causes a shift in the focus from the tumor itself, with therapeutic interventions being broad and
aggressive (e.g., radiotherapy or chemotherapy), toward a more personalized and refined approach
utilizing the immune system’s power and specificity. Several types of immunotherapeutic approaches
have been developed, with checkpoint inhibition (CPI) and adoptive cell transfer (ACT) being the most
successful, and therapeutic cancer vaccines starting to show the first signs of efficacy [2].

Immune checkpoints (ICs) function by modulating the immune response, in order to maintain
self-tolerance and restrict the duration of the immune response [3]. T cell activation, through antigen
recognition by the T cell receptor (TCR), is tightly regulated by the balance between co-stimulatory and
co-inhibitory signals. Two of these co-inhibitory ICs, CTLA-4 and PD-1, have been studied extensively
for their roles in cancer. CTLA-4 is a co-inhibitory molecule with the ability to directly inhibit T cell
activation, as it counteracts CD28 co-stimulation by outcompeting its binding to their mutual ligands,
CD80 and CD86 [4,5]. PD-1 is another inhibitory IC expressed on the cell surface of T cells, which is
upregulated on T cells with an “exhausted” phenotype, following prolonged antigen exposure [6].
The blocking of co-inhibitory ICs to treat cancer has shown promising results in clinical trials [7–9].
Consequently, in 2011, the monoclonal antibody blocking CTLA-4 (Ipilimumab) was approved by
the FDA for the treatment of advanced melanoma, followed by the approval of a PD-1-blocking
monoclonal antibody (Pembrolizumab) for the treatment of melanoma in 2014, and the approval of a
PD-L1 blocking antibody (Atezolizumab) for the treatment of urothelial carcinoma in 2016 [10–12].
Since then, several additional PD-1 and PD-L1 blocking antibodies have entered the market. Besides
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CTLA-4 and PD-1, there are several other IC targets currently under investigation, and the blocking
of these inhibitory immune checkpoints, including NKG2A, is currently studied for its potential in
creating novel therapeutic interventions [13–15]. Nevertheless, checkpoint inhibition is only effective
in patients with a pre-existing tumor-reactive CD8+ T cell response, limiting its clinical applicability to
certain tumor types and stages, if other means to provide tumor-reactive T cells are not applied [16].

One method to increase the number of tumor-reactive T cells is the adoptive transfer of ex vivo
expanded tumor-infiltrating T cells (TILs) or transgenic T cells expressing a defined T cell receptor or
chimeric antigen receptor (CAR T cells). The adoptive transfer of such cells has led to remarkable clinical
responses, including the full regression of tumors [17–19]. Another therapeutic approach to increase
the number of tumor-reactive T cells is the use of cancer vaccines. Therapeutic cancer vaccines aim to
reinvigorate the patient’s T cell response to tumor-associated antigens (TAAs) or tumor-specific antigens
(TSAs). Several vaccine platforms have been developed, including peptide, RNA and DNA vaccines,
with encouraging efficacies as monotherapies in early disease stages or in combination with other
immunotherapies in established tumors [20]. While TAAs have a broad applicability (multiple cancer
types and stages), their origins as self-antigens may limit the efficacy of the responding T cells due to
potential central tolerance mechanisms. This does not form a problem for the group of TSAs, comprising
oncogenic virus-derived antigens and neoantigens, explaining why they should form very potent cancer
vaccines. Indeed, several studies using genomic and bioinformatics approaches to design personalized
neoantigen vaccines report a strong neoantigen-specific anti-tumor CD4+ and CD8+ T cell response
correlated with tumor control in mice and humans [21–25]. Similarly, vaccines aiming to reinforce T cell
reactivity to the highly oncogenic human papillomavirus type 16 (HPV16) encoded oncoproteins E6
and E7 not only induced strong HPV16-specific CD4+ and CD8+ T cell responses but also resulted in a
high percentage of complete and partial regressions of HPV16-induced premalignant lesions [26–29].
It is important to note that the primary job of both the adoptive transfer of ex vivo expanded T cells
and of therapeutic cancer vaccines is to amplify the tumor-reactive type 1 T cell pool and not to deal
with immunosuppressive factors in the local tumor microenvironment (TME) known to be crucial [2].
Considering the fact that activated T cells start to express many co-inhibitory molecules, the combination
of adoptively transferred T cells or vaccines with CPI holds a clear clinical advantage in keeping the
tumor-reactive T cell response going [20]. As anticipated, clinical trials exploring the combination of
cancer vaccines with CPI report improved clinical outcomes compared to those from monotherapies in
multiple cancer types, suggesting a synergistic effect of these therapies [30–32]. Similar effects have
been reported for adoptive cell transfer therapy with CPI [33,34].

2. Limitations of Immunotherapy

The shift in focus from the direct targeting of the cancer cell towards the stimulation of the
anti-tumor response has resulted in encouraging clinical results in humans, but also comes with new
problems. Despite promising overall response rates (ORR) for treatment with CPIs, tumor vaccines and
ACT or a combination of these, response rates to immunotherapy vary greatly between tumor subtypes,
depending partly on their immunogenicities [30,35–44]. Primary therapy resistance, defined as a lack of
clinical benefit from immunotherapy on tumor growth, exists in a large proportion of patients. On top
of this, and maybe even more importantly, a substantial percentage of tumors grow back after the initial
response to therapy, even after deep regressions [30,45]. This process, known as secondary therapy
resistance, most often occurs before tumors completely regress. For some tumor types, even after deep
or complete regression, the risk of secondary resistance is very high [30,45]. Secondary resistance may
appear as soon as 2 weeks after treatment initiation, despite the continuation of therapy. A series
of examples of clinical trials where T cell-based immunotherapies result in primary and secondary
resistance following different grades of initial response are listed in Table 1. This makes primary and
secondary, or acquired, resistance one of the key factors responsible for curtailing overall survival rates
in patients treated with immunotherapy.
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Table 1. Examples of clinical trials resulting in acquired resistance during immunotherapy.

Therapy Disease Study Type Patients
Enrolled

RR CCR Relapse RR Relapse CRR Relapse
Start10

<30%
30
<50%

50
<100% 100% 10

<30%
30
<50%

50
<100% 100%

Pembrolizumab [35] Advanced melanoma Retrospective
analysis 96 13 12 * 22 * 8 * 2/13 2/12 2/22 0/8 3 months

JS001 (PD-1 inhibitor) [36] Advanced melanoma, urothelial
cancer, renal cell cancer

Phase I
clinical trial 36 5 * 3 * 4 * 1 * 2/5 1/3 0/4 - 8 weeks

Nivolumab OR Pembrolizumab [37] Advanced NSCLC Retrospective
analysis 160 15 15 13 1 4/15 6/15 3/13 0/1 2 months

αPD-L1 antibody [38] Melanoma NSCLC Phase I
clinical trial 41 7 5 5 1 2/7 3/5 2/5 0/1 6 weeks

Nivolumab [39] Urothelial Cancer Phase I/II
clinical trial 74 8 5 12 3 5/8 3/5 2/12 0/3 6 weeks

Ipilimumab + Gemcitabine +
Cisplatin [40] Metastatic Urothelial cancer Phase II

clinical trial 36 1 4 9 8 1/1 3/4 3/9 6/8 6 weeks

Nivolumab + ISA 101
(SLP HPV16 vaccine) [30]

HPV16+ OPC, anal or
cervical cancer

Phase II
clinical trial 24 2 1 * 5 * 2 * 2/2 1/1 2/5 0/2 18 weeks

Pelareorep + Gemcitabine [41] PDAC Phase II
clinical trial 29 7 1 * 0 0 3/7 0/1 - - 1 month

siWT1 peptide vaccine +
Gemcitabine [42] PDAC Phase II

clinical trial 42 14 5 3 0 5/14 2/5 1/3 - 6 weeks

Adenoviral vector with IFNα2b gene +
Celecoxib + chemotherapy [43] MPM Phase II

clinical trial 40 7 * 10 * 8 * 0 * 2/7 * 3/10 * 1/8 * - 6 weeks *

HPV+TILs + Cyclophosphamide +
Fludarabine [44] Cervical cancer, HPV+ cancer Phase II

clinical trial 29 6 16 3 2 2/6 9/16 0/3 0/2 1 month

RR 10 < 30% = a total tumor burden decline of 10–30% from baseline at some point during the study; RR 30 < 50% = a total tumor burden decline of 30–50% from baseline at some point
during the study; RR 50 < 100% = a total tumor burden decline of 50–100% from baseline at some point during the study; CRR = a total tumor burden decline of 100% from baseline at
some point during the study; Relapse = any total tumor burden decline followed by tumor outgrowth surpassing a size defined as RR (10–30%, 30–50%, 50–100% and 100%); Relapse start
= the estimated time, from treatment initiation, at which tumors started to grow out again following the initial response. * Numbers verified by the authors; others were estimated based on
published data when exact numbers were not provided.
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3. Extrinsic and Intrinsic Primary Resistance Mechanisms

3.1. Tumor Cell Extrinsic Primary Resistance Mechanisms

Factors driving therapy resistance can be either tumor cell intrinsic, determined by the traits of the
tumor cell itself, or tumor cell extrinsic, involving the cells in the stroma of the TME (Figure 1). The
migration of immunosuppressive cells to the TME can inhibit local immune cells from exerting their
effector functions. Increased numbers of regulatory T (Treg) cells, myeloid derived suppressor cells
(MDSCs), M2 macrophages and pro-tumor N2 neutrophils have all been linked to primary resistance
against immunotherapies [46–52]. Although a complete overview of how these immunosuppressive cells
exactly contribute to resistance against immunotherapy is still lacking, several underlying mechanisms
have been described in detail (Figure 1). Firstly, the expression of ICs (including PD-L1 and CTLA-4)
at the surface of these immune suppressive cells provides them with the means to inhibit local T cell
activation directly [46,48,53,54]. Additionally, immunosuppressive mediators produced by these cells,
including IL-10 and TGF-β, can enhance the establishment of a local network of immunosuppressive
cells in the TME. For instance, TGF-β can polarize neutrophils to a pro-tumor, “N2-like” phenotype,
thereby limiting the anti-cancer capacity of N1-like neutrophils [55]. Correspondingly, IL-10 and TGF-β
can drive the differentiation of monocytes into M2-like tumor-associated macrophages (TAMs), which
amongst their other suppressive actions, can also compete with local dendritic cells (DCs) for tumor
antigens and consequently inhibit T cell priming [46,56–58]. In addition, IL-10 and TGF-β can limit
local T cell priming through the suppression of both DC function and the proliferative capacity of T
cells [59,60]. Alternatively, via the production of arginase-1 (Arg-1), inducible nitric oxide synthase
(iNOS), reactive oxygen species (ROS), M2 macrophages, MDSCs and N2 neutrophils can inhibit T cell
proliferation and function, while promoting the immunosuppressive properties of Treg cells [34,61–65].
Last but not least, TNF-α in the TME may also have a downside as it can bind to TNFR2, which is
expressed by regulatory Treg cells and MDSCs to protect them from TNF-α induced death, while in the
same way reducing the capacity of M1 macrophages to clear tumor cells [66]. Taken together, Treg cells,
M2 macrophages, MDSCs and N2 neutrophils may suppress effector T cells systemically and in the
TME, resulting in primary resistance mechanisms during cancer immunotherapy.

In addition to tumor infiltrating immunosuppressive immune cells, the fibroblasts in tumors
contribute to therapy resistance. One important driver of fibroblast activation in the TME is
TGF-β, an immunosuppressive mediator found to interfere with the anti-tumor immune response.
The TGF-β-driven activation of fibroblasts gives rise to a specific phenotype of immunomodulatory
cancer-associated fibroblasts (CAFs). These CAFs, due to their abundance and heterogeneity, can
orchestrate the response to cancer immunotherapy via several mechanisms (Figure 1). Firstly, through the
release of TGF-β and IL-6, CAFs suppress the proliferation and trafficking capacity of antigen-presenting
DCs, thereby interfering with tumor-directed T cell priming [67]. Secondly, through the tight regulation
of the local chemokine- and cytokine-gradient, CAFs limit the attraction of T cells to the TME [68,69].
Moreover, TGF-β CAFs can remodel the composition of the extracellular matrix (ECM), resulting in
a dense ECM network that poses a physical barrier to T cell infiltration [70]. Furthermore, CAFs can
suppress the anti-tumor T cell response in the TME itself, through the upregulation of IC ligands on
their cell surfaces [71]. Finally, tumor cells can “hijack” CAF metabolism to meet their metabolic needs,
thereby shifting the balance in the metabolic competition between tumor cells and anti-tumor immune
cells in favor of the tumor cells [72,73]. Together, these pathways drive CAF-dependent immune evasion
and diminished responses to T cell targeted immunotherapies.
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Figure 1. A simplified version of the cancer immunity cycle, adapted from Chen & Mellman [74] to show
the tumor cell intrinsic and extrinsic pathways in T cell-based immunotherapy resistance. The numbers
refer to steps in the original cancer immunity cycle. 1. The release of cancer cell antigens (cancer cell
death); 2. Cancer antigen presentation (dendritic cells/APCs); 3. Priming and activation (Antigen
Presenting Cells (APCs) & T cells); 4. The trafficking of T cells to tumors (Cytotoxic T Lymphocytes
(CTLs)); 5. The infiltration of T cells into tumors (CTLs, endothelial cells); 6. The recognition of
cancer cells by T cells (CTLs, cancer cells); 7. The killing of cancer cells (immune and cancer cells).
CreatedwithBioRender.com.

3.2. Tumor Cell Intrinsic Primary Resistance Mechanisms

There are also several tumor intrinsic factors that mediate primary resistance against
immunotherapy (Figure 1). The tumor intrinsic factors of primary resistance identified so far include
(1) alterations in the antigen processing pathway; (2) a lack of tumor antigen expression; (3) the soft-
and hard-wired loss of HLA expression; (4) alterations in the signaling pathways of MAPK, PI3K and
WNT; (5) the constitutive expression of the ligands for IC (e.g., PD-L1 and HLA-E); and 6) resistance to
TNF-α and IFN-γ mediated killing [75,76].

One way to identify these tumor cell intrinsic mechanisms are loss-of-function in vivo and in vitro
screens. A study of primary resistance against a combination therapy of αPD-1 with a GM-CSF-secreting

Created with BioRender.com
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tumor cell vaccine applied a genetic in vivo CRISPR-Cas9 screen and identified several potential
therapy-resistance genes [77]. Based on the top 50 most-depleted genes, four different signaling
pathways associated with the sensitivity of tumor cells to treatment with immunotherapy were revealed,
being TNF signaling/NFκB activation, the inhibition of kinase signaling, the ubiquitin-proteasome
pathway and antigen processing and presentation [77]. For each of these pathways, a representative
gene was selected, based on the highest cumulative score as ranked by the STARS algorithm. These
genes were Ripk1 for the TNF signaling/NFκB activation pathway, Ptpn2 for the inhibition of kinase
signaling pathway, Stub1 for the ubiquitin-proteasome pathway and H2-T23 for the antigen processing
and presentation pathway [77]. Notably, H2-T23 encodes Qa-1b (a mouse homolog of HLA-E), the ligand
for the inhibitory receptor NKG2A, for which we demonstrated importance in mechanisms of acquired
resistance to cancer vaccines, which may be alleviated by new antibodies to block NKG2A [14,15].
The involvement of the antigen processing and presentation pathway in immunotherapy resistance
was confirmed in another CRISPR-based screen, which focused on the genes controlling HLA class I
expression [78]. Here, IRF2 was identified as a rate limiting factor for TAP-mediated peptide transport
to the endoplasmic reticulum and subsequent N-terminal trimming and thus antigen presentation [78].
IRF2 is frequently downregulated in tumors. TAP deficiency has been demonstrated in many cancer
types and shown to correlate with disease progression and clinical outcomes [79–81]. Interestingly,
tumor cells with such antigen processing defects still express MHC-I molecules, which then present T
cell epitopes associated with impaired peptide processing (TEIPP) [82–84]. Priming TEIPP-specific T
cells with vaccines to overcome acquired immune resistance has been proposed as a treatment strategy
for tumors with impaired TAP expression, and this approach has been proven effective in inhibiting
the outgrowth of immune-escaped tumors in mice [85,86]. Unexpectedly, the expression of MHC-II
molecules was also detected on tumor cells and shown to correlate with T cell infiltration and the
therapeutic response to CPI, indicating the presence of alternative antigen presentation pathways [87,88].
Notably, a lack of appropriate levels of tumor-specific antigen forms another important intrinsic resistance
pathway against CPI [89]. In another screen, for key components determining the susceptibility of
tumor cells to adoptively transferred effector cells, the GTPase Cdc42 was identified as a key factor in
preventing CTL-induced cell death via MAPK signaling and posttranscriptional Bcl-2 stabilization [90].
Cdc42 is highly expressed in invasive cancers. Oncogenic MAPK signaling results in the production of
immunosuppressive factors (e.g., VEGF, IL-6 and IL-10), which inhibit the proliferation and activation
status of tumor-specific T cells and DCs [91]. In line with this, loss of the tumor suppressor gene PTEN
has been shown to correlate with resistance against cancer immunotherapies, through the enhanced
signaling of both the MAPK and PI3K signaling cascades [92,93]. Activation of the PI3K-AKT-mTOR
pathway can contribute to therapy resistance by directly promoting tumor cell proliferation and survival,
as well as the upregulation of PD-L1 cell surface expression, thereby inhibiting the function of local
effector T cells [94]. Moreover, enhanced PI3K signaling via alternative AKT-independent pathways
also acts on the antigen presenting pathway, as it results in the downregulation of HLA expression
and escape from T cell recognition [95]. In addition to the MAPK and PI3K signaling cascades, the
WNT/β-catenin pathway has also been implicated in resistance to cancer immunotherapies. A melanoma
study on primary resistance against αPD-L1/αCTLA-4 antibody combination treatment revealed that the
activation of the WNT/β-catenin pathway inhibits CD103+ DC-mediated T cell priming, resulting in a
decreased infiltration of tumor-specific T cells to the TME [96]. Additionally, soluble melanoma-derived
Wnt5a can alter local DC metabolism, leading to increased indoleamine 2,3-dioxygenase 1 (IDO)
enzymatic activity and suppressed IL-6 and IL-12 production, thereby creating an immunosuppressive
environment that promotes Treg development [97,98]. This IDO-driven Treg increase in the TME has
been identified as a resistance mechanism against CTLA-4 and PD-1 CPI [98,99]. Notably, crosstalk
between the MAPK, PI3K and WNT signaling pathways through the phosphorylation of cascade
components occurs, making the targeting of these pathways to overcome immunotherapy resistance a
complex ordeal [100,101].

Primary resistance to immunotherapy can also be the result of alterations in the TNF-α and IFN-γ
signaling pathways protecting tumor cells against TNF-α- and IFN-γ-mediated cell growth regulation
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and death. A CRISPR-based in vitro and in vivo screen to identify mechanisms allowing tumor escape
from CD8+ T cells and natural killer cells showed that the deletion of Casp8, Tnfrsf1a and Ado within
the TNF-signaling pathway, or Ifngr1/2, Jak1/2 and Stat1 in the IFN-γ-signaling pathway, protected
tumor cells against CD8+ T cell and/or NK cell-mediated killing and blunted the efficacy of anti-tumor
responses in vivo [102]. In addition, the upregulation of the TNF receptor 2 (TNFR2) on tumor cells
may foster tumor cell growth over TNFR1-induced killing after the binding of TNF-α [96]. Additionally,
loss-of-function mutations or the downregulation of genes involved in the IFN-γ signaling pathway—
such as Ifngr1, Ifngr2, Jak1/2 and Irf1—were shown in patients who were irresponsive to αCTLA-4
antibody treatment and correlated to primary and adaptive resistance against αPD-L1 checkpoint
blockade [103,104]. Primary resistance to CPI via alterations in antigen processing and presentation, as
well as in responsiveness to IFN-γ signaling, was confirmed in a predictive biomarker study using
single-cell RNA-sequencing (scRNA-seq) data from melanoma patients classified as untreated, CPI
responsive or CPI resistant [105]. Taken together, the tumor cell extrinsic and intrinsic mechanisms
driving immunotherapeutic resistance are versatile, yet tightly interwoven, making combination
therapy an appealing therapeutic approach. It will be of interest to see if strategies that deal with these
extrinsic and intrinsic primary resistance mechanisms will elucidate yet-unidentified mechanisms
of resistance.

4. Secondary Resistance Mechanisms

It is important to realize that most factors determining initial resistance to immunotherapy are
likely to also drive the occurrence of secondary immune escape. However, most of the studies have
focused on the intrinsic resistance mechanisms.

Indeed, truncating mutations in JAK 1 and 2 were recently shown to form the basis for a lack of IFN-γ
responsiveness in tumor cells and consequently for secondary resistance to CPI [104,106]. Interestingly,
prolonged IFN-γ signaling is also one of the intrinsic mechanisms contributing to acquired resistance
upon immunotherapy in humans [107]. This tight balance makes the interferon pathway a more
challenging therapeutic target regarding acquired resistance against immunotherapy. Furthermore, a
loss of antigen expression has been found in the form of epitope loss in CD19 after CAR T cell therapy and
the loss of neoepitope expression after adoptive T cell therapy for melanoma [108,109]. One described
mechanism driving the downregulation of (neo)antigen expression is promotor hypermethylation.
However, this form of transcriptional alteration may only affect a small percentage of antigens,
indicating that additional genomic and transcriptomic mechanisms are at play [110]. For example,
low nutrient availability in the TME can lead to unresponsiveness to IFN-γ, resulting in decreased
HLA class I expression [95]. In addition, an immunotherapy-driven loss of HLA class I expression
due to decreased transcriptional expression of specific HLA class I genes was found after treatment
with adoptively transferred T cells, anti-CTLA4 and anti-PD1, which can potentially be overcome by
epigenetic modulators [111]. Moreover, the complete loss of HLA class I expression, due to the loss
of the expression of the subunit beta-2 microglobulin (β2m), has also been found to be a secondary
resistance mechanism in patients receiving αPD-1 CPI and after adoptive T cell transfer [112–115].

Due to limited research on the extrinsic factors fostering the development of secondary resistance
to immunotherapy, there are only a few studies reporting the association between the attraction of
immunosuppressive cells and the development of secondary resistance. In mice, the relapse of tumors
after initial responses to combination therapy including dual CPI and radiotherapy was associated
with an increase in Tregs in the TME [116]. These Tregs were phenotypically similar to those that were
described to mediate primary resistance against immunotherapies, since RNAseq analysis of these
cells revealed an increased expression of genes involved in TGF-β and IL-10 signaling. In another
study, the increased expression of Tim-3 on the surface of Tregs in the TME was suggested to inhibit
the local anti-tumor T cell response induced by mono CPI in combination with radiotherapy, leading
to secondary resistance. Similarly, the accumulation of MDSCs in the TME was shown in patients
that developed secondary resistance after initial responses to CPI [117]. These MDSCs were found to
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express PD-L1 and galectin-9, known ligands for the ICs PD-1 and Tim-3, respectively, providing them
with the means to inhibit anti-tumor T cell function directly.

In summary, the underlying mechanisms driving primary resistance against immunotherapy are
abundant and diverse, and most factors determining the initial resistance to immunotherapy may also
later drive the occurrence of secondary resistance.

5. Future Challenges and Conclusions

In view of the heterogeneity in background, tumor etiology and environmental conditions, it was to
be expected that patients, even with the same type of cancer, would display highly variable responses to
immunotherapy. The provided examples of therapy resistance indicate that the mechanisms underlying
primary and secondary immune evasion can be versatile. Importantly, the complex system of immune
regulation in the TME instinctively predicts that secondary resistance results from the interplay of
multiple genetic factors, which may not always be identified in knockdown screens of single genes in
tumor cells. In order to gain a complete understanding of the mechanisms at play, systematic analyses
of therapy resistant tumors should be performed.

In order to delineate the underlying mechanisms of primary and secondary resistance, we advocate
the investigation of so-called dichotomous responses in animal models. Even in the controlled
conditions of inbred syngeneic mice and optimized treatment protocols, variation between animals
is observed in terms of responsiveness to immunotherapy. This was described for the occurrence of
secondary resistance in mice treated with the combination therapy α-CTLA-4 and αPD-1, after cDC1
anti-cancer vaccination and after combined treatment with CPI and an anti-tumor vaccine [118–120].
This dichotomous response makes mouse models an ideal alternative for new studies on the underlying
mechanisms involved in secondary resistance to immunotherapy, and in some cases, they also may
provide new leads to overcome this type of resistance. For instance, prolonged exposure to IFN-γ can
result in acquired resistance to the combination of radiation therapy and α-CTLA-4, in line with human
studies [107]. The application of genetically altered mice and tumor cell lines, as well as the application of
other CPIs, revealed that this resistance was related to IFN-γ signaling pathway related events, including
the upregulation of PD-L1, but also involved other regulatory pathways [107]. Well-defined extrinsic
resistance mechanisms, as unraveled in mouse tumor models—with available research reagents, the
depletion of antibodies and genetic knock-out systems—need to be confirmed operationally in cancer
patients (Figure 2). This requires cancer samples from cohorts of refractory patients treated with the
respective form of immunotherapy. Although challenging, we recently showed this to be feasible [121].
Immune suppressive myeloid cells were present at elevated levels in tumor-bearing mice and in patients
treated with a therapeutic vaccine, resulting in a lower therapeutic efficacy and the suppression of
spontaneous tumor-specific T cell reactivity, respectively [122]. Gemcitabine and the combination
of carboplatin and paclitaxel both depleted MDSCs in mice, but only the latter was able to decrease
the percentage of immune suppressive MDSCs in cancer patients with stronger spontaneous and
vaccine-induced T cell reactivities, as well as result in clinical benefits [52,122,123]. Notably, the standard
of care in humans is still directed at the tumor itself (chemotherapy, radiotherapy and surgery), and
immunotherapies are, for now, mainly administered to patients with a history of at least one previous
anti-cancer therapy. Along these same lines, we have to assume that each form of immunotherapy
will yield its own unique resistance mechanism. This, together with human heterogeneity, should
be taken into consideration when using mouse models to mirror the human cancer immunotherapy
experience. Nevertheless, some acquired resistance mechanisms discovered in mouse tumor models
are also operational in cancer patients, validating the use of mouse tumor models to identify not only
secondary therapy mechanisms but also ways to overcome them (Figure 2) [106,107,111]. An important
question, although harder to address, is what the factors within a tumor that determine the fate of
the tumor during immunotherapy in the first place are. In general, this is easily overlooked since
treatment responses in animal models are mostly studied at the stage in which regressor mice can be
separated from non-regressors after therapy. At this late stage, the predictive factors that determine
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this outcome might already be lost. In a recent publication, this problem was acknowledged, and the
authors proposed the use of a two-tumor model [124]. This allowed them to perform an in-depth ex
vivo analysis of the dynamic tumor microenvironment of one surgically removed tumor, while the
remaining tumor served for following therapeutic responses later on. While the authors focused on
primary resistance against immunotherapy in this publication, the same approach could be used to
identify the underlying mechanisms of acquired resistance.
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Reading, J.L.; Joshi, K.; et al. Neoantigen-directed immune escape in lung cancer evolution. Nature 2019, 567,
479–485. [CrossRef]

111. Paulson, K.G.; Voillet, V.; McAfee, M.S.; Hunter, D.S.; Wagener, F.D.; Perdicchio, M.; Valente, W.J.; Koelle, S.J.;
Church, C.D.; Vandeven, N.; et al. Acquired cancer resistance to combination immunotherapy from
transcriptional loss of class I HLA. Nat. Commun. 2018, 9. [CrossRef]

112. Yazdi, M.T.; van Riet, S.; van Schadewijk, A.; Fiocco, M.; van Hall, T.; Taube, C.; Hiemstra, P.S.; van der
Burg, S.H. The positive prognostic effect of stromal CD8+ tumor-infiltrating T cells is restrained by the
expression of HLA-E in non-small cell lung carcinoma. Oncotarget 2016, 7, 3477–3488. [CrossRef]

113. Gettinger, S.; Choi, J.; Hastings, K.; Truini, A.; Datar, I.; Sowell, R.; Wurtz, A.; Dong, W.; Cai, G.; Melnick, M.A.;
et al. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to
immune checkpoint inhibitors in lung cancer. Cancer Discov. 2017, 7, 1420–1435. [CrossRef]

114. Restifo, N.P.; Marincola, F.M.; Kawakami, Y.; Taubenberger, J.; Yannelli, J.R.; Rosenberg, S.A. Loss of
functional beta2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J. Natl.
Cancer Inst. 1996, 88, 100–108. [CrossRef] [PubMed]

115. Tran, E.; Robbins, P.F.; Lu, Y.C.; Prickett, T.D.; Gartner, J.J.; Jia, L.; Pasetto, A.; Zheng, Z.; Ray, S.; Groh, E.M.;
et al. T-cell transfer therapy targeting mutant KRAS in cancer. N. Engl. J. Med. 2016, 375, 2255–2262. [CrossRef]
[PubMed]

116. Oweida, A.; Hararah, M.; Phan, A.V.; Binder, D.C.; Bhatia, S.; Lennon, S.; Bukkapatnam, S.; van Court, B.;
Uyanga, N.; Darragh, L.; et al. Resistance to radiotherapy and PD-L1 blockade is mediated by TIM-3
upregulation and regulatory T cell infiltration. Transl. Cancer Mech. Therapy 2018. [CrossRef] [PubMed]

117. Limagne, E.; Richard, C.; Thibaudin, M.; Fumet, J.D.; Truntzer, C.; Lagrange, A.; Favier, L.; Coudert, B.;
Ghiringhellia, F. Tim-3/galectin-9 pathway and mMDSC control primary and secondary resistances to PD-1
blockade in lung cancer patients. Oncoimmunology 2019, 8, e1564505. [CrossRef] [PubMed]

118. Du, X.; Liu, M.; Su, J.; Zhang, P.; Tang, F.; Ye, P.; Devenport, M.; Wang, X.; Zhang, Y.; Liu, Y.; et al. Uncoupling
therapeutic from immunotherapy-related adverse effects for safer and effective anti-CTLA-4 antibodies in
CTLA4 humanized mice. Cell Res. 2018, 28, 433–447. [CrossRef]

119. Wculek, S.K.; Amores-Iniesta, J.; Conde-Garrosa, R.; Khouili, S.C.; Melero, I.; Sancho, D. Effective
cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen.
J. Immunother. Cancer 2019, 7. [CrossRef]

120. Durham, N.M.; Mulgrew, K.; McGlinchey, K.; Monks, N.R.; Ji, H.; Herbst, R.; Suzich, J.; Hammond, S.A.;
Kelly, E.J. Oncolytic VSV Primes Differential Responses to Immuno-oncology Therapy. Mol. Ther. 2017, 25,
1917–1932. [CrossRef]

121. Hurkmans, D.P.; Kuipers, M.E.; Smit, J.; van Marion, R.; Mathijssen, R.H.J.; Postmus, P.E.; Hiemstra, P.S.;
Aerts, J.G.J.V.; von der Thüsen, J.H.; van der Burg, S.H. Tumor mutational load, CD8+ T cells, expression of
PD-L1 and HLA class I to guide immunotherapy decisions in NSCLC patients. Cancer Immunol. Immunother.
2020, 1–7. [CrossRef]

122. Welters, M.J.; van der Sluis, T.C.; van Meir, H.; Loof, N.M.; van Ham, V.J.; van Duikeren, S.; Santegoets, S.J.;
Arens, R.; de Kam, M.L.; Cohen, A.F.; et al. Vaccination during myeloid cell depletion by cancer chemotherapy
fosters robust T cell responses. Sci. Transl. Med. 2016, 7, 334ra52. [CrossRef]

123. Santegoets, S.J.A.M.; de Groot, A.F.; Dijkgraaf, E.M.; Carnaz Simões, A.M.; van der Noord, V.E.; van Ham, J.J.;
Welters, M.J.P.; Kroep, J.R.; van der Burg, S.H. The blood mMDSC to DC ratio is a sensitive and easy to assess
independent predictive factor for epithelial ovarian cancer survival. Oncoimmunology 2018, 7, e1465166.
[CrossRef]

124. Zemek, R.M.; De Jong, E.; Loong Chin, W.; Schuster, I.S.; Fear, V.S.; Casey, T.H.; Forbes, C.; Dart, S.J.; Leslie, C.;
Zaitouny, A.; et al. Sensitization to immune checkpoint blockade through activation of a STAT1/NK axis in
the tumor microenvironment. Sci. Transl. Med. 11 2019, eaav7816. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/s41586-019-1032-7
http://dx.doi.org/10.1038/s41467-018-06300-3
http://dx.doi.org/10.18632/oncotarget.6506
http://dx.doi.org/10.1158/2159-8290.CD-17-0593
http://dx.doi.org/10.1093/jnci/88.2.100
http://www.ncbi.nlm.nih.gov/pubmed/8537970
http://dx.doi.org/10.1056/NEJMoa1609279
http://www.ncbi.nlm.nih.gov/pubmed/27959684
http://dx.doi.org/10.1158/1078-0432.CCR-18-1038
http://www.ncbi.nlm.nih.gov/pubmed/30042205
http://dx.doi.org/10.1080/2162402X.2018.1564505
http://www.ncbi.nlm.nih.gov/pubmed/30906658
http://dx.doi.org/10.1038/s41422-018-0012-z
http://dx.doi.org/10.1186/s40425-019-0565-5
http://dx.doi.org/10.1016/j.ymthe.2017.05.006
http://dx.doi.org/10.1007/s00262-020-02506-x
http://dx.doi.org/10.1126/scitranslmed.aad8307
http://dx.doi.org/10.1080/2162402X.2018.1465166
http://dx.doi.org/10.1126/scitranslmed.aav7816
http://www.ncbi.nlm.nih.gov/pubmed/31316010
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Limitations of Immunotherapy 
	Extrinsic and Intrinsic Primary Resistance Mechanisms 
	Tumor Cell Extrinsic Primary Resistance Mechanisms 
	Tumor Cell Intrinsic Primary Resistance Mechanisms 

	Secondary Resistance Mechanisms 
	Future Challenges and Conclusions 
	References

