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We consider a family of tensor network states defined on regular lattices that come with a natural definition
of an adiabatic path to prepare them. This family comprises relevant classes of states, such as injective matrix
product and projected entangled-pair states, and some corresponding to classical spin models. We show how
uniform lower bounds to the gap of the parent Hamiltonian along the adiabatic trajectory can be efficiently
computed using semidefinite programming. This allows one to check whether the adiabatic preparation can be
performed efficiently with a scalable effort. We also derive a set of observables whose expectation values can be
easily determined and that form a complete set, in the sense that they uniquely characterize the state. We identify
a subset of those observables which can be efficiently computed if one has access to the quantum state and local
measurements, and analyze how they can be used in verification procedures.
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I. INTRODUCTION

The simulation of many-body states is one of the most
promising and long-awaited applications of quantum com-
puting. In particular, quantum computers are expected to
efficiently prepare certain entangled multipartite states, which
can help us in the study of quantum many-body systems,
or in variational quantum algorithms. The advent of the first
generations of both analog and quantum computers has trig-
gered a strong interest in the preparation of such states. For
instance, GHZ states up to tens of qubits have been prepared
with trapped ions [1–5], Rydberg atoms [6], superconducting
qubits [7–10], photons [11–14], or nuclear spins [15,16].

Tensor network states (TNS) constitute an especially ap-
pealing family of multipartite states [17]. On the one hand,
they are expected to efficiently approximate the ground states
of local Hamiltonians. On the other, many paradigmatic states
in the realm of quantum information or condensed mat-
ter physics are simple examples of TNS. The best-known
class of such states is that of matrix product states (MPS)
[18], which corresponds to a one-dimensional geometry.
Higher-dimensional generalizations are known as projected
entangled-pair states (PEPS) [19]. In both cases, they are
characterized by the bond dimension D, which is directly
related to the size of the tensors building such states. Those
states possess a special property, namely, that they are the
ground state of a local, frustration-free Hamiltonian. This
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implies that, in case of no degeneracy, one can easily check
the successful preparation of the state by measuring a set of
local observables. Thus, such states naturally play an essential
role in the certification of quantum computers [20–32].

The preparation of TNS has been actively pursued in the
last years and, in particular, methods that operate efficiently
in terms of the number of qudits (or lattice size) N have been
devised.1 Matrix product states can be sequentially generated
[33] in a time that scales linearly with N . In fact, MPS of up
to 10 qubits have been recently prepared in a superconducting
setup [34–37]. Certain kinds of PEPS (the so-called sequen-
tially generated) can also be prepared in the same timescale
[38] and proposals for the generation of sequentially gen-
erated PEPS have been recently put forward [39,40]. While
containing many paradigmatic examples of TNS, those states
are fine tuned in the sense that a small change on the tensors
defining the state may lead to another PEPS outside that class.
In fact, those tensors are strongly restricted by the fact that the
states have to be sequentially generated.

In [41], a very efficient quantum algorithm to generate a
wide range of PEPS was introduced. That class of states is
stable under deformations of the tensors and thus they are not
fine tuned. The algorithm is based on the adiabatic method
and the circuit depth scales as O[ln(N )]. The algorithm needs,
however, the existence of a gap � along the adiabatic path,
something which is difficult to ensure since checking that
typically requires a computational time that scales exponen-
tially with N . Additionally, it is devised for digital quantum
computers, but not analog ones.

1By efficient we mean that the computational time grows at most
polynomially with N . We will also use the shortcut “exponential
time” meaning that the time scales exponentially with N .
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In this paper we consider a family of states on arbitrary
lattices and prove two results on this family. First, we show
how the computation of the gap of the parent Hamiltonian can
be expressed as a semidefinite programming problem (SDP),
and how this allows us to efficiently compute lower bounds
δ � � on the gap. Second, we show that for such families of
states, it is possible to predict the expectation values of many
observables beyond those appearing as terms of the parent
Hamiltonian. In fact, there is an exponential number of such
observables, which forms a complete set in the set of operators
acting on the many-body Hilbert space.

The first result naturally leads to preparation protocols by
using, for instance, the one in Ref. [41] since we can effi-
ciently identify the subset of tensor network states for which
a bound in the gap is known. Besides, we also extend the
adiabatic algorithm to continuous time, which is more suitable
for analog quantum computers.

The second result naturally leads to certification protocols
based on interactive proofs (see [20–26,29–32] for previous
works on interactive verification schemes) which are inspired
by the difficulty of sampling from PEPS [42,43]. While they
require a certification time that grows exponentially with N
[31,32], we propose efficient versions that, however, rely on
stronger standard complexity assumptions. We also explain
that, in case they can be spoofed, this would immediately lead
to new classical algorithms to estimate physically relevant
expectation values of observables in the class of states we
consider.

This paper is structured as follows. In Sec. II we present
the class of states and their corresponding parent Hamiltonian.
The states depend on two positive parameters, t, β � 0, that
can be viewed as time and inverse temperature, respectively.
We show that, by construction, these states can be smoothly
connected to a product state. This family of states is essen-
tially the same as the one considered in Ref. [41], although
our formulation allows to extend the adiabatic quantum algo-
rithm of [41] to continuous time in a natural fashion. We will
see later how this family includes injective MPS and PEPS,
as well as some ground states of classical models whose
PEPS description might not be injective (although their parent
Hamiltonian has unique ground state). In Sec. III we first show
how one can efficiently find lower bounds on the gap of the
parent Hamiltonian by means of an SDP. In particular, for
every value of t we can find a maximum value of β(t ) such
that for all β < β(t ) the gap of the Hamiltonian can be lower
bounded by a constant that does not depend on the system
size. We then introduce sets of operators whose expectation
values can be easily computed and that are complete, in the
sense that they provide a tomography of the state. Finally,
we propose verification protocols in Sec. IV and discuss some
possible complexity arguments.

II. STATES AND PARENT HAMILTONIAN

In this section, we introduce the family of states that we
will consider in this work, which is comparable to the one
considered in Ref. [41]. It is built in terms of sets of local
commuting operators, together with two parameters t, β � 0.
For t = β = 0, they are product states, whereas otherwise
they are entangled and can be efficiently expressed as PEPS.

Based on that fact, we will explicitly construct a frustration-
free parent Hamiltonian, which will play an important role
in the procedure to prepare the states. We then analyze how
to prepare these family of states adiabatically and study the
scaling of the computational time as a function of the sys-
tem size and a lower bound on the gap. We build upon the
work done in Ref. [41] and extend their adiabatic algorithm
to continuous times. We review here the main idea of the
algorithm from Ref. [41] and its runtime, and refer the reader
to the original paper for a more technical discussion. Note that
while in Ref. [41] a constant gap was assumed, we will present
later in Sec. III a method for lower bounding such gap, which
constitutes our main result regarding ground-state preparation.
This will immediately allow us to know which states we can
efficiently prepare. Lastly, we show how the presented family
of states includes many physically relevant examples of TN
states.

A. Setting

We will consider a rather general setup, although we will
give examples later for regular lattices. We consider N qu-
dits, with Hilbert space Hd = Cd and computational basis
{|0〉, . . . , |d − 1〉}, located at the vertices V of a graph G(V, E )
with edges E of bounded degree z (that is, the maximal
number of edges starting from a given vertex). We define
H = H⊗N

d , and denote the set of Hermitian operators acting
on H by A. For any O ∈ A, we define its support λ(O) ⊂ V as
the subset of vertices such that O = tri(O) ⊗ 1i/d if and only
if i /∈ λ(O), where tri is the trace with respect to the qudit at
vertex i.

The graph G defines a natural distance d (i, j) between two
vertices i, j ∈ V as the minimal number of edges connecting
them. We also define the radius of a subset of vertices λ ⊂ V ,

r(λ) = min
i∈λ

max
j∈λ

d (i, j). (1)

We denote by Ar ∈ A the set of Hermitian operators acting
on H whose support has a radius of at most r.

B. States

We call Kr,M ⊂ A the set of operators that can be written
as

K =
M∑

n=1

κn, [κn, κm] = 0 , n, m = 1, . . . , M, (2)

where κn ∈ Ar , ‖κn‖∞ � 1, and κn � 0. That is, it is the
set that can be written as a sum of M commuting, positive-
semidefinite, subnormalized operators that have a radius of at
most r. Apart from the trivial cases, where the operators κn

act on single vertices or when they are products of the same
single-qudit operator, one can easily construct nontrivial sets
Kr,M . In Appendix A we briefly review some of them.

Given rα, Mα ∈ N, Kα ∈ Krα,Mα
, for α = 1, 2, we define

the family of states

|�(β, t )〉 = 1

Z (β, t )
eβK1 eitK2 |ϕ1〉 ⊗ · · · ⊗ |ϕN 〉, (3)

where β, t � 0, Z is a normalization constant, and |ϕi〉 are
arbitrary single-qudit states. This family of states obviously
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FIG. 1. Example of operators eiκ2,nt (straight lines) and eβκ1,m (wiggled lines) that act each on two adjacent sites. (a) All operators eiκ2,nt that
act on site j. Here μ j = {p, q, r, s}. (b) Support of the operator

∏
n∈μ j

e−iκ2,nt . (c) Support of the operator
∏

m∈ν j
e−βκ1,m .

contains all product states if we take β = t = 0. For β = 0,
we have Z (0, t ) = 1. Note that we only explicitly denote
the dependence of |�(β, t )〉 on β and t , while omitting the
dependence on Kα , for α = 1, 2, and |ϕi〉, in order to ease the
notation.

C. Parent Hamiltonian

We now show that any state (3) is the unique ground
state of a local, frustration-free Hamiltonian, which we con-
struct explicitly. We denote by κα,n the operators appearing
in the decomposition (2) of Kα , for α = 1, 2. For j ∈ V , let
μ j := {n | j ∈ λ(κ2,n)} be the index set of all terms κ2,n which
act nontrivially on site j, and ν j = {m | ∃ n ∈ μ j : λ(κ1,m) ∩
λ(κ2,n) �= ∅} the index set of all terms κ1,m which overlap
with one of the previous terms. See Fig. 1 for an example of
how such set of vertices would be. Then, for j = 1, . . . , N , we
define

h j = O†
j� jO j, (4)

where � j = 1 j − |ϕ j〉〈ϕ j | j acts on the qudit at vertex j, and

Oj =
∏
n∈μ j

e−iκ2,nt
∏
m∈ν j

e−βκ1,m , (5)

which is invertible. With this definition, we have hj = h†
j � 0

and hj |�(β, t )〉 = 0.
We define the parent Hamiltonian of |�(β, t )〉 as

H (β, t ) =
N∑

j=1

h j . (6)

Note that we have now also suppressed the dependence of hj

on β and t for convenience.
Let us show that, indeed, (3) is the unique ground state

of such an operator. Since h j |�(β, t )〉 = 0, we have that
H (β, t )|�(β, t )〉 = 0, and since H (β, t ) � 0, this implies that
|�(β, t )〉 is a ground state of H (β, t ), with ground-state en-
ergy 0. Conversely, if H (β, t )|� ′〉 = 0, then h j |� ′〉 = 0 and
thus � je−itK2 e−βK1 |� ′〉 = 0 for all j, which in turn means that
|� ′〉 is proportional to |�(β, t )〉: We thus see that |�(β, t )〉 is
the unique ground state of H (β, t ).

D. Adiabatic preparation

The existence of a smooth path of Hamiltonians connect-
ing H (β, t ), and thus |�(β, t )〉, to a simple product state at
H (0, 0) implies that these states can be prepared adiabatically,
by starting with the product state |�(0, 0)〉 = |ϕ1〉 ⊗ · · · ⊗
|ϕN 〉 and adiabatically changing the Hamiltonian from H (0, 0)
to H (β, t ). In fact, the first step of the procedure, changing the
Hamiltonian from H (0, 0) to H (0, t ), corresponds to applying
a unitary transformation U = eitK2 to |�(0, 0)〉. This transfor-
mation can be implemented exactly in time t by evolving with
K2 (rather than H). Alternatively, using the fact that K2 is a
sum of local commuting terms, U can be decomposed into a
finite-depth local unitary circuit (where the number of layers
only depends on the structure of the interaction), which can be
realized exactly on a digital quantum computer or simulator in
constant time.

The task that needs to be implemented adiabatically is
the second part of the preparation, that is, the interpolation
from |�(0, t )〉 to |�(β, t )〉. Generally, the time required for a
faithful adiabatic evolution will depend on the magnitude of
the spectral gap of H (β ′, t ) along the interpolation β ′ ∈ [0; β].
As it turns out, for the given type of interpolation, we can
devise an efficient way of checking the presence of such a gap
numerically, which we present in Sec. III A. Once we have
established a lower bound on such a gap, we can use any
standard bound for adiabatic evolutions [44,45], which gives
an adiabatic runtime scaling as T = O(N2�−3ε−1), with � a
lower bound on the gap, and ε the error in the final state.

Moreover, for the situation at hand, we can improve the
scaling of the adiabatic preparation by making use of the
locality of the Hamiltonian, combined with the version of
the adiabatic theorem proven in Ref. [41]. To this end, we
construct an alternative interpolation from H (0, t ) to H (β, t )
where, in each step, we only change one of the terms in the
Hamiltonian; importantly, the method derived in Sec. III A to
prove gaps still applies in that case. By changing the imagi-
nary time in a suitably smooth way along this interpolation,
we then obtain that the adiabatic time required per Hamil-
tonian term changed scales logarithmically with the desired
accuracy. We can now concatenate the interpolation for all the
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individual Hamiltonian terms. However, we would still have a
Hamiltonian acting on the whole lattice, which will translate
in an overhead in the runtime if we want to devise a digital
algorithm. To overcome this, we use the fact that changes
performed on distant terms can be equally well carried out in
parallel due to an effective light cone through Lieb-Robinson
bounds [41,46]. This means that at each step we only work
with Hamiltonians supported on a region of size polylogarith-
mically in the system size. Combining all these results leads
to a preparation scheme for |�(β, t )〉 where the adiabatic
time scales polylogarithmically with the desired accuracy and
the problem size N , and thus exponentially better than other
known methods for preparing MPS and PEPS. For a more
technical discussion on this preparation method, we refer the
reader to [41]. The bounds for the continuous-time version
of the algorithm can essentially be derived from the ones
presented in the original work.

E. Connection to tensor networks

Let us now show that the states (3) can be efficiently de-
scribed as PEPS [17] with the same connectivity as G(V, E )
and a bond dimension D which is upper bounded by a func-
tion of r1, r2, z, and d , but which does not depend on N or
M. To see this, let us consider an edge (i, j) ∈ E . Since the
operators κ1,n commute pairwise, we can express the prod-
uct of operators that act on both i and j as a single one,∏

i, j∈λ(κ1,n ) eitκ1,n = eit
∑

i, j∈λ(κ1,n ) κ1,n . We can bound the number
of terms that appear in the sum in the exponent by the number
of operators that act on qudit i. Since the individual operators
κ1,n act on a radius r1, note that eit

∑
i∈λ(κ1,n ) κ1,n acts on, at most,

all the qudits that are at a distance less or equal than 2r1 from
qubit i. The number of such neighbors can be bounded by

x � z
2r1−1∑

i=1

(z − 1)i = z
1 − (z − 1)2r1

2 − z
= O(z2r1 ). (7)

Finally, note that an operator that acts on x qudits increase
the bond dimension at most by O(dx ).2 Iterating this for every
edge (which overcounts interactions) gives an upper bound
O(dz2r1 ) for the required bond dimension. Since a similar
argument is valid for the operators κ2,m, we conclude that the
states of the form (3) can be described by a tensor network
of bond dimension at most O(dz2(r1+r2 )

). Importantly, the bond
dimension remains bounded independent of the system size
since r1, r2, and z are size independent.

In the following, we particularize the above results to stan-
dard PEPS. In particular, we will show that it contains all
injective MPS and PEPS, as well as a PEPS corresponding
to classical models, which (e.g., on the square lattice) are
described by noninjective PEPS with a unique ground state.
On the other hand, we generally cannot expect that G-injective
PEPS, that is, those which can exhibit topological order, are of
this form, regardless of boundary conditions and thus ground-
space degeneracy, as they are not connected adiabatically

2This can be easily checked by iteratively performing a singular
value decomposition on the operator and representing it as a matrix
product operator (MPO) acting on the x qubits.

FIG. 2. MPS construction in terms of the operator eiκ2,nt , that
creates an entangled pair between sites Rn and Ln+1, and eβκ1,n , that
maps the virtual sites Ln, Rn to the physical qudit at position n.

to product states; however, this can be easily remedied by
choosing a renormalization group (RG) fixed point in the
corresponding phase as an initial state, rather than a product
state, allowing for all findings in this paper to be carried over
with only minor changes.

We will in the following consider regular lattices in one or
higher dimensions. In the first case, we have MPS, and for the
higher-dimensional case, we have PEPS.

1. Injective MPS

Matrix product states (MPS) are the simplest TN [17,18].
They can be written as

|�〉 =
d−1∑

s1,...,sN =0

A1
s1

. . . AN
sN

|s1, . . . , sN 〉. (8)

We consider a special subclass, so-called injective MPS. They
fulfill d = d2

0 , and are constructed with two qudits Ln and Rn

each of dimension d0 per vertex, and

|�〉 =
N⊗

n=1

Qn|〉, (9)

where |〉 is a state where, at each vertex, the qudit Rn is
in a maximally entangled state with the qudit Ln+1 on the
vertex to its right (and thus Ln in a maximally entangled state
with Rn−1), and 0 < Qn � 1 are invertible operators that trans-
form Cd0 ⊗ Cd0 → Cd . Generically, MPS become injective
by blocking �D4 original qudits [47].

MPS obviously fall within the family of states defined in
(3) for the special case of a one-dimensional (1D) lattice as
graph. Here, for each n, κ2,n acts on Rn and Ln+1 in such a
way that eiκ2,nt creates the maximally entangled states on those
qudits. The operator κ1,n is given by κ1,n = − ln(Qn)/β and
acts on a single vertex each. This is illustrated in Fig. 2.

2. Injective PEPS

Injective PEPS are the generalization of (9) to higher spa-
tial dimensions. The state has the same form, but now there
are zn qudits at site n, where zn is the coordination number of
vertex n (i.e., the number of edges connected to the vertex).
The state |〉 contains entangled pairs along all possible ver-
tices of the lattice. As for MPS, one can readily see that these
states lie in the family defined in (3).
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3. PEPS corresponding to classical models

Let us consider a classical model in a lattice. These
ground states can be described by PEPS, which might be
noninjective, but whose parent Hamiltonian has a unique
ground state [48]. Consider a Gibbs state of some classical
Hamiltonian Hcl(s1, ..., sn) = ∑

〈i1...ik〉 hi1...ik (si1 . . . sik ), where
si ∈ {0, 1, . . . , d − 1}, and 〈i1 . . . ik〉 denotes a the regions of
neighboring particles coupled by the interaction. We define
the state

|�〉 = 1

Z

∑
s1,...,sn

e−βHcl (s1,...,sn )/2|s1, ..., sn〉, (10)

where Z is the classical partition function. We can rewrite this
state as follows [49]:

|�〉 = 1

Z
e−βĤcl/2

(
1√
d

d−1∑
s=0

|s〉
)⊗n

, (11)

where Ĥcl is an operator with eigenstates |s1, ..., sn〉 and eigen-
values Hcl(s1, ..., sn). This state is of the type of Eq. (3), where
K1 = Hcl/2 and K2 = 0. A description of these states in terms
of PEPS can be easily obtained. For the special case of two-
body nearest-neighbor interactions, we get a bond dimension
equal to the dimension of the physical degree of freedom
(see [49]).

III. GAPS AND EXPECTATION VALUES

In this section we establish our two key results, that find ap-
plication in both efficient preparation protocols for the states
(3) as well as for their verification. First, we develop an effec-
tive method to compute lower bounds to the gap of the parent
Hamiltonians (6) for some range of parameters t, β. This will
ensure that the corresponding ground states can be efficiently
prepared with the adiabatic algorithm presented in the next
section. Second, we determine the expectation values of a
complete set of operators in those states, so that one can use
them to check that the state has been successfully prepared.

A. Gaps

We will now explain how to efficiently obtain a lower
bound on the gap of the parent Hamiltonians constructed in
the previous subsection, for specific points in parameter space
as well as uniform bounds for a whole parameter regime.
To start with, note that H (β = 0, t ) is a sum of commuting
projectors h j for any t , and thus has a gap � = 1. It thus
remains to supply methods to bound the gap in the case where
β > 0.

Let us first discuss how to obtain such a bound for a
specific point H (β, t ) = ∑

h j in parameter space. To this end,
consider the semidefinite program (SDP)

δ = max
ai j ,ci j

x (12a)

subject to

∀i �= j : hih j + h jhi + ai jh
2
i + a jih

2
j − ci jhi − c jih j � 0,

(12b)

∀ i :
∑
j �=i

ai j = 1, (12c)

∀ i :
∑
j �=i

ci j = x. (12d)

For any feasible point of the SDP [and in particular the
optimum in (12a)], summing (12b) over all i �= j yields
(counting each pair twice, and up to a factor 2)∑

i �= j

hih j +
∑

i

h2
i − x

∑
i

hi � 0 (13)

or, equivalently,

H2 − xH � 0, (14)

which says that H has no eigenvalues in the interval (0; x).
Since the ground-state energy is 0 by construction, this im-
plies the existence of a spectral gap � � δ above the unique
ground state.

Since (12) is an SDP with the dimension of the constraints
independent of N , it can be solved efficiently. Note that the
SDP can be simplified considerably by setting

ai j = ci j = 0 for λ(hi) ∩ λ(h j ) = ∅ (15)

and observing that (12b) is trivially satisfied in those cases,
leaving a number of equations linear in N . Another possi-
ble simplification amounts to first solve for each individual
pair i �= j the SDP which minimizes ai j + a ji subject to
hih j + h jhi + ai jh2

i + a jih2
j � 0; then, if for all i, there exists

some 0 < yi � 1 such that
∑

j �=i ai j < yi, then there is a gap
[since hi is relatively bounded by h2

i , so we can add positive
contributions to both ai j and ci j while still satisfying (12b)];
a bound on the gap can either be computed directly from
yi or through the SDP (13) while keeping ai j fixed. Finally,
note that for β = 0 (where the hi are commuting projectors),
condition (12b) holds for any choice of ai j = ci j , and thus
indeed gives δ = 1.

Better bounds on the gap can be obtained by relaxing (12b)
to only hold when summed over specific groups of terms
[which still implies (13)]; a natural such case would be the
variant of the SDP obtained by first grouping adjacent terms
h̃i = ∑

hi (with the sum over terms in some neighborhood)
and then setting up the SDP for the h̃i. Furthermore, one
can replace hi (also after blocking) by projectors with the
same range as hi, since those relatively bound hi and thus
have a system-size independent gap if and only if the original
Hamiltonian does.

Having described a way how to efficiently obtain a lower
bound to the gap for a given point H (β, t ), how can we use
this to build methods for certifying a gap over a whole range
of parameters? The idea is based on the continuity of the
SDP conditions (which should come as no surprise, given the
finite dimension and smooth dependency of β of all objects
involved). Given a certified gap δ for some H (β, t ) using the
SDP (12) (with corresponding optimal parameters a∗

i j and c∗
i j),
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we show in Appendix B that the SDP for H (β + τ, t ) has a
feasible point with a′

i j = a∗
i j , and where

c′
i j = e−2|ν j |τ c∗

i j − (1 − e−2|ν j |τ ) − a∗
i j (e

−2|ν j |τ − e−2|νi\ν j |τ )

(16)

for 0 � ai j � 1, and a variant thereof if ai j < 0 or ai j > 1 [see
Eqs. (B13)]. Importantly, c′

i j changes uniformly continuous as
τ is increased starting from τ = 0. Thus, this allows one to
obtain a lower bound δ(τ ) on the gap of H (β + τ, t ) by virtue
of (12d); importantly, the lower bound is uniform for a given
interaction geometry and independent of the system size or
the specific chosen model, and changes uniformly continuous
with τ . We now take the τ0 for which the lower bound closes,
i.e., δ(τ0) = 0, and rerun the SDP for H (β + τ0, t ): If that
SDP returns a gap as well, this proves that H (β + τ, t ) is
gapped for all 0 � τ � τ0. By starting from β = 0 [for which
(12) trivially holds], we can thus establish the existence of
a gap (and obtain explicit lower bounds to it) for a finite
regime 0 � β � β0 by evaluating the SDP (12) only at a
finite number of points (where the bound can be improved by
increasing the density of points). Note that for translational-
invariant systems, we can show that the SDP from (12) can
be “symmetrized” (see Appendix C). This means that for a
given feasible point, with values of the variables (a∗

i j, c∗
i j ), we

can find another feasible point by averaging a∗
i j , c∗

i j , such that
all coefficients ai j and ci j are equal for all pairs of terms in
(12a). Moreover, this solution provides the same value of δ.
This directly shows that in this case δ does not change with the
system size, thus recovering the result first showed in Ref. [18]
about the existence of a gap independent of the system size.
Therefore, for translational-invariant (TI) systems the size of
the neighborhood τ is independent of the system size.

Let us now briefly discuss the suitability of the method for
the TN of the previous section. For translational-invariant (or
suitably uniform) injective MPS, it was proven by Fannes,
Nachtergaele, and Werner [18] that the parent Hamiltonian
is always gapped. Indeed, they showed that by blocking a
number of sites proportional to the correlation length (for a
fixed bond dimension), which in turn can be bounded as a
function of the gap, and replacing the blocked Hamiltonian
h̃i by projectors, Eq. (12b) is fulfilled (with all ai j and ci j

equal, as mentioned in the previous paragraph), and thus the
SDP will yield a gap δ > 0, already with the restriction (15)
imposed. In higher dimensions, an analogous result has been
obtained for PEPS which are unique ground states of local
Hamiltonian (in particular, injective PEPS) [50]. Whenever
the Hamiltonian is gapped in the thermodynamic limit, the
SDP with condition (13) will be satisfied by the projector-
valued Hamiltonian obtained after blocking a number of sites
which only depends on the gap and the geometry of the sys-
tem, but not on the system size or details of the model.

Finally, regarding the PEPS corresponding to classical
models in dimensions higher than one, for sufficiently high
temperatures (small β) the SDP method will give a gap (as the
Hamiltonian at β = ∞ is trivial). Note that the corresponding
classical model may have a phase transition at sufficiently low
temperatures, which implies that the correlation length will
diverge and thus the gap will vanish in the thermodynamic
limit (N → ∞). Thus, the SDP automatically also allows to

determine an upper bound to that critical temperature, which
will yet again get more accurate as we consider larger regions,
both by blocking and by relaxing (or omitting) the restriction
(13). Thus, the continuity bound of Appendix B at the same
time provides a means of determining upper bounds on the
critical temperature of classical statistical models.

B. Expectation values

Computing expectation values of ground states of local
Hamiltonians is hard in general [51]. However, for ground
states of frustration-free Hamiltonians, there are certain ob-
servables for which it is straightforward to compute such
values. In this section, we find a complete set of operators for
which this can be done and which will be on the basis of the
verification protocols presented below.

As argued in Sec. II C, for |�〉 given in (3) we have
hn|�〉 = 0, and thus trivially 〈�|hn|�〉 = 0. We will now
define a set of observables for which one can also compute the
expectation value in |�〉. We will restrict to qubits (d = 2) and
will take |ϕ j〉 = |0〉, although it is straightforward to extend
the method to qudits and other states. We will denote the Pauli
operators acting on the jth qubit, j = 1, . . . , N , by σ

j
α with

α = x, y, z; for instance, σz|0〉 = |0〉.
The key idea is to notice that for any λ ⊂ V ,

Oλ|�〉 =
(⊗

j∈λ

|0〉 j〈0|
)

Oλ|�〉, (17)

where

Oλ =
∏

n∈μ(λ)

e−iκ2,nt
∏

m∈ν(λ)

e−βκ1,m (18)

with μ(λ) = ⋃
j∈λ μ j , ν(λ) = ⋃

j∈λ ν j , and where the sets
μ j, ν j have been defined in Sec. II C.

The first set of operators is defined as Z+
λ = (Zλ + Z†

λ )/2
and Z−

λ = (Zλ − Z†
λ )/2i, where

Zλ = O−1
λ

(⊗
j∈λ

σ j
z

)
Oλ, (19)

that is, |�〉 is a right (left) eigenvector of Zλ (Z†
λ), using (17).

We then have

〈�|Z+
λ |�〉 = 1, (20a)

〈�|Z−
λ |�〉 = 0, (20b)

and thus Z±
λ have fixed expectation values.

The second set is more ample. Given any P supported
in λ ⊂ V with the property that there exists j ∈ λ such that
〈0|P|0〉 j = 0, we define

Qλ = O†
λPOλ. (21)

Again, using (17) we can compute the expectation value of
those operators

〈�|Qλ|�〉 = 0. (22)

The set of operators defined above, taken jointly for all λ ∈V ,
is complete in A in the sense that their expectation values
completely determine the state. To show that, we just have
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to devise a subset of 4N linearly independent operators from
that set.

To this end, let us start from the set of all operators P which
are a product of Pauli and identity operators, and associate to
each of them an operator Q ≡ Q(P) using one of the construc-
tions above. Each of these operators can be written as

P =
⊗
j∈λ

σ j
α j

, (23)

where α j = x, y, z, and λ ⊆ V is the set of sites on which
P acts nontrivially. In case α j = z for all j ∈ λ, we define
Q(P) = Z+

λ ; otherwise, Q(P) = Qλ [Eq. (21)]. Finally, for
P = 1, let Q(P) = 1. In this way, starting from all products
of Pauli operators and the identity, we have obtained a set of
operators Qn, n = 1, . . . , 4N . This set is linearly independent
iff the matrix Bn,m = tr(Q†

nQm)/2N is not singular. Trivially,
for β = 0, Bn,m = δn,m and thus not singular. Since the op-
erators Oλ used to define the map P �→ Q are analytic in
β > 0, the determinant of Bn,m will be analytic as well, and
thus it can only vanish at countably many points, all of which
are isolated. Thus, generically it will be nonzero and, in the
possible measure-zero cases where it is can be circumvented
by taking a close-by value of β.

The fact that the set of operators Zλ and Qλ is
(over)complete means that any observable can be expanded
as a linear combination thereof. If we are able to obtain the
corresponding coefficients, then we will be able to compute
the expectation value of all physical quantities. In practice,
this will be difficult since, due to the fact that the operators Oλ

nontrivially overlap with each other, we will typically need an
exponential number of terms in the expansion. Nonetheless,
there may be a way of truncating that expansion, which would
give lead to new algorithms in terms of tensor networks.
Furthermore, since we know the expectation values of a ba-
sis of operators, we possess full tomographic information on
state. However, as before, it is not useful to compute other
expectation values. In Appendix D we show that the norms
of the observables Qλ decay at most exponentially with their
support size, and thus they are guaranteed to have bounded
(polynomially decaying) norm when the size of the support is
fixed [at most O(ln N )].

The operators Qλ are supported on a set of vertices that
are larger than λ (roughly speaking, on all vertices that lie
at a distance up to 2r from that set). It is possible to define
other observables which have a smaller support and for which
we can still compute the expectation values. This is relevant
for more practical applications, like the verification protocols
introduced below, where we want to make statements about
measurements performed within the support of Qλ, and we
want them to include as few qubits as possible. For that, given
j ∈ V and an operator P′ supported on λ with j /∈ λ, we define

Qj,1 = O†
jσ

j
x P′Oj, (24a)

Qj,2 = O†
jσ

j
y P′Oj, (24b)

Qj,3 = O†
j

(
1 − σ j

z

)
P′Oj, (24c)

which only act on the joint support of Oj and P′. Again, using
(17) we find the expectation value of those operators to be

〈�|Qj,α|�〉 = 0. (25)

In particular, if we choose P′ to be an arbitrary Pauli prod-
uct, then Qj,1 and Qj,2 can be used to replace the operators
Qλ from Eq. (21) in our complete set of operators. At the
same time, the operators Qj,1 and Qj,2 are still products of
Pauli operators almost everywhere, except on the support of
Oj which has a fixed size. This means that each Oj,1, Oj,2

can be estimated efficiently [i.e., with a number of (Pauli)
measurements which only depend on the accuracy but not on
the system size], and the only remaining operators in the com-
plete set which cannot be estimated efficiently individually are
the Z±

λ .
In summary, we have defined a set of observables whose

expectation values are either zero or one. We can choose a
subset thereof where |λ| � c, with c a constant independent of
N . In such a case, since we know Oλ we can efficiently write
those observables as linear combinations of Pauli operators in
the support of Oλ [like (19)], or even smaller [like (24)]. Note
that the norms of these observables will also be efficient to
compute in these cases, as we show in Appendix D.

IV. VERIFICATION SCHEMES

In this section we discuss different ways of exploiting the
state preparation procedure for the state (3) as a verification
scheme. First, we will analyze a quantum state verification
method and show how to certify that the state has been created
successfully by performing local measurements and using the
fact that there exists a parent Hamiltonian that is both gapped
and frustration free [52]. Then, we will consider the scenario
of classical verification of quantum computation, where the
goal is to make sure that someone else is in possession of
a quantum computer solely through classical communication
[21,22,29–32]. We will restrict here to the case of qubits,
although the arguments can be easily extended to qudits.

A. Quantum state verification

Unique ground states of frustration-free Hamiltonians, like
the ones we are dealing with here, can be trivially certified
with local measurements. This is achieved by just performing
local quantum tomographies to make sure that the expectation
values 〈h j〉 = 0 for all hn defined in (4). Indeed, if this is
the case, then 〈H〉 = 0 [cf. (6)], and since H � 0 and has a
unique ground state, this implies that the measurement must
have been performed on that state.

In practice, since we can only perform a finite number of
measurements, the estimates for 〈hj〉 will not be exactly zero;
additionally, measurement errors will give rise to errors in
those quantities as well. However, one can still estimate the
success probability of the preparation in different ways. The
most straightforward one is to relate the obtained expecta-
tion value of 〈H〉 = tr(Hρ) (with the corresponding estimated
error) to the overlap of the state we have prepared ρ and the
target ground state |�〉. It is straightforward to show that the
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fidelity obeys

〈�|ρ|�〉 � 1 − tr(Hρ)

�
� 1 − tr(Hρ)

δ
, (26)

where � is the spectral gap of H , and δ the lower bound
obtained in the previous section. Thus, if we can obtain this
expectation value (with an error bar) and we compute δ, we
directly obtain a lower bound to the overlap.

Neglecting measurement errors, for a finite number of mea-
surements, the estimate of 〈�|ρ|�〉 will have some error bar.
To use the bound (26), we need that the error in tr(Hρ) =
〈H〉 = ∑〈hj〉 is sufficiently below δ. Assuming that we
perform independent measurements and thus that we have
independent errors with same standard deviation σ for the
estimator of all the hj , we have that the error ε j for each term
must satisfy δ/

√
N ∼ ε j ∼ σ/

√
Lj , where Lj is the number

of measurements performed to estimate 〈hj〉. If, in addition,
we assume Lj = Lj′ , we obtain a conservative estimate for
the total number of measurements of Ltot � NLj ∼ σ 2N2/δ2.
Note that instead of performing independent measurements,
one could measure qubits belonging to nonoverlapping re-
gions in parallel [53], which might lead to a reduction of the
total number of rounds.

The verification can also be analyzed as an adversarial
game, where the prover prepares a state ρ, gives it to verifier,
and claims that it is indeed �. The verifier can then perform
measurements to gain confidence that this is indeed the case.
Such a protocol has been analyzed in Ref. [28] by assuming
that the verifier can measure by projecting in the basis of
eigenstates of the local operators of the Hamiltonian hj . In
Appendix E, we perform a similar analysis, but assuming
that the verifier can only perform Pauli measurements, which
might be a more realistic assumption for current experimental
setups.

B. Classical verification of quantum computation

Let us now turn towards a different kind of verification, in
which the verifier is fully classical and communicates with the
quantum prover through a classical channel [21,22,29–32].
Such protocols can also be formulated as an adversary game:
Here, the prover claims that he can efficiently carry out quan-
tum computations on a quantum computer. The verifier has to
make sure that this is the case by communicating classically
with the prover, that is, asking him to perform certain tasks
on his quantum computer and report the results. Of particular
interest is the case where both prover and verifier have lim-
ited additional resources, namely, they can perform classical
computations with a computational time that scales at most
polynomially with the number of qubits. In this setting, the
verifier can pose challenges to the prover which he can only
accomplish if he has a quantum computer, but not with his
limited classical resources, and the challenge is to find a way
which allows the verifier with her limited classical resources
to verify this.

Recently, several protocols achieving this task have been
proposed whose security is based on standard complexity
assumptions [29–31]. While the first protocol [29,30] is most
adequate for fault-tolerant quantum computers, the latter [31]
is very attractive since it can already be used to verify existing

noisy intermediate-scale quantum (NISQ) devices [54]. How-
ever, it requires the verifier to carry out classical computations
whose runtime scales exponentially with the number of qubits,
though with a relatively small exponent which makes it com-
paratively practical. Apart from their use to certify quantum
computers that can be only used remotely by classical means,
one of the most appealing applications of such protocols is in
the context of certified random number generators [30].

Ground states of frustration-free quantum Hamiltonians
that can be efficiently prepared, like the ones presented in
this work, may offer an alternative way for this kind of ver-
ification; specifically, one can exploit the task of reproducing
correctly the expectation values of the observables introduced
in Sec. III B as a challenge for the prover. In the following,
we will describe such verification protocols, and analyze their
security and the underlying complexity theoretic assumptions
in different regimes. As we will see, the straightforward ap-
plication of this idea requires exponential time. More efficient
versions of the protocol are possible, but the underlying com-
plexity assumptions are less tangible and, thus, their security
remains unclear.

1. Protocol

The verification protocol consists of three steps: (i) The
verifier sends the prover instructions for preparing the state
|�〉. (ii) This step consists of R rounds: in each round, the
verifier sends the prover a set of observables; the prover then
prepares the state |�〉, measures the observables, and reports
the outcome. (iii) The verifier performs certain checks on the
accumulated measurement outcomes to verify that the prover
has indeed prepared the state |�〉 and is thus in possession of
a quantum computer.

For step (i), the verifier just has to give the circuit that
prepares the state to the prover, which she can, e.g., obtain by
trotterizing the adiabatic evolution. Alternatively, she can di-
rectly give the time-dependent Hamiltonian H (t, β ), together
with the initial states |ϕi〉, to the prover, e.g., in case he is in
possession of an analog quantum computer. An honest prover
will then be able to efficiently prepare the state |�〉 in a time
that scales as ln(N ), as discussed in Sec. II D.

For each round of step (ii), the verifier sends the prover
a list of bases α = (α1, . . . , αN ), α j = x, y, z, in which the
individual qubits should be measured; the α will be generally
drawn at random from some distribution which is dictated by
the verification step (iii). The prover then prepares the state
and measures qubit j in the Pauli basis α j , and obtains results
s = (s1, . . . , sN ), s j = ±1. For an honest prover, these results
are drawn from a distribution

P0(s|α) = 〈�|
N⊗

j=1

1

2

(
1 + s jσ

j
α j

)|�〉. (27)

After receiving the measurement basis, the prover prepares
|�〉 and performs the measurements. Importantly, since |�〉
can be prepared in time O[ln(N )], each round can in principle
be carried out in time ln(N ) as long as the prover has the
ability to measure and communicate the results in parallel.

Step (ii) allows for several natural generalizations. In par-
ticular, we can allow for measurements beyond the Pauli basis,
we can enable the verifier to make adaptive queries, where
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the choice of s in any round can depend on the results of
the previous round, and we can split each round into several
subrounds of communication, where the state is prepared once
and then a sequence of adaptive measurements is performed
on it, measuring only a subset of the qubits at each time.

In step (iii), the verifier uses the samples obtained from the
prover to compute certain quantities which serve to verify that
the prover is indeed sampling from the correct distribution P0.
To this end, the verifier can, e.g., use some of the quantities
Q constructed in Sec. III B for which 〈Q〉 = 0, 1 (or variants
thereof), or the Hamiltonian terms hj for which 〈�|h j |�〉 = 0
(which can be used to replace the Z−

{ j}). Let us now consider
one such observable Q supported on λ ⊂ V . It can be decom-
posed as

Q =
∑

γ

o(γ )
⊗
j∈λ

σ j
γ j

, (28)

where γ = (γ1, . . . , γ|λ|), γ j = x, y, z, and o(γ ) are the expan-
sion coefficients. The verifier can then estimate 〈Q〉 using an
estimator

Q̄ =
∑

γ

o(γ )s̄(γ ), (29)

where s̄(γ ) is the average outcome where the prover measured
spin j in the basis σγ j for all j ∈ λ, and an arbitrary basis
for all j /∈ λ; that is, if we denote the set of rounds where
α j = γ j for all j ∈ λ by R(γ ), and the result of the rth round
by sr = (sr

1, . . . , sr
N ), we have

s̄(γ ) = 1

|R(γ )|
∑

r∈R(γ )

∏
j∈λ

sr
j . (30)

If the samples have been taken according to P0, Ō →
〈�|O|�〉 in the limit |R(γ )| → ∞, which can be used as a
means of verification (see Appendix E for a quantitative anal-
ysis). Note that, alternatively, we can determine the average
also using only rounds R(γ ) where sites j /∈ λ have only been
measured in some specific bases.

As a simple example of this verification procedure,
consider a resource state for measurement-based quantum
computation (MBQC), such as the cluster state [55], or gen-
eralizations which allow for measurement-based computation
using only Pauli measurements [56]. For those states, the
preparation step is particularly easy, as they can be prepared
by a single layer of commuting unitaries (i.e., β = 0) from a
product state. They are frustration-free ground states of local
Hamiltonians H = ∑

hi � 0, hi|�〉 = 0, a property which
allows for easy verification from the measurement statistics.
And finally, we know that adaptive measurements in a suitable
basis (Paulis and π/4 rotated states in the xy plane for the
cluster state, or only Pauli measurements for the aforemen-
tioned generalization) are universal for quantum computation,
making it impossible for a prover not in possession of a quan-
tum computer to produce the correct distribution in such an
interactive protocol, and at the same time imposing limitations
on potential cheating strategies, as we will discuss in the
following.

2. Complexity analysis

Let us now analyze under which conditions the protocol
allows the verifier to conclude that the prover must indeed be
in possession of a quantum computer, what potential classical
cheating strategies might be, and what limitations to such
strategies exist.

a. Sampling from the quantum distribution is hard. The
first cheating strategy would be to find a way to classically
sample from the correct distribution P0 [Eq. (27)]; in that
case, the verifier would have no way of detecting this. How-
ever, there are several strong complexity-theoretic arguments
against that. First, note that, as already mentioned above, the
adaptive version of the protocol contains measurement-based
quantum computing: The cluster state is clearly in the given
class (with β = 0), and an adaptive protocol with poly(N )
queries per round would implement a general quantum com-
putation. Thus, sampling from the correct P0 is impossible
unless BQP = BPP. However, it is also known that sampling
from the output of a circuit of commuting gates with random
product states as input and measuring in a fixed basis (a case
which is contained in our protocol for β = 0) is computation-
ally hard, as shown in [57]. In order to prove the hardness
of this setup, in [57] they relate the complexity of sampling
from such a circuit with the complexity of sampling from IQP
circuits, a task that is known to be hard unless the polynomial
hierarchy would collapse to its third level [58,59]. We thus
conclude that there is complexity-theoretic evidence that it
is impossible for the prover to classically sample from the
correct distribution P0 (up to constant error) in polynomial
time.

b. Reproducing all 〈Q〉 is hard. The second cheating strat-
egy would be to sample from some different distribution P′
which is chosen such that all estimators for 〈Q〉 computed
from P′ are correct. Any estimator Q̄ [Eq. (29)] supported
on a subset λ of sites can be computed in many different
ways, which differ by the measurement settings over which
we average for the sites not contained in λ [see Eq. (30) and
the discussion below it]. We will thus additionally impose
that the estimator Q̄ converges to the same value for all those
ways to compute it; this can be easily ensured by the verifier
by computing Q̄ in all different ways, or just in a randomly
chosen one. (Alternatively, this can be ensured by computing
the marginal probability distributions in different ways and
checking their consistency, that is, by checking that the mea-
surement setting αi of qubit i does not affect the distribution of
the measurement results s j for any of the other qubits j �= i;
this can be seen as a kind of nonsignaling condition on the
distribution.)

These conditions, however, imply that P′ = P0, the correct
distribution derived from the quantum state. The reason is
that for any given α, we can reconstruct P′( · |α) from the ex-
pectation values of all Pauli measurements given by arbitrary
substrings of α [that is, where the Paulis in some positions
have been replaced by identities, as in Eq. (23)] through an
N-fold Hadamard transform (using the consistency condition
above); the latter, in turn, can be reconstructed from all 〈Q〉 as
they are related by an invertible transformation, as discussed
in Sec. III B.
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We thus find that this is not a viable cheating strategy
since no other distribution which yields all the correct Q̄
exists. Note that together with the hardness results mentioned
under Sec. IV B 2 a, this implies that even sampling from a
P′ which approximates 〈Q〉 for all Q sufficiently well is hard.
The required accuracy in Q has to be chosen such that the
expectation values of Pauli strings have exponential accuracy
in N ; since the number of samples required to this end is in
fact determined by the latter [the transformation (29) is exact],
this generally requires an exponential number of samples.

Let us now discuss two different cases for the verification
protocol and their security. First, we consider the case where
both prover and verifier have bounded (polynomial) storage
space, but the verification procedure can take an exponential
number of rounds, and the verifier can use exponential time.
In this case, the arguments from before regarding the hardness
of sampling from P0 or reproducing the 〈Q〉 imply the security
of the protocol. Second, we consider the case in which the
verifier only tests local observables, i.e., those supported on a
region of at most O(ln N ). Note that the verification is efficient
in this case, i.e., it can be carried out in polynomial time for
a prover and verifier having both polynomial storage space as
before. In this case, we also argue how successful cheating
strategies will be likely to fail. Most interesting, if such a
cheating strategy succeeded, it would imply the existence
of classical algorithms for computing local observables for
generic tensor network states.

c. A secure space-bounded and exponential-time verifi-
cation protocol. In each round, the prover is only granted
poly(N ) time (or logarithmic time with suitable parallel pro-
cessing power). By performing an exponential number of
queries, the verifier can get an exponentially precise esti-
mate Q̄ for any of the observables Q (either a randomly
selected one, or all of them); importantly, the expansion co-
efficient o(γ ) of Q in the Pauli basis [Eq. (28)] is a trace
of a product of local operators and can thus be computed
in PSPACE, and the summands in (29) can be sampled
and added sequentially one by one; the verifier thus only
requires polynomial storage space. The prover, on the other
hand, cannot classically sample from the correct distribution
in the available polynomial (or logarithmic) time, due to
the hardness results discussed in Sec. IV B 2 a; at the same
time, his limited memory prevents him from precomput-
ing all possible outcomes after having learned the adiabatic
circuit for preparing |�〉 in step (i) (even though the ex-
ponential time used for the overall protocol would allow
for it).

Let us note that what makes our setup special is not the
fact that the knowledge of all 〈Q〉 allows to reconstruct the
probability distribution; such a complete tomography is pos-
sible in any scenario. Rather, what makes our construction
special is that the verifier knows the required expectation
values for all operators 〈Q〉 right away, whereas in a general
tomography scheme, a computationally costly reconstruction
procedure is required to obtain P from measured expectation
values. However, in order to compute a general expectation
value 〈Q〉, the verifier still needs to collect an exponential
amount of data from the prover: While it is sufficient to
sample a small number of randomly chosen Q’s, most Q’s still
have an exponential number of terms in their Pauli expansion

(28). The situation here can thus be somehow regarded as the
reverse from that introduced in Ref. [31]: While in that case
the verifier requires a polynomial number of measurements
from the prover, it takes her an exponential time to check if
they correspond to the correct probability (by computing the
cross entropy). In our case, the correct expectation values can
be trivially computed, but one requires an exponential number
of samples to obtain them. Note that computing the coeffi-
cients o(γ ) of Q, which are needed to estimate its expectation
value from the samples, might require exponential resources
as well.

d. Proposal for an efficient verification protocol and its
security implications. As we have seen, checking some 〈Q〉,
chosen at random from the set of all Q, allows to verify that
the prover is in possession of a quantum computer. This, how-
ever, requires exponential resources, since a typical Q involves
a significant fraction of the Pauli terms acting on its support,
that is, an exponential number, and moreover we require an
exponential accuracy. A practical verification protocol must
thus resort to testing only local Q’s, that is, those which
are supported on at most order ln(N ) sites, to an accuracy
1/poly(N ), as those can be sampled in poly(N ) time.

Thus, the question which arises is whether there is a way
for the prover to efficiently sample from a distribution P′
which reproduces those local 〈Q〉 correctly, up to polynomial
accuracy.

First, let us notice here that, if the prover indeed measures
in the Pauli basis, reaching a polynomial accuracy on local 〈Q〉
expectation values uniquely identifies the ground state |�〉
among all multiqubit states. The reason is that we can include
the terms of the parent Hamiltonian H = ∑

h j in the set of
Q’s, and since |�〉 is the unique ground state of H and H is
gapped, this implies ‖|〉 − |�〉‖ < 1/poly(N ) if the 〈hj〉 are
1/poly(N )-close [see Eq. (26)]. Hence, to entirely establish
the security of the protocol, it would be enough to prove that
any distribution P′ reproducing 〈Q〉 with the desired accuracy
must be obtainable by performing Pauli measurements on a
multiqubit state. Notice that a possible way to achieve that
would be to prove a robust self-testing statement based on the
〈Q〉 expectation values (see [60] for a review of self-testing
techniques).

Second, even if such a distribution P′ exists, there are
constraints on the design of algorithms to sample from it
efficiently. For instance, one might assume that it should be
possible to characterize the space of solutions of the equa-
tions |Q̄ − 〈Q〉| � 1/poly(N ), which locally constrain P′, use
them to find ways to sample locally correctly, and patch those
ways of sampling together to obtain a sampling algorithm
which works globally. However, such a strategy, if based only
on the final conditions on 〈Q〉, is bound to fail, unless further
properties of P0 are taken into account. Specifically, we can
choose the Q to enforce 3-SAT clauses or some other classical
NP-hard problem [such as spin glasses on a two-dimensional
(2D) lattice], in which case such an algorithm is bound to fail
as it would have to solve the NP problem. (It is a fingerprint
of hard instances of NP problems that the local constraints
cannot be patched together easily.) Note that also knowing the
precise local reduced density matrices does not necessarily
make the problem easier, as the general quantum marginal
problem is QMA-hard [61,62].
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Thus, a successful cheating strategy most likely will have
to use the full knowledge of the adiabatic path used to prepare
the state or, equivalently, knowledge of K1 and K2. Note that
Osborne showed that the computation of local expectation
values on states that undergo an adiabatic evolution under a
local gapped Hamiltonian can be achieved classically [63].
However, this method does not help the prover either since
it does not provide samples from the full probability distri-
bution, which is what the prover is asked to return. Another
approach could be to classically simulate the adiabatic evo-
lution: for instance, one could try to adapt the Monte Carlo
algorithm by Bravyi and Terhal [64] for the simulation of
adiabatic quantum computation along a path which is both
frustration free (which we have) and sign-problem free (which
we do not necessarily have), followed by a measurement in
the σz basis (which we do not have). Indeed, it is plausible
that such an algorithm will allow to correctly sample in cases
where the final Hamiltonian is classical and only needs to be
sampled in the σz basis. On the other hand, it will likely break
down if one of the conditions is not met, which will manifest
itself in a sign problem in the Monte Carlo method. In fact,
we cannot expect a cheating strategy based on simulating
the adiabatic evolution to work since such an algorithm (if
working as desired) will precisely sample from the correct
distribution P0, which we have previously established to be
computationally hard. Thus, in order to attack the protocol
with such a strategy, one would have to devise a method to
simulate the adiabatic evolution in a way where local expec-
tation values are reproduced correctly, yet global properties
would not (with the goal of circumventing hardness results);
it is unclear how a route to accomplish this would look like.
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APPENDIX A: EXAMPLES OF SET OF OPERATORS Kr,M

In this Appendix we give some examples on how to con-
struct operators K ∈ Kr,M defined in (2). Recall that K is
defined as a sum of local operators κn ∈ Ar , for n = 1, . . . , M,
such that the operators κn commute pairwise.

Let us take a set of pairwise commuting unitary op-
erators acting on at most rU sites: {Uα : |λ(Uα )| �

rU , [Uα,Uβ] = 0}. Note that a straightforward way of con-
structing commuting, Hermitian operators is as follows:

κn =
( ∏

α:n∈λ(Uα )

Uαi

)
On

( ∏
α:n∈λ(Uα )

Uαi

)†

, (A1)

where On is a one-body operator acting on site n such that
‖On‖∞ � 1 [note that we can also take On to act on disjoint
subset of vertices λ(On) ⊂ V , such that λ(On) ∩ λ(O′

n) = ∅].
Note that the product runs over all unitary operators whose
support intersect site n. In this case, the final operators κn are
labeled by a physical site, though in the general definition (2)
this is not necessarily the case. Note that the conjugation by
unitaries preserves the commutativity, i.e., [κn, κm] = 0 for all
n �= m, as well as the spectrum of the operators, so ‖κn‖∞ �
1. We can also upper bound the support size of κn, |λ(κn)| �
zrU − 1.

It follows that it suffices to find a set of pairwise com-
muting unitary operators in order to construct an operator
K ∈ Kr,M . We will explicitly outline three different methods
on how to construct such a set.

Diagonal unitaries. The first obvious way to do so is to
take all the unitary operators diagonal on the same basis. Note
that one can use these unitary operators to construct graph
states [65,66] (such as the cluster state [65]) and weighted
graph states [67] by applying them over a lattice where each
edge represents a maximally entangled state between adjacent
vertices. Thus, the family of states (3) trivially contains those.

Toric-code-type unitaries. An alternative approach for two-
dimensional rectangular lattices is as follows. First, take some
Hermitian operators hA and hB acting on adjacent plaquettes
A and B and assume that hA,B are of a toric-code type [68]
[see Fig. 3(a)]. By this we mean that hA = ⊗

i∈A OA, hB =⊗
i∈B OB, where OA,B = O†

A,B and such that {OA, OB} = 0 (for
the toric code we have OA = σz, OB = σx). Since the supports
of hA and hB intersect in two vertices, the anticommutativity
condition implies that [hA, hB] = 0. Thus, we can generate
commuting unitary operators by evolving hA,B up to different
times:

U A
α = eihAtα , U B

β = eihBtβ . (A2)

By construction, we have [U A
α ,U A

α′ ] = [U A
α ,U B

β ] =
[U B

β ,U B
β ′ ] = 0 for all α, α′, β, β ′. Note that we can choose

O(N ) free parameters, corresponding to the different
evolution times {tα}α and {tβ}β , as many as plaquettes in
the lattice.

Bravyi-type unitaries. Finally, we present a more general
approach, which is a generalization of the results of Bravyi
et al. [69] about the characterization of commuting, local
Hamiltonians in 1D (see also [70] for a discussion on this
topic). We will present the method for the particular case of
a 2D rectangular locality structure, but the generalization to
other geometries is straightforward.

Let us start with a state defined over a lattice. At each
site, we have four virtual particles of dimension D, which are
mapped into a single physical qudit, with a physical degree
of freedom d . For a visualization see Fig. 3(b), where we
associate black dots with virtual particles; the big blue circles
represent the physical sites, and correspond to the vertices of
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(a) Toric-code unitary operators.
(b) Bravy-type unitary operators.

FIG. 3. (a) Representation of a toric-code Hamiltonian, in which two types of plaquette operators alternate. (b) Representation of a state
that is obtained by mapping four virtual particles (black dots) into a physical one (blue shape). The shaded lines represent unitary operators
acting on adjacent virtual sites, each of them belonging to a different qudit.

the lattice. We denote by P : (Cd )⊗4 �→ CD the map from the
virtual to the physical degrees of freedom. We take P to be
unitary, which means that d4 = D.

Let us denote by Hq
∼= Cd the Hilbert space associated

with the physical particle at vertex q. Bravyi and Vyalyi [69]
showed that Hq can be decomposed as

Hq =
⊕

i

(
Hi

qul
⊗ Hi

qur
⊗ Hi

qdl
⊗ Hi

qdr

)
, (A3)

where qul , qur, qdl , qdr correspond to the virtual degrees of
freedom [see Fig. 3(b)]. We denote by Hqul the Hilbert space
associated with the virtual particle qul and by Hi

qul
a subspace

of Hqul .
Let us now define some unitary operators Uα , acting on

four adjacent virtual particles, each belonging to a different
vertex as in Fig. 3(b). Here α just denotes an index to enumer-
ate the different operators, without any spatial meaning. We
do not impose any restriction on these operators apart from the
virtual particles in which they act. Let us now show that when
we consider the operators Uα acting on the joint Hilbert space
of two neighboring physical sites, i.e., on Hq ⊗ Hq′ , they
commute. To see this, consider the examples from Fig. 3(b).
We can write the operators Uα and U ′

α as

Uα|Hq⊗Hq′ = oqur q′
ul

⊗ 1qul qdr qdl ⊗ 1q′
ur q′

dl q
′
dr
,

U ′
α|Hq⊗Hq′ = oqdr q′

dl
⊗ 1qul qur qdl ⊗ 1q′

ur q′
ul q

′
dr

(A4)

for some operators oqur q′
ul

and oqdr q′
dl

that act nontrivially only
on the subspaces Hqur ⊗ Hq′

ul
and Hqdr ⊗ Hq′

dl
, respectively.

With this decomposition, it is easy to see that [Uα,Uα′ ] = 0.
Now note that the application of the unitary operators P

does not affect the commutation; it simply changes the basis
in which the qudits are expressed. Hence, we can define the
final set of unitaries to be⎛

⎝ ∏
Hq∩λ(Uα )�=∅

P†
q

⎞
⎠Uα

⎛
⎝ ∏

Hq∩λ(Uα )�=∅
Pq

⎞
⎠, (A5)

where λ(Uα ) denotes as before the support of the operator Uα .
Note that this defines a set of unitary operators over the full
lattice, such that all of the operators commute pairwise.

Note that this technique does not cover the generation of
states where d = 2. Therefore, for qubits other approaches
like the ones presented above must be employed.

APPENDIX B: CONTINUITY BOUND ON THE GAP

Here, we show that the validity of condition (12b) for
hi [Eq. (4)] at a given point H (τ, t ) (with τ the imaginary
time formerly known as β) implies the validity of the same
condition at a different point (τ ′, t ), with �τ = τ ′ − τ > 0,
with Hamiltonian terms h′

i, only with different values c′
i j and

c′
ji. Recall (12b):

∀ i �= j : 0 � hih j + h jhi + ai jh
2
i + a jih

2
j − ci jhi − c jih j .

(B1)
Let us pick a specific pair i �= j. Let

A =
∏

m∈νi\ν j

e−�τκ1,m , C =
∏

m∈ν j\νi

e−�τκ1,m ,

B =
∏

m∈νi∩ν j

e−�τκ1,m (B2)

be the part of the deformation e(�τ )K1 acting only on hi, only
h j , and both hi and h j , respectively, that is,

h′
i = ABhiAB, h′

j = BChjBC. (B3)

By construction,

α1 � A2 � 1, β1 � B2 � 1, γ 1 � C2 � 1, (B4)

where (unless we have tighter bounds)

α = e−2|νi\ν j |�τ , γ = e−2|ν j\νi|�τ , β = e−2|νi∩ν j |�τ (B5)

(in particular, α, β, γ > 0). Henceforth, for convenience of
notation we will write P := hi and Q := h j , as well as a :=
ai j , b := a ji, c := ci j , d = c ji.
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Let us now derive two inequalities. First,

β(PQ + QP) = β(P + Q)2 − βP2 − βQ2 (B6)

� (P + Q)B2(P + Q) − βP2 − βQ2 (B7)

= PB2Q + QB2P + PB2P − βP2

+ QB2Q − βQ2. (B8)

Second, using that 1 � C−2, −1 � −γC−2, −A2 � α1, and B2 � 1, we have that, for now assuming 0 � a � 1,

PB2P − β(1 − a)P2 − βcP = aPA2B2P ⊗ C−2 − aPA2B2P ⊗ C−2 + PB2P − β(1 − a)P2 − βcP (B9)

� aPA2B2P ⊗ C−2 + [(1 − aα)PB2P − γ β(1 − a)P2 − γ βcP] ⊗ C−2 (B10)

� aPA2B2P ⊗ C−2 + {
[(1 − aα) − γ β(1 − a)]︸ ︷︷ ︸

=:X

P2 − γ βcP
}⊗ C−2 (B11)

� aPA2B2P ⊗ C−2 − c′P ⊗ C−2, (B12)

where we have used that the term labeled X in (B11) is non-negative [as (1 − aα) > (1 − a) and γ β < 1] to bound XP2 � XP,
and defined

c′ := γ βc − (1 − γ β ) − a(γ β − α) for 0 � a � 1. (B13a)

The same inequality can be shown to hold in the other cases, with

c′ := γ βc − (1 − γ β ) − a(γ β − 1) for a < 0; (B13b)

c′ := γ βc − (1 − β ) − a(β − α) for a > 1, 1 − aα � 0; (B13c)

c′ := γ βc − (1 − β ) − aβ(1 − α) for 1 − aα < 0. (B13d)

The same way, we can also obtain for 0 � b � 1

QB2Q − β(1 − b)Q2 − βdQ � bA−2 ⊗ QB2C2Q − d ′A−2 ⊗ Q, (B14)

where

d ′ := αβd − (1 − αβ ) − b(αβ − γ ) (B15)

(or correspondingly, with α and γ exchanged with respect to c′, when b < 0 or b > 1). Starting from (B1), we thus obtain

0
(B1)
� β(PQ + QP + aP2 + bQ2 − cP − dQ) (B16)

(B8)
� (PB2Q + QB2P + PB2P − βP2 + QB2Q − βQ2) + β(aP2 + bQ2 − cP − dQ) (B17)

(B12,B14)
� PB2Q + QB2P + aPA2B2P ⊗ C−2bA−2 ⊗ QB2C2Q − c′P ⊗ C−2 − d ′A−2 ⊗ Q. (B18)

Conjugating both sides of the equation with ABC, we now immediately see that this is nothing but the condition (B1) for the
Hamiltonian h′

k , with ai j and a ji unaltered, and new feasible points c′
i j and c′

ji as given by Eqs. (B13) and (B15).
Importantly, in case 0 � ai j � 1 for all i, j, using (B5) this yields a feasible point with

c′
i j = e−2|ν j |�τ ci j − (1 − e−2|ν j |�τ ) − ai j (e

−2|ν j |�τ − e−2|νi\ν j |�τ ), (B19)

for all ci j in (12b), which immediately implies a continuity bound on the gap which only depends on the geometry of the model,
but not on the lattice size or the specifics of the model at hand. This can be straightforwardly adapted to the case where some ai j

are negative or above 1.
As outlined in the main text, this bound can be subsequently used, starting from β = 0, to determine a regime for which the

gap can be lower bounded by a uniform �0 > 0. Clearly, tighter bounds can be obtained by choosing more intermediate values
of β.

APPENDIX C: SYMMETRIZATION OF THE SDP FOR TRANSLATIONAL-INVARIANT SYSTEMS

Let us see that for translational-invariant systems, the SDP presented in the main text gives a bound δ which is independent
of the system size. For simplicity, we consider 1D systems and the case in which Eq. (15) holds. The most general case, as well
as the higher-dimensional case, can be generalized from this proof.

Let N denote the system size and let us consider periodic boundary conditions. Consider the SDP (12). Let us assume that we
have a feasible point for some choice of the variables (a∗

i j, c∗
i j ). Let us show that we can redefine these variables, such as we still

have a feasible point with the same value of δ, as follows:

ãi,i+1 := 1

N

∑
i

a∗
i,i+1; ãi,i−1 := 1

N

∑
i

a∗
i,i−1, (C1)
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c̃i,i+1 := 1

N

∑
i

c∗
i,i+1; c̃i,i−1 := 1

N

∑
i

c∗
i,i−1. (C2)

It is easy to see that the constraints (12b) are still satisfied. Indeed,

hihi+1 + hi+1hi + ãi,i+1h2
i + ãi+1,ih

2
i+1 − c̃1hi − c̃2hi+1

= 1

N

[
N (hihi+1 + hi+1hi ) +

(
N∑

k=1

a∗
k,k+1

)
h2

i +
(

N∑
k=1

a∗
k+1,k

)
h2

i+1 −
(

N∑
k=1

c∗
k,k+1

)
hi −

(
N∑

k=1

c∗
k+1,k

)
hi+1

]
.

Now note that, because of the translational invariance, we have that the terms hihi+1, hi+1hi, hi = hi ⊗ 1 and 1 ⊗ hi+1 are the
same for all i. Thus, we can write N (hihi+1 + hi+1hi ) = ∑N

k=1 hkhk+1 + hk+1hk , and get

hihi+1 + hi+1hi + ãi,i+1h2
i + ãi+1,ih

2
i+1 − c̃i,i+1hi − c̃i+1,ihi+1

= 1

N

N∑
k=1

⎡
⎢⎣hkhk+1 + hk+1hk + a∗

k,k+1h2
k + a∗

k+1,kh2
k+1 − c∗

k,k+1hk − c∗
k+1,khk+1︸ ︷︷ ︸

�0

⎤
⎥⎦ � 0.

For the constraints (12c) and (12d) we get

∑
j �=i

ãi j =ãi,i+1 + ãi,i−1 = 1

N

N∑
i=1

a∗
i,i+1 + 1

N

N∑
i=1

a∗
i,i−1 = 1

N

N∑
i=1

⎛
⎝a∗

i,i+1 + a∗
i,i−1︸ ︷︷ ︸

=1

⎞
⎠ = 1,

∑
j �=i

c̃i j =c̃i,i+1 + c̃i,i−1 = 1

N

N∑
i=1

c∗
i,i+1 + 1

N

N∑
i=1

c∗
i,i−1 = 1

N

N∑
i=1

⎛
⎝c∗

i,i+1 + c∗
i,i−1︸ ︷︷ ︸

=x

⎞
⎠ = x.

With the new variables ãi j, c̃i j we actually have redundant information in (12b) and it suffices to write a single condition:

hihi+1 + hi+1hi + ãi,i+1h2
i + ãi+1,ih

2
i+1 − c̃i,i+1hi − c̃i+1,ihi+1 � 0, (C3)

ãi,i+1 + ãi,i−1 = 1, (C4)

c̃i,i+1 + c̃i,i−1 = x. (C5)

It is easy to see now that adding a new particle, i.e., N → N + 1, does not change the SDP [since it will only add redundant
information to (C3)]. Thus, given that for a TI finite system our method provides a nontrivial bound for the gap, the same bound
holds for N → ∞. In this case, we recover the result of the martingale method by Ref. [18]. Note that for higher dimensions,
instead of a single condition (C3) we would have as many as different types of overlaps within the different Hamiltonian terms.

APPENDIX D: BOUND ON THE NORMS OF THE OBSERVABLES Qλ

Let us consider the operators Qλ be defined as in Eq. (21), i.e., Qλ = O†
λPOλ, with Oλ as defined in Eq. (18) and P being a

Pauli string. We consider the infinite norm ‖Qλ‖∞ and from now on we will drop the subindex for simplicity. Let us write the
following inequality for the norm of a product of operators: for A and B being invertible operators, it holds that

‖AB‖ � ‖A‖ 1

‖B−1‖ . (D1)

Equation (D1) can be proven by using the submultiplicity of the norm, namely,

‖A‖ = ‖ABB−1‖ � ‖AB‖‖B−1 ‖. (D2)

Let us first bound the norm of Oλ and (O†
λ). With this and by means of Eq. (D1), we will be able to lower bound ‖Qλ‖.

Let us take the norm of Oλ and insert its definition from Eq. (18):

‖Oλ‖ =
∥∥∥∥∥ ∏

n∈μ(λ)

e−iκ2,n
∏

m∈ν(λ)

e−βκ1,m

∥∥∥∥∥ �︸︷︷︸
Eq. (D1)

∥∥∥∥∥ ∏
n∈μ(λ)

e−iκ2,n

∥∥∥∥∥︸ ︷︷ ︸
=1

∏
m∈ν(λ)

‖eβκ1,m‖−1 =
∏

m∈ν(λ)

‖eβκ1,m‖−1

�
∏

m∈ν(λ)

e−β = e−β|ν(λ)|.
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Here we have used that [κ1,r, κ1,s] = 0, so we can just write the inverse (
∏

m∈ν(λ) e−βκ1,m )−1 = ∏
m∈ν(λ)(e

−βκ1,m )−1. We can now
use that (e−βκ1,m )−1 = eβκ1,m and that ‖eβκ1,m‖∞ � eβ . With this, it follows that

‖Oλ‖ = �(e−β|νλ|). (D3)

Let us now study(O†
λ):

‖(O†
λ

)−1‖ =
∥∥∥∥∥
( ∏

m∈ν(λ)

e−βκ1,m
∏

n∈μ(λ)

eiκ2,n

)−1∥∥∥∥∥ =
∥∥∥∥∥ ∏

n∈μ(λ)

e−iκ2,n
∏

m∈ν(λ)

eβκ1,m

∥∥∥∥∥ �︸︷︷︸
subm.

∥∥∥∥∥ ∏
n∈μ(λ)

e−iκ2,n

∥∥∥∥∥︸ ︷︷ ︸
=1

∏
m∈ν(λ)

‖eβκ1,m‖

�
∏

m∈ν(λ)

eβ = eβ|ν(λ)|.

The derivation above implies the following bound:

1

‖(O†
λ

)−1‖
� e−β|ν(λ)|. (D4)

Note that in all the bounds above it is present the cardinality
of |ν(λ)|, so let us estimate this value in terms of the size |λ|:

|ν(λ)| =
∣∣∣∣∣⋃ ν j

j∈λ

∣∣∣∣∣ �∑
j∈λ

|ν j | = O(|λ|z2r1 ), (D5)

where we have used that |ν j | = O(z2r1 ), where z is the degree
of incidence of the graph at which vertex the particles are
placed and r1 is the radius of the operators κ1.

With all the derivations above, now we can get a lower
bound on ‖Qλ‖:

‖Qλ‖ = ‖OλPO†
λ‖ �︸︷︷︸

Eq. (D1)

‖Oλ‖‖(PO†
λ)−1‖−1

= ‖Oλ‖ 1

‖(O†
λ)−1P‖ ,

where we have use that P−1 = P. Now we can use submulti-
plicity of the norm and Eq. (D4) to get

1

‖(O†
λ)−1P‖ � 1

‖(O†
λ)−1‖

1

‖P‖︸︷︷︸
=1

� e−β|ν(λ)|. (D6)

With this and Eqs. (D3) and (D5) now we get

‖Qλ‖ � e−2β|ν(λ)| = �(e−2β|λ|z2r1 ) . (D7)

This means that ‖Qλ‖ decays at most as O(e−2β|λ|z2r1 ). If we
consider now the terms such that |λ| is constant [or at most
goes as O(log N ), with N being the system size], then we get
that ‖Qλ‖ decays at most polynomially with the system size.

APPENDIX E: ANALYSIS OF THE VERIFICATION TEST

In this Appendix, we analyze the verification test for the
setup presented in Sec. IV A, that is, in which the verifier
can perform local measurements to the state that the prover
has prepared. This case is analogous to the one presented
in [28]. We modify it here by imposing further restrictions
on the prover: we assume that he can only perform Pauli

measurements, which might be more suitable for experiments
carried out with NISQ devices.

We first analyze the probability that, for a given tolerance
threshold ε, the empirical mean 〈h j〉P computed through the
measurements (where the subindex P emphasizes that the ver-
ifier measures the state that the prover has prepared) is above
such threshold, due to statistical noise produced by finite
sampling. This statistical fluctuation depends on the variance
of the distribution 〈h j〉P, which is computed by decomposing
the operators in the Pauli basis. This variance is bounded in
Appendix E 2.

1. Bounds on the fidelity and the number
of measurement rounds

Let us denote by 〈h j〉P the random variable result of esti-
mating the expectation value of h j by measuring the state in
the Pauli basis, for a number of samples Lj . We define this ran-

dom variable as 〈h j〉P = 1
L j

∑L j

k=1 h̄(k)
j , where h̄ j refers to the

random variable associated to 〈hj〉P computed with a single
round [see next section and Eq. (E10) for a formal definition
of h̄]. As before, we assume that Lj = Lj′ and that we do
not recycle samples, i.e., we always use different samples for
different local terms h j . In the same way, we denote by 〈H〉P

the estimator of the energy, which is a random variable whose
mean we denote by E[〈H〉P]. We also define FP = 1 − 〈H〉P

δ
,

with δ being the lower bound on the spectral gap computed
in Sec. III. By Eq. (26), FP is an estimator of a lower bound
on the fidelity between the prover’s state and the true ground
state. Then, we get the following result: for α ∈ (0, 1) and a
threshold parameter ε > 0, it holds that

P(FP < E[FP] − ε) � α, (E1)

as long as the number of samples Lj satisfies

Lj �
25|λ|+1

δ2ε2
ln

(
1

α1/N

)
, (E2)

where N is the number of terms in the Hamiltonian and |λ| is
its locality.

Proof. By Eq. (26) we get that

P(FP < E[FP] − ε) = P(〈H〉P > E[〈H〉P] + δε). (E3)

Recall that 〈H〉P = ∑
j〈h j〉P. We can assume that the numbers

of samples used to estimate any 〈hj〉P are large enough so
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the central limit theorem applies. Thus, we can assume that
〈h j〉P ∼ N (E[〈h j〉P], Var[〈h j〉P]) follows a Gaussian distri-
bution, which therefore implies that 〈H〉P is Gaussian itself.
Then, we can bound (E3) by

P(〈H〉P > E[〈H〉P] + δε)

� e−(δε)2/2 Var[〈H〉P] =
∏

j

e−(δε)2/2 Var[〈h j 〉P], (E4)

where the inequality follows from bounding the tails of the
Gaussian distribution and the last equality comes from the fact
that Var[〈H〉P] = ∑

j Var[〈h j〉P] since the random variables
〈h〉P are independent. Note that Var[〈hj〉P] = Var[h̄ j]/Lj . We
will see in the following section that

Var[h̄ j] � 25|λ|. (E5)

By substituting this into the previous equation and imposing
the bound (E2) on Lj we get

P(〈H〉P > E[〈H〉P] + δε) � α, (E6)

which thus proves Eq. (E1). Note that this equation is similar
to Eq. (7) and (15) in [28] and a derivation in terms of Hoeffd-
ing bounds as in this paper would also apply here, although the
difference is again that we do not measure the eigenenergies
of h directly but only the expectation values of strings of Pauli
operators.

2. Bound on the variance of 〈h〉P

Let us now study the properties of the distribution of 〈h〉P

for a fixed local term h. We first introduce some preliminary
definitions, some of which were already introduced in the
main text, that will help in the upcoming discussion:

(i) We define a set random variables α j , for j = 1, . . . , N .
Each variable α j can take the values {x, y, z} with equal prob-
ability. We denote the set of this variables by B, B = {α j}N

j=1.
Note that each element of B corresponds to the basis in which
we choose to measure each qubit independently.

(ii) We denote by J any of the subsets of indices of λ(h) =
{ j1, . . . , j|λ|}. Note that the cardinal of J goes from 0, . . . , |λ|,

where we also include the empty set for convenience. In the
same fashion, we denote by BJ the subset of random variables
α j as defined before with corresponding indices j ∈ J .

(iii) Let sJ
BJ

= s j1
α j1

. . . s j|J|
α j|J| be the random variable with

possible outputs ±1 resulting from measuring the qubits j ∈ J
in the basis α j ∈ BJ .

With these preliminaries we can now define the following
random variable h̄:

h̄ = o0 +
|λ|∑
j=1

3oj
α j

s j
α j

+
|λ|∑

j,k=1

32oj,k
α j ,αk

s j
α j

sk
αk

+ · · ·

+ 3|λ|oj1,..., j|λ|
α j1 α j2 ,...,α j|λ| s

j1
α j1

. . . s j|λ|
α j|λ| =

|λ|∑
J⊆λ(h)

3|J|oJ
BJ

sJ
BJ

. (E7)

Here the coefficients oj1... j|λ|
α j1 α j2 ...α j|λ| are those of the Pauli expan-

sion of 〈h〉:

〈h〉 =
n∑

j=1

∑
γ=x,y,z

oj
γ

〈
σ j

γ

〉+ n∑
j,k=1

∑
γ1,γ2=x,y,z

ojk
γ1γ2

〈
σ j

γ1
σ k

γ2

〉+ · · ·

+
n∑

j1,..., jk=1

∑
γ j1 ,...,γ jk =x,y,z

oj1... j|λ|
γ j1 ...γ j|λ|

〈
σ j1

γ j1
. . . σ jk

γ jk

〉
. (E8)

Note that in the definition of the variable h̄ in Eq. (E7) we
do not sum over all possible basis choices: this variable ac-
tually corresponds to the computation of 〈h〉P with a single
round, in which we only measure the state once in some basis
α = (α1, . . . , αN ). Note that this is different from Eq. (30), in
which we averaged over different rounds with the same basis
choice [one could in principle also perform an analysis with
multirounds, but then R(γ ) is itself a random variable, which
makes the analysis more cumbersome]. With this single sam-
ple, we can only give an estimator for the following marginals:

〈
σ j

α j

〉
,
〈
σ j1

α j1
σ j2

α j2

〉
, . . . ,

〈
σ j1

α j1
. . . σ

j|λ|
α j|λ|

〉
, (E9)

where α jk ∈ B. Let us now compute the expectation value of
h̄:

E[h̄] = o0 +
|λ|∑
j=1

∑
γ j=x,y,z

3P(α j = γ j )E
[
oj

α j
s j
α j

]+
|λ|∑

j,k=1

∑
γ j ,γk=x,y,z

32P(α j = γ j, αk = γk )E
[
oj

α j ,αk
s j
α j

sk
αk

]
+ · · · +

∑
γ j1 ,...,γ j|λ|

3|λ|P(α j1 = γ j1 , . . . , α j|λ| = γ j|λ| )E
[
a j1... j|λ|

α j1 α j2 ...α j|λ| s
j1
α j1

. . . s j|λ|
α j|λ|

]

=
∑

J⊆λ(h)

∑
γ1,...,γ|λ|=x,y,z

3|J|P
(
BJ = (

γ j1 , . . . , γ j|λ|
))

oJ
BJ
E
[
sJ

BJ

]
. (E10)

Since α j can take the values {x, y, z} with equal probability we have that P(α j = γ j ) = 1
3 , ∀ j,∀ γ j . Moreover, the variables α j

are independent and therefore the joint probability can be factorized:

P
(
α j1 = γ j1 , . . . , α jk = γ jk

) = P
(
α j1 = γ j1

)
. . . P

(
α jk = γ jk

) =
(

1

3

)k

,

for k = 1, . . . , |λ|. Note that Eq. (E10) leads to the same expression as Eq. (E8) and, therefore,

〈h〉 = E
[
h̄
]
. (E11)
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In statistical terms, h̄ is an unbiased estimator for 〈h〉. We can now compute the variance of the variable h̄. Now, note that sJ
BJ

and sJ ′
BJ′ are not independent since J and J ′ may have nonempty intersection. Therefore, we express the variance of h̄, defined by

the sum in Eq. (E7), in terms of the covariance of its terms:

Var
[
h̄
] =

|λ|∑
|J|,|J ′|=0

∑
J,J ′⊆λ(h)

3|J|3|J ′|aJ
BJ

aJ ′
B′

J
Cov

[
sJ

BJ
, sJ ′

BJ′

]
. (E12)

We can bound the coefficients oJ
BJ

oJ ′
B′

J
by (omax)2, where o2

max = max{(oJ
BJ

)2} and take it out of the sum for simplicity. Note that
the covariance that appears in (E12) can be bounded by

Cov
[
sJ

BJ
, sJ ′

BJ′

]
� 1. (E13)

Then,

Var
[
h̄
]
� (omax)2

|λ|∑
|J|,|J ′|=0

3|J|3|J ′| ∑
J,J ′⊆λ(h)

1 = (omax)2

( |λ|∑
|J|=1

3|J| ∑
J⊆λ(h)

1

)2

= (omax)2

( |λ|∑
|J|=1

(|λ|
|J|
)

3|J|
)2

︸ ︷︷ ︸
4|λ|

= o2
max42|λ|. (E14)

Note that o2
max depends on the particular local term that we are considering. We can get rid of this dependence by bounding it by

the following value:

o2
max � 2|λ|, (E15)

which follows from the fact that tr(h2) � 2|λ|.
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