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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Most machine learning based nano-
toxicological models generated focus on 
in vitro endpoints as opposed to in vivo 
endpoints. 

• Classification models based on super-
vised machine learning were created to 
predict the ecotoxicological effects of 
metallic nanomaterials towards Daphnia 
magna. 

• Random forest model performed the 
best but only marginally. 

• Variable importance analysis highlight 
molecular descriptors and physico- 
chemical properties as the most impor-
tant features.  

A R T I C L E  I N F O   

Handling Editor: Nynke Kramer  

Keywords: 
Screening risk assessment 
Metallic nanoparticles 
In vivo 
In silico models 
Machine learning 
Ecotoxicity 

A B S T R A C T   

Engineered nanomaterials (ENMs) are ubiquitous nowadays, finding their application in different fields of 
technology and various consumer products. Virtually any chemical can be manipulated at the nano-scale to 
display unique characteristics which makes them appealing over larger sized materials. As the production and 
development of ENMs have increased considerably over time, so too have concerns regarding their adverse ef-
fects and environmental impacts. It is unfeasible to assess the risks associated with every single ENM through in 
vivo or in vitro experiments. As an alternative, in silico methods can be employed to evaluate ENMs. To perform 
such an evaluation, we collected data from databases and literature to create classification models based on 
machine learning algorithms in accordance with the principles laid out by the OECD for the creation of QSARs. 
The aim was to investigate the performance of various machine learning algorithms towards predicting a well- 
defined in vivo toxicity endpoint (Daphnia magna immobilization) and also to identify which features are 
important drivers of D. magna in vivo nanotoxicity. Results indicated highly comparable model performance 
between all algorithms and predictive performance exceeding ~0.7 for all evaluated metrics (e.g. accuracy, 
sensitivity, specificity, balanced accuracy, Matthews correlation coefficient, area under the receiver operator 
characteristic curve). The random forest, artificial neural network, and k-nearest neighbor models displayed the 
best performance but this was only marginally better compared to the other models. Furthermore, the variable 
importance analysis indicated that molecular descriptors and physicochemical properties were generally 
important within most models, while features related to the exposure conditions produced slightly conflicting 
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results. Lastly, results also indicate that reliable and robust machine learning models can be generated for in vivo 
endpoints with smaller datasets.   

1. Introduction 

Nanotechnology has been recognized as one of the key emerging 
technologies of the twenty first century (Furxhi et al., 2020a; Savolainen 
et al., 2013), finding its application in fields such as agriculture (Huang 
et al., 2021; Lekamge et al., 2018), medicine (Huang et al., 2021; Mir-
zaei et al., 2021) and the food industry (Huang et al., 2021; Lekamge 
et al., 2018; Mirzaei et al., 2021). Engineered nanomaterials (ENMs) are 
appealing in comparison to larger sized materials due to the unique 
characteristics associated with their smaller size (Lekamge et al., 2018). 
In spite of their numerous benefits, ENMs and their unique properties 
have also raised various concerns regarding environmental, health and 
safety impacts (Lekamge et al., 2018; Basei et al., 2019; Oksel et al., 
2015; Toropova et al., 2021). It is therefore crucial to thoroughly assess 
the risks and environmental impacts associated with ENMs (Gajewicz, 
2018; Puzyn et al., 2018; Rybińska-Fryca et al., 2020; Winkler, 2020). 

Unfortunately, risk assessment of ENMs is challenging as collecting 
experimental data – either by in vivo or in vitro testing – for all possible 
nanoforms is impractical. These risk assessment challenges arise not just 
from the extensive growth of ENM development and production in 
recent decades but especially from the large diversity of materials. After 
all, virtually any chemical can be manipulated at the nano-scale nowa-
days (Basei et al., 2019; Oksel et al., 2015; Bahl et al., 2019; Pikula et al., 
2020). At the nano-scale, small modifications of e.g. the shape and size 
may significantly modulate a diversity of physico-chemical properties 
and subsequently the toxicity profile of the materials (Basei et al., 2019; 
Bahl et al., 2019; Pikula et al., 2020; Choi et al., 2018; Kovalishyn et al., 
2018). 

An alternative to experimental approaches is the use of in silico 
methods which are relatively cost-effective, efficient, and the ultimate 
implementation of the 3R principles (Replacement, Reduction, Refine-
ment) (Furxhi et al., 2020a; Gajewicz, 2018; Kovalishyn et al., 2018; Cao 
et al., 2020; Chen et al., 2016; Murugadoss et al., 2021; Zhang et al., 
2020). Moreover, in silico methods have the added benefit of allowing 
the identification of important descriptors from modeling that can assist 
in the discovery of ENM properties that drive their toxicity. Recent years 
have seen these in silico methods gain a lot of popularity as evidenced by 
the increasing amount of computational models created for risk assess-
ment (Furxhi et al., 2020a; Lekamge et al., 2018; Gajewicz, 2018; Forest 
et al., 2019). 

In silico methods for ENMs are particularly centered around quanti-
tative structure-activity relationships (QSARs), grouping and read- 
across approaches (Huang et al., 2021; Toropova et al., 2021; Gaje-
wicz, 2018; Cassano et al., 2016). QSARs are a class of models based on 
the premises that e.g. biological effects are related to the chemical 
structure of a compound and its physicochemical properties (Furxhi 
et al., 2020a; Basei et al., 2019; Choi et al., 2018; Cao et al., 2020). By 
modeling this relationship, QSARs can be applied towards other un-
tested substances to forecast their biological effects within the chemical 
domain of the relationship (Basei et al., 2019; Oksel et al., 2015). 
Although QSARs are typically constructed by employing linear methods 
(e.g. multiple linear regression, partial least-squares), ENMs are more 
likely to evoke non-linear responses (Murugadoss et al., 2021; Bell et al., 
2014). Thus, such non-linear methods should be explored for the gen-
eration of reliable and predictive ENM toxicological models. Fortu-
nately, the past few years have seen an increase in the use of non-linear 
(supervised machine learning) techniques such as random forest and 
artificial neural networks (Furxhi et al., 2020a, 2020b; Huang et al., 
2021; Winkler, 2020; Cassano et al., 2016). Machine learning has the 
potential to be exceptionally effective at predicting ENM toxicological 
effects from large datasets due to its suitability towards dealing with 

complex non-linear multidimensional interactions (Mirzaei et al., 2021; 
Winkler, 2020; Yu et al., 2021). 

With a continuously growing number of experimental (eco)toxico-
logical data being reported in literature and with the creation of ENM- 
focused databases, an opportunity is presented to utilize this available 
data for in silico modeling (Pikula et al., 2020). Most in silico models are 
based on small datasets with limited diversity, likely a consequence of 
the inconsistency between (eco)toxicological experiments in literature 
(Mirzaei et al., 2021; Basei et al., 2019; Chen et al., 2016; Forest et al., 
2019; Gajewicz et al., 2018). Additionally, the limited accessibility of 
data as a result of poor curation and disparate or heterogeneous sources 
also play a role in restricting the amount of data available for modeling 
(Basei et al., 2019; Winkler, 2020). Nanotoxicology is an interdisci-
plinary field that currently lacks clear agreement on standardized pro-
cedures, on common ontologies and on which ENM properties should be 
measured or reported from (eco)toxicological experiments (Mirzaei 
et al., 2021; Basei et al., 2019; Shin et al., 2018; Wheeler and Lower, 
2021). Collective efforts are now in act to address these issues for 
instance within the EU NanoSafetyCluster (www.nanosafetycluster.eu). 
Despite these obstacles, models generated from limited datasets can still 
be reliable and provide useful information in addition to highlighting 
key nanotoxicological descriptors (Gajewicz et al., 2018). 

Most machine learning based nanotoxicological models that are 
generated to date, have been developed for endpoints such as cell 
viability or cytotoxicity (Furxhi et al., 2020a; Jung et al., 2021). Such 
endpoints can be efficiently screened by means of standardized methods, 
thus providing large amounts of toxicity data for mostly mono-cellular 
(in vitro) systems. While it is acknowledged that in vivo data are 
important to collect in view of their environmental relevance, the 
amount of in vivo data is significantly lower than the amount of in vitro 
data. One of the best studied, environmentally relevant, in vivo systems 
is a standard laboratory organism: the waterflea Daphnia magna 
(Lekamge et al., 2018). To the best of our knowledge, only a limited 
amount of studies have attempted to generate supervised machine 
learning models using (a part of) the data that has been made available 
(Chen et al., 2016; Varsou et al., 2021). Thus, our research is aimed at 
creating in silico models to exemplify how supervised machine learning 
algorithms perform at predicting D. magna acute toxicity following 
exposure to metallic ENMs. In addition, this study also aims to identify 
key descriptors that modulate the toxicity of metallic ENMs towards 
D. magna based on the created machine learning models. Metallic ENMs 
are among the most produced ENMs globally, are first generation ENMs 
(Savolainen et al., 2013) and have therefore been studied quite exten-
sively in recent decades (Lekamge et al., 2018; Xiao et al., 2016). This 
also pertains towards D. magna nanotoxicity studies. These models will 
contribute and accelerate ENM risk assessment by improving our un-
derstanding regarding the utilization of machine learning as a tool for 
metallic ENM toxicity models and the factors required for reliable 
predictions. 

2. Materials and methods 

2.1. General overview/workflow 

OECD validation principles state that in silico toxicity models require 
a well-defined endpoint, an unambiguous algorithm, a defined domain 
of applicability, appropriate measures of goodness-of-fit, robustness and 
predictivity, and an mechanistic interpretation (Furxhi et al., 2020b; 
OECD and OECD Environment Health and, 2004). Taking these princi-
ples into account, models were created based on supervised machine 
learning. All modeling and data pre-processing was done in R 4.0.5 using 
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the ′tidymodels′ collection of packages (Kuhn and Wickham, 2021; R 
Core Team, 2021). The general modeling workflow is summarized in 
Fig. 1. 

2.2. Dataset and data collection 

A dataset for D. magna was assembled by gathering in vivo (acute 
immobilization) EC₅₀ data from available databases (Nano-E-Tox 
(Juganson et al., 2015), ECOTOX: https://cfpub.epa.gov/ecotox/) and 
literature, where the aim was to create a large and diverse dataset for 
reliable predictions (Winkler, 2020). Details on the literature search can 
be found in Appendix S1. 

The extracted data included nano-specific physico-chemical prop-
erties (e.g. primary particle size, shape, zeta potential, surface area etc.) 
and exposure conditions during toxicity testing (e.g. temperature, pH, 
illumination etc.). Moreover, the collected EC₅₀ effect concentrations 
were expressed in mg/l and were ranked as based on the EU Directive 
93/67/EEC (CEC, 1996), grouping the EC₅₀ values as “very toxic”, 
“toxic”, “harmful”, “not harmful”, as also used by Chen et al. (2016) 
(Chen et al., 2016) and Bondarenko et al. (2016) (Bondarenko et al., 
2016). 

Molecular descriptors are essential to characterize ENMs and can be 
calculated through various methods and software (Furxhi et al., 2020a; 
Chen et al., 2016). All our calculations were performed as described in 
Chen et al. (2016) (Chen et al., 2016), using the online platform 
OCHEM, and focused on the following three types of descriptors: 
E-State, ChemAxon and ALogPS. This resulted in 142 calculated mo-
lecular descriptors which were reduced to six descriptors as described in 
Appendix S2. 

2.3. Data cleaning and pre-processing 

Integrating data from difference sources can become quite compli-
cated with different ontologies and methodologies used between studies 
(Basei et al., 2019). Likewise, incomplete observations also pose a sig-
nificant problem for machine learning as algorithms cannot handle 
missing data and require complete datasets (Mirzaei et al., 2021; Sizo-
chenko et al., 2019). To deal with these previously mentioned issues and 
to make the data more suitable for modeling, several data cleaning and 
pre-processing steps were used. These are displayed in Fig. 1 and further 
details are described in Appendix S3. 

2.4. Machine learning algorithms 

Various classes of supervised machine learning algorithms were 
applied here, both linear and non-linear, which include: k-nearest 
neighbors, (linear) support vector machines, multinomial (elastic net) 
regression, naïve Bayes, random forests, (single layer) artificial neural 
networks. Brief descriptions regarding the algorithms can be found in 
Appendix S4. 

2.5. Performance evaluation 

Models were subject to internal and external validation to properly 
assess their robustness and predictivity. The dataset was split randomly 
with stratified sampling into a training set (60%) and a test set (40%) for 
model training and validation. Following data splitting, models were 
trained and validated internally through 10 times repeated 10-fold cross 
validation. K-fold cross validation is a technique generally applied to 
estimate performance and prevent overfitting (Puzyn et al., 2018; Choi 
et al., 2018; Furxhi et al., 2020b). Moreover, model performance and 
optimal hyperparameters were evaluated based on the area under the 
curve (AUC) of the receiver operator characteristic curve (ROC). The 
following metrics were also calculated to complement the ROC AUC as it 
can be advantageous to consider multiple validation metrics (Furxhi 
et al., 2020b): accuracy, sensitivity, specificity, precision, balanced ac-
curacy, Matthew’s correlation coefficient. The equations for these per-
formance metrics can be found in Appendix S5. 

2.6. Applicability domain 

An essential part of in silico modeling is describing the limitations of 
the descriptor space to establish the ranges within which models can 
make reliable predictions, known as the applicability domain (AD) 
(Basei et al., 2019; Gajewicz, 2018; Choi et al., 2018; Zhang et al., 2020; 
Furxhi et al., 2020b). The AD was calculated here by means of a 
k-nearest neighbors approach with Euclidean distances. A similar 
approach as described in Gajewicz (2018) (Gajewicz, 2018), where 
multiple zones were used representing the 95 and 99% confidence in-
tervals was used. Observations falling within the 95% confidence area 
can be classified as reliable predictions, while points in between the 95 
and 99% confidence zone are to be treated with caution (Gajewicz, 
2018). Lastly, all data outside this 99% confidence interval zone are 
considered unreliable extrapolations as a result of their strong 

Fig. 1. Diagram of the modeling workflow applied in this study. The workflow can be summarized by data collection, followed by pre-processing, model generation, 
model validation, assessing the applicability domain and, assessing variable importance. 
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dissimilarity in comparison to the training data (Gajewicz, 2018). More 
details regarding calculating the AD can be found in Appendix S6. 

2.7. Variable importance 

Variable importance distinguishes and ranks features that are most 
influential in the prediction of a model’s outcome and can be used for 
model interpretation (Mirzaei et al., 2021; Yu et al., 2021). Variable 
importance was assessed through permutation for all models with the 
exception of the multinomial regression model. Further details can be 
found in Appendix S7. 

3. Results 

3.1. Data collection and pre-processing 

Assembling data from multiple sources yielded a dataset containing 
more than 500 D. magna acute toxicity observations for 10 different 
metallic ENM cores. Observations on weathered, pre-illuminated and/or 
UV-radiated ENMs were excluded, meaning in silico models created here 
are based strictly on pristine ENMs. Additionally, features with large 
proportions of missing observations were also omitted from the analysis. 
Such features included the surface area, aggregation size, polydispersity 
index and conductivity. Although it is known that for instance the size of 
ENM aggregates and surface area are important for the fate dynamics of 
ENMs (Oksel et al., 2015; Winkler, 2020), they are either difficult to 
impute or to estimate when they were not measured during the original 
experiments. Hence, this can result in large variations and may create 
considerable noise within the data, and may thus not be useful for 
modeling in their current state. Parameters like crystallinity, shape, 
hydrodynamic size and zeta potential also contained large proportions 
of missing data, but these properties were maintained within the anal-
ysis. These properties can be estimated more robustly in comparison to 
the previously mentioned discarded properties, because they stabilize 
after initial exposure to the surrounding media and conditions. 

Initially, the collected data were categorized into four toxicity classes 
as suggested by the EU Directive 93/67/EEC into “very toxic” (0–1 mg/ 
l), “toxic” (1–10 mg/l), “harmful” (10–100 mg/l) and “not harmful” 
(>100 mg/l) (Chen et al., 2016; CEC, 1996; Bondarenko et al., 2016). 
However, the “harmful” class was pooled together into the “toxic” class 
to improve model performance (data not shown), thus the “toxic” class 
as used here represented immobilization data between 1 and 100 mg/l 

instead of 1–10 mg/l. 
Following the removal of data and pooling as stated above, a dataset 

containing 454 observations and 21 features remained for in silico 
modeling. Of the features present within the dataset, nine were cate-
gorical and 12 were numerical. All features along with their complete-
ness are summarized in Table 1 and brief descriptions of them can be 
found in Appendix S8. 

Randomly splitting (stratified sampling) the dataset and balancing 
the toxicity classes with SMOTE resulted in a training set of 375 ob-
servations, while the test set contained 183 observations. For the naïve 
bayes model, different pre-processing steps were applied, as stated 
previously. This produced a training set of 204 observations and a test 
set of 183 observations. All toxicity classes consisted of equal observa-
tions as a result of either SMOTE or down-sampling. 

3.2. Model performance 

Models were subsequently trained using the pre-processed data and 
the optimal hyperparameters were selected after cross-validation based 
on the highest ROC AUC (Table 2). Models displayed similar perfor-
mance across most performance metrics: the ROC AUC, precision, 
sensitivity, specificity, accuracy and balanced accuracy ranged between 
0.74 and 0.96 for both training and test sets (Table 2). The RF, kNN and 
neural network models consistently performed better relative to the 
other algorithms, but this was only marginally (Table 2). This distinction 
between models became slightly more apparent in the MCC whereas the 
RF, kNN and neural network models (training: 0.66–0.73, test: 
0.74–0.81) achieved noticeably higher scores in comparison to the other 
models (training: 0.61–0.67, test: 0.65–0.67; Table 2). Neither of the 
performance metrics revealed large variations between the training 
(internal validation) and test sets (external validation). 

Likewise, visual inspection of the ROC curves also showed highly 
similar performance between models in their ability to discriminate 
between the three toxic classes (Fig. 2). Interestingly, a relatively less 
arched ROC curve was observed for the “toxic” class throughout all 
models (Fig. 2). Furthermore, confusion matrices also generally revealed 
more incorrectly classified instances within the “toxic” class whereas 
misclassifications were rarely observed for the other two classes (Ap-
pendix S9). 

Table 1 
Summary of the descriptive features within the dataset (Type = type of data, N missing = number of missing values, Completion rate = proportion of data not 
containing missing data, N unique = amount of levels within the feature (for categorical data only)).  

Variable Type N missing Completion rate N unique 

Shape categorical 232 0.49 6 
Crystallinity categorical 377 0.17 7 
Illumination categorical 66 0.85 6 
test_guidelines categorical 17 0.96 7 
test_media categorical 36 0.92 19 
nat_org_matter_binary categorical 2 1.00 2 
coating_group categorical 0 1.00 20 
solubility_group categorical 0 1.00 2  

test_duration  numerical  0  1.00  - 
hydrodynamic_size numerical 203 0.55 - 
primary_diameter numerical 39 0.91 - 
test_pH numerical 20 0.96 - 
test_temperature numerical 7 0.98 - 
zeta_potential numerical 253 0.44 - 
SdO numerical 0 1.00 - 
tholepolarizability_a_yy_pH_7.4 numerical 0 1.00 - 
tholepolarizability_a_zz_pH_7.4 numerical 0 1.00 - 
Mass numerical 0 1.00 - 
asa_ASA_H_pH_7.4 numerical 0 1.00 - 
apKb1 numerical 0 1.00 -  
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3.3. Applicability domain 

In a similar fashion, the applicability domain was also highly com-
parable between models with the majority of the testing data being 
located within the 95 and 99% confidence intervals (Table 3). The AD 
was calculated as stated previously by setting the value of k at 14 (NB 
model) or 19 (all other models) and the value of Z at either 1.96 (95% 
CI) or 2.58 (99% CI), resulting in thresholds ranging from 3.71 to 4.66 
for models (Table 3). The naïve bayes model showed the widest AD 

(4.15–4.66), while the narrowest AD was seen in case of the SVM model 
(3.71–4.18; Table 3). Relative to the 95% CI limits, the 99% CI limits had 
slightly more variation among models as the largest limits were 
observed within the naïve bayes, RF and neural network models 
(Table 3). 

3.4. Variable importance 

The variable importance analysis produced conflicting results among 
models whereas some of the features contributed significantly towards 
certain models while simultaneously being irrelevant towards others 
(Fig. 3). Nevertheless, particular features also appeared more frequently 
as being important within models such as the molecular descriptors 
(molecular polarizability, SdO, accessible surface area and dissociation 
constants) and some physico-chemical properties (coating, hydrody-
namic size, shape, test guidelines, illumination, solubility). In contrast, 
the composition of the test media, test duration, presence of natural 
organic matter (NOM), primary diameter, molecular mass, crystallinity, 
test temperature and test pH were generally unimportant towards model 
predictions or played an important role only sporadically within specific 
models (Fig. 3). Although the molecular descriptors were primarily 
ranked as the most important variables in most models, they were 
largely irrelevant within the multinomial regression model (Fig. 3). 
Instead, the multinomial regression model deemed the following 
physico-chemical properties as vital: shape, crystallinity, test guidelines 
and the composition of the test media (Fig. 3b). It should be noted that 

Table 2 
Performance metrics for all models after internal and external validation (Dataset = dataset the performance metric is based on). Performance evaluation based on 
training set (internal validation) represent the model’s goodness-of-fit and robustness. Performance evaluation based on the testing set (external validation) represents 
the model’s predictivity.  

Algorithm Dataset Precision Accuracy Sensitivity Specificity Bal. accuracy MCC ROC AUC 

Multinom. reg. test 0.76 0.78 0.77 0.89 0.83 0.65 0.92 
Multinom. reg. train 0.76 0.75 0.75 0.88 0.81 0.63 0.90 
kNN test 0.82 0.83 0.82 0.92 0.87 0.74 0.93 
kNN train 0.79 0.77 0.77 0.89 0.83 0.66 0.92 
Naïve bayes test 0.78 0.78 0.77 0.89 0.83 0.67 0.91 
Naïve bayes train 0.74 0.74 0.74 0.87 0.81 0.61 0.90 
Neural network test 0.82 0.83 0.82 0.91 0.87 0.74 0.93 
Neural network train 0.80 0.80 0.79 0.90 0.85 0.70 0.93 
Random forest test 0.86 0.87 0.87 0.94 0.91 0.81 0.96 
Random forest train 0.82 0.82 0.81 0.91 0.86 0.73 0.94 
SVM test 0.78 0.78 0.78 0.89 0.84 0.67 0.92 
SVM train 0.78 0.78 0.78 0.89 0.83 0.67 0.91  

Fig. 2. ROC curves for the three toxicity classes (not harmful (>100 mg/l), toxic (10–100 mg/l), very toxic (0–1 mg/l)) per model.  

Table 3 
Applicability domain of the test data for all models calculated using a kNN 
approach (Reliable = < 95% limit, Caution = between 95 and 99% limits, Un-
reliable = > 99% limit) and thresholds set based on a 95 and 99% confidence 
interval (CI) of the training data. The value of k was calculated by taking the 
square root of the training set observations and was set at 14 (naïve bayes) or 19 
(other models).  

Algorithm Reliable Caution Unreliable 95% CI 
limit 

99% CI 
limit 

Random forest 176 6 1 3.80 4.32 
SVM 176 5 2 3.71 4.18 
Naïve Bayes 180 2 1 4.15 4.66 
kNN 176 6 1 3.76 4.29 
Multinom. reg. 176 5 2 3.72 4.19 
Neural 

network 
176 6 1 3.79 4.32  
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the negative values produced by permutation are done so by random 
chance due to shuffling and were in the interpretation regarded as being 
equal to zero. 

4. Discussion 

A strong need exists for models capable of predicting ENM toxicity, 
thus making in silico methods a subject of intense research in recent 
years (Forest et al., 2019). While considerable efforts have been made 
regarding the in silico modeling of nanotoxicological effects, various 
obstacles still remain that prevent the successful application of such 
models. These obstacles can be summarized as limited data availability 
and poor data curation (Furxhi et al., 2020a, 2020b; Mirzaei et al., 2021; 
Basei et al., 2019; Chen et al., 2016). A lack of consistency in the data 
derived from experiments is driven by the lack of methodological 
standardization and agreement on common ontologies (Mirzaei et al., 

2021; Basei et al., 2019; Oksel et al., 2015). Better agreement on 
experimental protocols, data quality and availability are required and 
are essential towards obtaining homogenous data across different 
studies (Mirzaei et al., 2021; Oksel et al., 2015; Chen et al., 2016). 
Significant steps are currently being undertaken at the EU-level towards 
addressing these issues (e.g. the drafting of SOPs (PATROLS SOP 
Handbook, 2020)) and should aid significantly towards data curation 
and improve the comparability among studies, allowing the generation 
robust in silico models. 

This study investigated the performance of supervised machine 
learning algorithms with regard to predicting in vivo toxicity of metallic 
ENMs towards D. magna. Immobilization data were collected from 
multiple sources to generate models that were in accordance with the 
principles laid out by the OECD (OECD and OECD Environment Health 
and, 2004). Different methods were applied during data curation to 
combat the previously mentioned obstacles and to generate a set of 

Fig. 3. (a) Heatmap of the permuted variable importance values (x-axis) for the kNN, naïve bayes, neural network, random forest and SVM models. The y-axis 
displays the model predictors (one hot encoded variables are displayed for the categorical features with the exception for the NB model where this pre-processing step 
was not applied). (b) Plot of the absolute estimated coefficients of the multinomial regression model (x-axis). The y-axis displays the model predictors (one hot 
encoded variables are displayed for the categorical features). 
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consistent data for modeling, as described in the materials and methods 
section above. 

4.1. Model performance 

Models were validated both internally and externally in accordance 
with the OECD principles, employing appropriate measures of goodness- 
of-fit, robustness and predictivity (OECD and OECD Environment Health 
and, 2004). Model robustness was assessed through the training set 
during cross-validation (internal validation) while its predictivity was 
assessed through using the testing data (external validation). 

Exceedingly similar performance was seen generally across models 
as the accuracy, precision, sensitivity and balanced accuracy were >0.7, 
indicating high predictivity and excellent robustness (Table 2) (Chen 
et al., 2016). Likewise, high ROC AUC values (>~0.9) were also 
perceived across all models, which implies that the models are excellent 
at discriminating between the three different toxicity classes (Table 2) 
(Liu et al., 2021). A slightly more distinguishable difference between 
models could be observed when taking the MCC into account which 
revealed relatively lower performance for the naïve bayes, multinomial 
regression and SVM models compared to the other algorithms. This 
general trend was observed as well throughout all performance metrics 
(internal and external validation) whereas the naïve bayes, multinomial 
regression and SVM models were among the relatively lesser performing 
models, although the differences were small. On the other hand, the 
models that consistently showed the best performance included the 
artificial neural network, RF and kNN models. This is in agreement with 
other studies where it is suggested that neural networks, RFs and kNN 
are highly suitable for in silico ENM modeling in addition to being able to 
perform well on smaller datasets (Mirzaei et al., 2021; Bahl et al., 2019; 
Cassano et al., 2016; Furxhi et al., 2020b; Varsou et al., 2021). 

While both the confusion matrices and ROC curves showed excellent 

predictive capability for the extremes (“very toxic” and “not harmful” 
classes), the middle class (“toxic”) had considerably more mis-
classifications and a relatively less arched ROC curve (Appendix S9, 
Fig. 2). The models had slightly more difficulty in predicting “toxic” 
observations and may be a result of pooling the “harmful” observations 
together with the “toxic” class prior to modeling. Without pooling 
“harmful” and “toxic” instances together, models resulted in poor pre-
dictability for the “harmful” toxicity class (ROC AUC ~0.5) while the 
remaining three toxicity classes had excellent and similar performances 
as the models presented here (data not shown). Thus, the minor diffi-
culty in discriminating between “toxic” observations and other classes 
may be attributed to data classified as “harmful” which was pooled 
together with “toxic” and highlights the fact that other features may be 
required to predict this class more accurately (Zhang et al., 2020). 

4.2. Applicability domain 

The third OECD principle requires a well-defined domain of appli-
cability for reliable predictions (OECD and OECD Environment Health 
and, 2004). This was characterized here using a kNN approach (Basei 
et al., 2019; Gajewicz, 2018; Zhang et al., 2020; Furxhi et al., 2020b). 
The calculated AD revealed relatively few outliers, as the majority of 
predictions were within the 95% confidence intervals and a smaller 
proportion between the 95 and 99% confidence intervals (Table 3). This 
implies that the majority of the predictions made using the testing set, 
can be considered as reliable. As with model performance, the AD was 
highly similar between all models with the exception of the naïve bayes 
model. The naïve bayes model had the largest AD and had only three 
observations that were either to be treated with caution or outside the 
defined AD. This is likely a result of the different pre-processing steps 
applied and smaller k value used during the calculations of the AD as 
compared to other models. Additionally, the artificial neural network, 

Fig. 3. (continued). 
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kNN and RF also displayed relatively large domains of applicability, 
further continuing the trend of these algorithms being among the best 
performing models and reaffirming their suitability towards in silico 
modeling of acute ENM toxicity. It should however be noted that 
although the models generalize well towards new data, they are trained 
on metallic ENMs and are hence limited to these materials. Extrapola-
tion towards non-metallic ENMs employing these models should be done 
with caution. 

4.3. Variable importance 

The fifth OECD principle requires models being provided with a 
mechanistic interpretation, whenever such an interpretation can be 
made (OECD and OECD Environment Health and, 2004). Such insight 
can help guide the collection, curation and interpretation of (toxico-
logical) data (Coveney et al., 2016). However, it is difficult and not al-
ways possible to assign mechanisms towards toxicity, especially when 
machine learning methods are involved, due to their ways of repre-
senting knowledge and their “black-box” nature (Oksel et al., 2015; 
Winkler, 2020; Yu et al., 2021; Coveney et al., 2016). Nevertheless, 
machine learning models can be interpreted through the use of variable 
importance, which ranks the features that influence predictions made by 
the models. However, the variable importance cannot explain how 
features influence predictions or how they interact (Yu et al., 2021). For 
a mechanistic interpretation of the model and to gain insight into the 
descriptors that modulate toxicity, their variable importance was 
assessed here through permutation. 

Contradictory results were obtained but general trends were also 
observed among models for certain features (Fig. 3). Firstly, calculated 
molecular descriptors generally played a significant role within models 
as these were frequently ranked among the most important features 
(Fig. 3). Furthermore, particular intrinsic and extrinsic physico- 
chemical properties were also recognized as highly influential features 
(Fig. 3). 

4.3.1. Molecular descriptors 
All molecular descriptors were commonly observed as significant 

features for model predictions with the exception of the molecular mass. 
The contribution of the molecular polarizability towards toxicity is in 
agreement with Chen et al. (2016) (Chen et al., 2016), who reported 
similar results for decision tree models. Moreover, asa_ASA_H_pH_7.4 
was also regularly seen among the most important features. asa_A-
SA_H_pH_7.4 represents the solvent accessible surface area of hydro-
phobic atoms. The surface area of ENMs plays an essential part in their 
behavior as high surface reactivity can result in severe toxic effects on 
biota (Kovalishyn et al., 2018; Chen et al., 2016). The remaining influ-
ential descriptors include SdO and apKb1. These descriptors are related 
to electrotopological state indices and solubility respectively (Kova-
lishyn et al., 2018; Chen et al., 2016). Electrotopological state indices 
give information on electronic and topological attributes of chemicals 
and are strongly correlated to intermolecular interactions (Li et al., 
2018). 

4.3.2. Physico-chemical properties 
Even though physicochemical properties of ENMs and exposure 

conditions are considered crucial in modulating toxic effects of ENMs, 
the importance of these features is generally conflicting (Mirzaei et al., 
2021; Toropova et al., 2021; Kovalishyn et al., 2018). Only the solubi-
lity, shape, coating and hydrodynamic size were primarily considered 
important physicochemical properties within models (Fig. 3). In 
contrast, the remaining physicochemical features were either insignifi-
cant or were only important within a couple of models (Fig. 3). 

Size has often been described as one of the most important charac-
teristics affecting ENM toxicity but the primary particle size was 
generally irrelevant in models. Instead, the hydrodynamic size was often 
deemed important (Oksel et al., 2015; Kovalishyn et al., 2018; Vijver 

et al., 2018). Comparable results have been reported by Shin et al. 
(2018) (Shin et al., 2018) where no direct correlation between the pri-
mary particle size and average pEC50 (D. magna immobilization) was 
observed for metallic and carbon ENMs. Results obtained here indicate 
that hydrodynamic size might be a more appropriate feature for pre-
dicting metallic nanotoxicity and this is in accordance with Choi et al. 
(2018) (Choi et al., 2018). The hydrodynamic size may better reflect the 
size of ENMs when they interact with biota in the surrounding media 
(Oksel et al., 2015; Puzyn et al., 2018). It should however be noted that 
for large proportions of the ENMs within the dataset, data on the hy-
drodynamic size were missing and had to be imputed. The importance of 
the hydrodynamic size for the models developed should thus be taken 
with some caution and requires further investigation (Table 1). More-
over, aggregation has also been reported as a feature to impact nano-
toxicity but was excluded from our analysis due to missing data 
(Lekamge et al., 2018; Oksel et al., 2015; Shin et al., 2018). Aggregation 
too may be a feature to consider in subsequent modeling studies. 

Finally, regarding intrinsic physicochemical particle properties, the 
utilization of various capping agents to alter ENM surface properties for 
stabilization is problematic as models cannot distinguish the influence of 
each coating or will overfit this impact (Lekamge et al., 2018; Mirzaei 
et al., 2021). This problem was dealt with through a grouping scheme 
based on the chemical structure of the coatings in order to reduce the 
noise and allow the models to potentially distinguish their effects more 
easily and generalize better to new data (Appendix S2). Results indicate 
that the various coating categories were of significant importance to-
wards predictions for all models (Fig. 3). Uncoated and polyvinyl coated 
ENMs were primarily the most important towards model predictions, 
likely due to their overrepresentation within the dataset (Fig. 3). The 
majority of the coating categories were pooled together during 
pre-processing into a level “other” as a result of their low frequencies 
within the dataset. This group was ranked as less important relative to 
the previously mentioned coating categories (Fig. 3). This may be a 
consequence of pooling infrequent occurring categories together during 
pre-processing, creating somewhat noisy data that may make it more 
difficult for models to distinguish between their effects. In summary, a 
grouping strategy for coatings may aid towards improving nanotoxicity 
predictions for in silico models and help uncover their role towards the 
toxic effects of metallic ENMs. 

Although extrinsic physico-chemical properties were mostly regar-
ded as insignificant features, particle solubility was regarded as being 
important. Over time, various metallic ENMs dissolve in the exposure 
medium. Dissolution is one of the most important features to affect 
particle toxicity. To include the resulting exposure dynamics next to the 
characteristics of the pristine particles, ENMs were categorized as either 
“slow” or “fast” solubilizing particles (Appendix S3). Variable impor-
tance assessments revealed that this feature was significant towards 
predicting toxicity, especially within RF models (Fig. 3). Only in the 
multinomial regression model did the ENM solubility categories play a 
relative smaller role (Fig. 3b). These results indicate that the solubility of 
metallic ENMs is indeed an important feature for toxicity prediction. 
Nanotoxicity can be influenced by the dissolution of ENMs as quickly 
dissolving particles will produce plentiful of ions which may be largely 
responsible for the toxicity towards organisms (Lekamge et al., 2018; 
Bahl et al., 2019). The dissolution will also influence the bio-persistence 
and bioavailability of ENMs (Bahl et al., 2019). In the absence of 
dissolution data, a grouping scheme, as used here, may serve as an 
alternative to prevent discarding such valuable data for data analyses 
and in silico models. 

4.3.3. Exposure conditions 
Numerous reports have highlighted the importance of exposure 

conditions towards the toxicity of ENMs (Furxhi et al., 2020a; Lekamge 
et al., 2018; Kovalishyn et al., 2018; Xiao et al., 2016). However, vari-
able importance assessments reported no such indication. While not 
regarded as an exposure condition, the test guidelines used during the 
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experiments were understandably deemed an important feature because 
they describe all water chemistry and exposure conditions simulta-
neously (thus being an assemblage of the sole parameters and addi-
tionally accounting for the interactions between them) (Fig. 3). After all, 
toxicity tests are conducted using guidelines that set out required 
optimal conditions for organisms during experiments. Thus, the expo-
sure conditions (e.g. pH, temperature, duration, composition of the 
media) are supposedly linked to the testing guidelines, as these protocols 
determine these conditions. 

It is surprising that the individual exposure condition features were 
of generally insignificant importance for the nanotoxicity predictions 
(Fig. 3). The insignificant role of the exposure conditions may possibly 
be related to the limited variance present within these features in the 
used dataset. As previously mentioned, test protocols set strict re-
quirements to ensure conditions are within certain ranges and vary little 
between protocols, especially for pH and temperature. This lack of 
variance may have inadvertently caused the machine learning algo-
rithms to consider these features as uninformative. The importance of 
the testing protocols is thus a conflicting observation that hints at 
exposure conditions possibly playing a role and warrants further 
research into whether these are spurious correlations (Coveney et al., 
2016). Finally, it is unclear why illumination was regarded as an 
important feature and may possibly be linked to the phototoxicity of 
TiO₂ with the dataset being skewed heavily towards these particles. 

4.4. Future research and considerations 

Variable importance results indicated that molecular descriptors and 
physico-chemical variables were generally the most important features, 
with the particle dissolution being among those. Despite its general 
importance towards in silico models, particle dissolution is frequently 
discarded from models because it is rarely measured or reported in 
literature. With our results highlighting the importance of this feature, 
we would like to stress that the extent of dissolution and dissolution 
kinetics should be measured more frequently during toxicological ex-
periments. An alternative could also be to fill in the data gaps through 
modeling approaches that are capable of reliably quantifying ENM 
dissolution, which is an interesting topic to explore in the future. Like-
wise, measurements of ENM surface area and aggregation size should be 
reported more regularly to mitigate the data gaps within datasets used 
for modeling. 

Other types of in silico methods and machine learning algorithms not 
explored here may further improve the predictive capabilities of models 
towards in vivo nanotoxicity data and should be a topic of future 
research. Read-across, perturbation models, Bayesian networks, SAP-
Nets and genetic trees are all promising approaches, among others, for 
dealing with smaller datasets and creating robust models. Likewise, 
applying different pre-processing methods prior to training models may 
also further improve model performance. As such, the reduction of 
features (e.g. recursive feature selection) may improve model perfor-
mance and aid in the mechanistic interpretation of models, also poten-
tially giving more clarity into the conflicting results observed here. 
Feature selection has been successfully applied in other QSAR studies 
recently (Bahl et al., 2019). Multicollinearity should also be a topic for 
future research as collinearity between features can potentially skew 
modeling results (Murugadoss et al., 2021). 

Furthermore, other data gap filling or imputation techniques should 
be explored to improve the reliability of imputed data which will in turn 
result in more robust predictions. Data was filled in here using default 
values whenever possible or through kNN imputation. kNN is an 
instance-based algorithm that will perform better when more data is 
available, thus imputations done for features with large proportions of 
missing data may be less reliable and their importance should not only 
be taken with caution but should also be investigated further. 

The models created here are limited to pristine metallic ENMs and 
predicting the effects of weathered, pre-illuminated and UV-radiated 

particles may also be an interesting topic for future research. Express-
ing the effect concentration through alternative dose metrics e.g. num-
ber of particles per liter as opposed to milligrams per liter, ought also be 
explored as this may be more appropriate for ENMs since the number of 
particles eventually determines their toxic effects. 

4.5. In conclusion 

We investigated how machine learning algorithms performed to-
wards the prediction of in vivo nanotoxicity for metallic ENMs. Acute 
D. magna toxicity data were collected for metallic ENMs using available 
literature and databases. Subsequently, six classification machine 
learning models were created in accordance with the principles laid out 
by the OECD. This resulted in a highly similar performance between 
models, whereas all models displayed excellent predictive capabilities. 
The RF, neural network and kNN algorithms generally showed the 
highest performances although the differences relative to the other al-
gorithms were small. Thus, machine learning is suitable for in silico 
modeling of in vivo nanotoxicity and the actual algorithm used is of 
lesser significance as all algorithms perform relatively similar. The 
suitability of RF, kNN and neural network algorithms for predicting in 
vivo nanotoxicity is in line with other reports from literature. Although 
models had slight difficulty in predicting the “toxic” class, they 
demonstrated excellent predictive performance towards the “very toxic” 
and “not harmful” data. Further research is required into determining 
optimal descriptors required to improve the predictive ability of models 
towards data classified as “toxic”. However, the excellent ability of 
models towards predicting the extremes (“very toxic” and “not harm-
ful”) will prove useful towards the design of new ENMs and their risk 
assessment, in order to minimize the adverse effects before their release 
onto the market (safe-by-design). Models created here may also prove 
useful when used in conjunction with other created D. magna QSARs 
(that predict e.g. in vitro endpoints) to generate multiple predictions and 
reach a (more robust) consensus regarding the toxicity of metallic ENMs 
towards D. magna. 

Another aim of this research was to interpret models and investigate 
which features are important for predicting the toxic effects of metallic 
ENMs. Feature importance analysis revealed different results among 
models with molecular descriptors and physico-chemical properties 
being generally regarded as the most influential features within models. 
As such the molecular polarizability, accessible surface area, and elec-
trotopological state indices are important molecular attributes for pre-
dictions. Likewise, physico-chemical properties such as the particle 
coating, shape, solubility and hydrodynamic diameter are also impor-
tant attributes for in vivo toxicity predictions. While many different 
features were included in our models, several features were also 
excluded due to the amount of data missing. To aid the generation of 
more robust machine learning models and proper investigation of the 
factors that contribute to ENM toxicity, we stress the importance of 
measuring the various physico-chemical properties associated with 
ENMs more frequently during toxicity experiments. Finally, the devel-
oped models demonstrate that robust machine learning models with 
good predictive performance can be achieved based on smaller datasets 
using relative few molecular descriptors and physicochemical proper-
ties. Data scarcity in nanotoxicology significantly limits the creation of 
relevant and reliable in silico models. QSARs are commonly generated 
from larger datasets (thousands of entries) with many descriptors 
(hundreds or thousands). This is not possible in the realm of in vivo 
nanotoxicity as many commonly used molecular descriptors are not 
applicable to ENMs and a rather small amount of experimental data is 
typically available. Furthermore, machine learning algorithms are 
known to perform better on larger datasets. However, no consensus 
exists on how much data is required for the creation of reliable in silico 
models and our results indicate that building models from currently 
available toxicity data can produce robust models with good predictive 
capabilities. It can also be concluded that using a grouping approach for 
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coatings and ENM solubility, as applied here, may aid in silico models by 
filling data gaps and reducing noise within the datasets. Such features 
are generally discarded for in silico modeling as a result of high variance 
or large proportions of missing data. By grouping such features, they do 
not have to be discarded and insight can be gained into their effects 
towards driving ENM toxicity. 
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