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Abstract Semantic feature norms (e.g., STIMULUS: car
→ RESPONSE: <has four wheels>) are commonly used
in cognitive psychology to look into salient aspects of
given concepts. Semantic features are typically collected
in experimental settings and then manually annotated by
the researchers into feature types (e.g., perceptual fea-
tures, taxonomic features, etc.) by means of content anal-
yses—that is, by using taxonomies of feature types and
having independent coders perform the annotation task.
However, the ways in which such content analyses are
typically performed and reported are not consistent across
the literature. This constitutes a serious methodological
problem that might undermine the theoretical claims
based on such annotations. In this study, we first offer a
review of some of the released datasets of annotated se-
mantic feature norms and the related taxonomies used for
content analysis. We then provide theoretical and method-
ological insights in relation to the content analysis meth-
odology. Finally, we apply content analysis to a new
dataset of semantic features and show how the method
should be applied in order to deliver reliable annotations
and replicable coding schemes. We tackle the following
issues: (1) taxonomy structure, (2) the description of cat-
egories, (3) coder training, and (4) sustainability of the

coding scheme—that is, comparison of the annotations
provided by trained versus novice coders. The outcomes
of the project are threefold: We provide methodological
guidelines for semantic feature classification; we provide
a revised and adapted taxonomy that can (arguably) be
applied to both concrete and abstract concepts; and we
provide a dataset of annotated semantic feature norms.

Keywords Content analysis . Intercoder reliability . Semantic
feature norms

The reliability of data annotations is often overlooked and
is not discussed in several studies involving content anal-
yses and coding tasks (Krippendorff, 2004). This is also
the case for linguistic data, in which not all annotation
projects include formal tests of intercoder agreements
(Artstein & Poesio, 2008). We show how this phenome-
non also applies to psychological data, such as the lin-
guistic data collected within the semantic feature norms
paradigm. With this contribution we aim to provide guide-
lines to remedy this methodological gap, specifically in
relation to the annotation of semantic feature norms.

Semantic feature norms are data collected in order to
address the following question: What are concepts made
of? Among the different accounts of semantic memory
structure and processes proposed in the literature (for an
extensive review of different models of semantic memory,
see Jones et al., 2015; McRae & Jones, 2013), the featural
view is one of the most popular (see for example Murphy,
2002). A well-established paradigm since the 1970s, the
featural view was first introduced to make predictions
about semantic categorizations in time-constrained tasks
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(Smith, Shoben, & Rips, 1974). A few years later the
same paradigm was used to investigate the structure of
semantic categories and conceptual representations based
on prototype theories, as well as the notion of family
resemblance1 (see, e.g., Medin & Schaffer, 1978; Rosch
& Mervis, 1975). Modern versions of the semantic feature
paradigm use normed data—that is, aggregate data col-
lected in property generation tasks from several raters
(e.g., McRae et al., 2005; Vinson & Vigliocco, 2008) or
through online games (e.g., Recchia & Jones, 2012). In
these tasks, participants are typically instructed to imagine
a given concept and then produce properties to describe it
(for example: car → <has four wheels>; car → <is used
for transportation>). This can be achieved in think-aloud
experiments (e.g., Barsalou & Wiemer-Hastings, 2005), in
which the participants are asked to describe given stimuli,
which are then segmented and standardized by the ana-
lysts, or in more constrained settings, in which the partic-
ipants are provided prearranged blank lists to fill up with
a given number of features (e.g., McRae et al., 2005), or
are asked to complete predetermined sentence stems (e.g.,
Garrard et al., 2001). Even though semantic features can-
not be considered as exhaustive readouts of a concept’s
content, they provide valuable insights into salient aspects
of meaning (e.g., Cree & McRae, 2003; Garrard et al.,
2001; McRae et al., 2005). As a theory of meaning and
conceptual representation, the featural view has been eval-
uated against models of human similarity judgments (e.g.,
Tversky, 1977; Tversky & Gati, 1982), and in more recent
times it has been used to explain category-specific seman-
tic disorders (e.g., Caramazza & Shelton, 1998; Garrard
et al., 2001; Laiacona et al., 1993; Sartori & Lombardi,
2004). Recently, semantic features have been integrated
within classic distributional models based on text corpora
(such as LSA; Landauer & Dumais, 1997), to address the
symbol-grounding problem that characterizes the distribu-
tional models of the first generation (cf. De Vega et al.,
2008), and to enhance the symbolic representations de-
rived from word co-occurrences with grounded, sensori-
motor properties conveyed by the feature-based represen-
tations (Andrews et al., 2009; Baroni et al., 2010).

The sets of semantic features collected in property genera-
tion tasks are typically post-processed and categorized into
feature types, according to established taxonomies and related
coding schemes. For example, Garrard and colleagues
(Garrard et al., 2001) propose a four-way knowledge-based
classification of semantic features, that takes into account sen-
sory, functional, encyclopaedic and categorizing information.

Wu and Barsalou (2009) propose a more articulated
knowledge-based taxonomy (refined in subsequent phases),
which was also (marginally) applied to features produced in
response to abstract concepts (Barsalou & Wiemer-Hastings,
2005). In addition to an adapted version of Wu and Barsalou’s
taxonomy, which has also been adopted by Kremer and
Baroni (2011), Cree andMcRae (2003) propose a brain region
taxonomy, which takes into account insights from
neuroscience and neuropsychology to determine sets of
feature types that are plausibly computed in different brain
areas. Lebani and Pianta (2010a) propose an easy-to-use and
cognitively plausible classification that combines insights
from Cree and McRae (2003) and Wu and Barsalou (2009),
as well as lexical semantics (e.g., WordNet relations). This
taxonomy is applied by the authors in the STaRS.sys project,
in which semantic features are used to support speech thera-
pists in preparing materials for rehabilitation purposes (Lebani
& Pianta, 2010b). Vinson and Vigliocco (2008) proposed a
five-category taxonomy that accounts for feature types pro-
duced for nouns and verbs, referring to their sensorimotor and
functional roles. Recchia and Jones (2012) propose a 19-
category taxonomy that constitutes an adapted version of
existing coding schemes, applied extensively to semantic fea-
tures of both concrete and abstract concepts.

Such a higher-order classification of semantic features into
feature types can be used to infer differences between con-
cepts, based on the differences among the types of features
that they evoke. For example, Barsalou and Wiemer-Hastings
(2005) showed that abstract concepts evoke qualitatively dif-
ferent types of concept properties (features) than do concrete
concepts. The authors suggest that abstract concepts seem to
be grounded in situations and involve subjective experiences
and emotions (see also Vinson et al., 2014), whereas concrete
concepts evoke features that are more directly related to the
referent that they define. Moreover, abstract concepts have
more relational features than do concrete concepts, which,
by contrast, have more internal attributes. In this view, the
perception of abstract and concrete concepts differs in focus,
the former being more spread across a situation and its related
entities, the latter being directed onto the concept’s referent
(Wiemer-Hastings & Xu, 2005).

However, there seem to be different ways in which the
annotation process (i.e., how the semantic features are classi-
fied into types) is approached, conducted, and reported
throughout the literature. Therefore, because the reliability of
the annotations (measured in terms of intercoder agreements)
sometimes seems to be underestimated, under-reported, or
reported in different ways, the validity of the observations
based on such data remains questionable. A contingent prob-
lem is the fact that the proposed coding schemes suggested in
the literature are often underspecified, and therefore their ap-
plicability to new datasets is extremely challenging. In addi-
tion, some of the coding schemes outlined above were initially

1 BA family resemblance relationship consists of a set of items of the formAB,
BC, CD, DE. That is, each item has at least one, and probably several, ele-
ments in common with one or more items, but no, or few, elements are com-
mon to all items^ (Rosch & Mervis, 1975, p. 575).
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created on the basis of semantic features collected in response
to concrete concepts only, and applying the same categories to
semantic features produced for abstract concepts presents new
challenges that depend on the intrinsic peculiarities of such
concepts (i.e., the fact that they lack a concrete and easily
imaginable referent).

It is the aim of this methodological article to explain in
detail why consistent reliability checks are necessary for this
type of research, how the results of these tests can be improved
within this paradigm, and which theoretical and methodolog-
ical implications the results bring.We exemplify our claims by
means of a practical case study, in which we applied existing
coding schemes to a set of semantic features that we collected
using a property generation task in response to a sample of
concrete and abstract concepts.2 In this case study, it is our
goal to strive for optimal agreement among annotators.

Theoretical background

Various empirical studies support the claim that semantic fea-
tures provide insights into core aspects of the content of con-
cepts. Semantic feature effects reported in the literature in-
clude the following: a semantic priming effect (concepts that
share semantic features prime one another, as opposed to
concepts that do not share semantic features; Cree et al.,
1999; McRae & Boisvert, 1998), a number of features effect
(decision times and errors in lexical decision tasks are lower
for concepts with many features; Pexman et al., 2002; Pexman
et al., 2003), and a distinctive features effect (pairs of concepts
sharing distinctive features are judged to be more similar than
concepts sharing an equal number of relatively frequent fea-
tures (Mirman & Magnuson, 2009). Because of their ac-
knowledged importance in cognitive processing, semantic
feature norms have been collected throughout the years for
different languages (see, e.g., Kremer & Baroni, 2011, for
Italian and German; Montefinese et al., 2013, for Italian) and
different varieties of language (see, e.g., BLIND, a corpus of
semantic features norms produced by congenitally blind par-
ticipants: Lenci et al., 2013).

As we anticipated in the introduction, different taxonomies
have been proposed in the literature to classify semantic fea-
tures into types. Such coding schemes have then been adapted
in other studies to accommodate the annotation of features
produced in other languages, as well as features produced
for different types of concepts (typically concrete and abstract
ones). In Table 1, we report (a selection of) well-known tax-
onomies and relative adaptations, retrieved from published

studies in which the authors reported the results of the anno-
tation process and the relative reliability tests (if applied).

As can be observed in Table 1, the ways in which the
annotation processes and reliability tests have been conducted
and reported have been quite variable. Moreover, even when
the intercoder agreement is checked and then reported in the
study, some questions remain open.

Wu and Barsalou (2009), in particular, reported the agree-
ment in percentages (see Table 1). However, agreement per-
centages have been widely criticized due to their inability to
account for agreement by chance (e.g., Cohen, 1960). In this
light, Spooren and Degand (2010) stated that in cases in which
the interpretation (as opposed to formal characteristics) of the
phenomenon under scrutiny is central, low agreement scores
are sometimes inevitable. This is often the case when using
content analysis to look at linguistic data. Because interpreta-
tion is arguably more likely to vary across coders, as opposed
to formal characteristics of the data, and because such inter-
pretations are likely to involve a degree of random guessing,
we argue that interrater agreement is to be preferred over per-
centages, because it takes into account and balances agree-
ment by chance. However, in tasks in which the coding
scheme is very simple and the decision is therefore limited
to a few possible categories (e.g., a team of doctors who have
to decide between a limited set of options for a patient’s treat-
ment) that are very familiar to the annotator, agreement per-
centages might still be valuable. In these cases the coders (i.e.,
the doctors) are (hopefully) very well trained and experienced,
so that less random guessing is likely to occur, whereas it is
more likely that the annotations are based on guessing when
the coding scheme includes many categories. In the latter case,
a measure of agreement that balances agreement by chance
should be preferred to raw percentages (for a discussion, see
McHugh, 2012).

Recchia and Jones (2012) reported that after multiple
rounds of classification of a subset of properties by two
coders, reliable annotations were eventually achieved (see
Table 1). However, the two coders arguably developed more
similar ways of thinking round after round and gave similar
annotations that would not necessarily have been reproduced
by novice coders. Therefore, a coding scheme cannot be con-
sidered reliably replicable unless the annotations provided by
trained coders who worked together are compared to the an-
notations given by novice coders.

In Montefinese et al. (2013), the disagreement between the
first two coders (which was not quantified) was first mediated
in a discussion with a third coder, after which the annotations
achieved through discussion among three coders were com-
pared to those of a (fourth) Bsecondary^ coder, generating an
extremely high kappa coefficient (see Table 1). However, the
authors do not specify whether the secondary coder was a
novice, or whether she had been trained, because she had
participated in the previous tasks. Moreover, it is not quite

2 The dataset of annotated semantic features has been released on GitHub at
the following URL: https://github.com/mariannabolognesi/Semantic-Feature-
Norms.
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clear how the third annotator mediated the codings of the first
two coders (reliability ratings are not reported for these stages
of the annotation process).

Finally, in Kremer and Baroni (2011) the reliability of the
annotations into feature types (in relation to the semantic fea-
ture norms released by the authors) was calculated on a sample
of 100 concept–feature pairs, which covers around 1% of the
total dataset in each language (see Table 1). This may be

sufficient for the specific dataset analyzed by Kremer and
Baroni, but raises the general issue of sample representative-
ness: to determine the reliability of a coding scheme and its
reliable application (by trained and novice coders), the sample
of data on which the annotations are performed should be a
fair subset of the whole dataset. In this way, if the intercoder
reliability is sufficiently high, the remaining annotations per-
formed by a single coder can be assumed to be replicable. In

Table 1 Selection of the various taxonomies used to classify semantic features and relative reliability tests, in chronological order

Taxonomy Description Applied to Sample Size (N) Annotation Procedure Intercoder
Agreementa

(Coefficient
and Score)

Garrard et al.
(2001)

Four categories (sensory,
functional,
encyclopaedic and
categorizing roles)

Concrete nouns Not reported Not reported Not reported

Cree and McRae
2003

Brain region based
(9–10 categories)

Concrete nouns Not reported Not reported Not reported

Wu, Barsalou
2004 (2009)

Knowledge based, four
macrocategories, 27
nested categories

Then revised and
published in 2009,
five macrocategories,
37 nested categories

Concrete nouns ~1,920
concept–-
feature pairsb

Exp 1: 2 annotators, 91% agreement, then
discussion to resolve disagreements

Exp 2, 3: two coders on a sample of data
(percentage of agreement not reported),
then one coder finalizes the task.

Only
percent-
ages

Barsalou and
Wiemer-Hasti-
ngs 2005

Based on WB 2004;
knowledge based,
five macrocategories,
12 nested categories

Concrete and abstract
nouns (and their
derived adjectives,
verbs, adverbs)

189 protocols Only reliability on macrocategories is
reported. Two annotators code 4.2% of the
data (1 out of 24 participants), then one
annotator finalizes the task.

Only
percent-
ages

Vinson and
Vigliocco 2008

Sensorimotor and
functional roles (five
categories)

Concrete (object)
nouns, nouns
referring to events,
verbs referring to
events

Not reported Two coders annotated all the data and
discussed disagreements.

Not reported

Kremer and
Baroni 2011

Extension of WB (as
suggested by Cree &
McRae (2003)

Concrete nouns (in
Italian and German)

100
concept–-
feature pairs

For each language, two coders annotated
around 1% of the dataset, then one coder
finalized the task.

Cohen’s k =
.84 for
German
data .68 for
Italian

Recchia and
Jones 2012

19 categories, adapted
from WB, simplified

Concrete and abstract
nouns

500 Two coders annotated around 8% of the
dataset, then one coder finalized the task.

Cohen’s k =
.78

Montefinese et al.
2013

(Exp. 3b)

Cree & McRae (2003)
applied to IT norms

Concrete nouns 730 In Experiment 3b, two coders annotated all
the features. Disagreements were mediated
by a third colleague in a discussion.
Reliability was then calculated between
the annotations achieved by the first three
annotators and those provided by a fourth
novice coder.

Cohen’s k =
.94

Lenci et al.
(2013)

19 categories, inspired
by WB (2009) and
(Lebani and Pianta
2010a)

Concrete nouns 100 Two independent coders annotated the
sample of concept–feature pairs

Cohen’s k =
.73

aKappa scores differ from percentages in that they range from 0 to 1. A score of 0 means that the obtained agreement is equal to chance agreement; a
positive value means that the obtained agreement is higher than chance agreement. Although there is no consensus on how to interpret kappa values,
scores above .80 are acknowledged to ensure an annotation of reasonable quality. However, scores above or equal .67 are also acceptable sometimes,
provided that significance is reached (Artstein & Poesio, 2008; Poesio, 2004). b The authors report that each of the 24 participants produced on average
8.56 features for each of the ten concepts. c Authors were contacted to explain the exact way in which reliability was calculated. dAuthors were contacted
to explain the exact way in which reliability was calculated.
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general, we would assume that the bigger the sample size of
the subset used for intercoder reliability checks, the more like-
ly it is to be representative for the whole dataset and other data
that it can be applied to.

Methodological guidelines about reliability
in content analysis

In recent times, scientific journals ranging from communica-
tion to medical science have typically required their contribu-
tors to report intercoder reliability scores (Feng, 2015, p. 13;
Hayes & Krippendorff, 2007, p. 78). The idea behind this
requirement is that research can only be published if there is
sufficient agreement between independent observers about the
units of analysis studied; if no such agreement existed, the
research would normally be thought of as insufficiently repro-
ducible, and might even be unreliable.

Reliability grounds the confidence of a given set of anno-
tated data by providing acceptable scores in terms of stability
(the same annotations do not change over time if re-applied by
the same analysts to the same data), replicability (annotations
remain the same when different analysts annotate the same
data), and of course accuracy (the extent to which the anno-
tation process conforms to its specifications and yields what it
is designed to yield). In other words, Bthe importance of reli-
ability rests on the assurance it provides that data are obtained
independent of the measuring event, instrument or person.
Reliable data, by definition, are data that remain constant
throughout variations in the measuring process^ (Kaplan &
Goldsen, 1965, pp. 83–84).3

Finally, a commonly acknowledged drawback of pursuing
high reliability is that of giving up interesting but
nonreplicable interpretations to provide, instead, highly reli-
able (i.e., replicable) but oversimplified coding schemes. The
analysts should, therefore, find a compromise between highly
replicable and highly accurate coding schemes (Krippendorff,
2013).

In computational linguistics, it has been argued that alpha-
like coefficients, although traditionally used less than kappa-
like measures, may be more appropriate for corpus-based an-
notation tasks (Artstein & Poesio, 2008). This could also be
the case for semantic feature norms classification into feature
types.

A number of reliability measurements have been proposed
in the literature to determine intercoder reliability. The sim-
plest of these is determining the percentage of agreement be-
tween independent observers. This measurement, however,
does not take into account that the chance that agreement is
reached decreases when the number of categories increases
(Hayes & Krippendorff, 2007:80), nor that the chance that
agreement is reached is affected by overrepresentation of cat-
egories (Artstein & Poesio, 2008; Gwet, 2015). Reliability
indexes such as Scott’s (1955) π, Cohen’s (1960) κ, Fleiss’s
(1971) κ, and Krippendorff’s (1970, 2004) α have been pro-
posed to remedy this problem. In essence, each of these reli-
ability indexes corrects the percentage of agreement by the
probability of chance agreement.

Like Fleiss’s κ, Krippendorff’s α has the advantage that it
allows checking for reliability between more than two coders
(which Scott’s π and Cohen’s κ do not) and it allows checking
for reliability between these multiple coders without them
having to rate exactly the same number of items.

Yet, unlike Fleiss’s κ, Krippendorff’s α takes into account
disagreement magnitude as well as potential missing values
(Artstein & Poesio, 2008). For these reasons, we prefer using
Krippendorff’s α as a measure to evaluate agreement, even
though we can just as well report Fleiss’s κ in our present
study, since disagreements between coders in this study do
not differ in magnitude, and there are no missing data. In fact,
we will also report Fleiss’s κ for direct comparison with the
reliability tests reported in related studies (see Table 1).

Another important methodological issue that needs to be
addressed when referring to content analysis and reliability
tests is that of the quality of the analysts who perform the
annotation and the training they receive. The analysts who
develop the taxonomy that is then used to code the data need
to be experts in the field, but at the same time they need to
undergo a training session, during which the coding scheme is
discussed, modified, and refined, in accordance with what the
data reveal (e.g., Krippendorff, 2013, pp. 128–132). During
the training, it is important to detail the descriptions of each
category, providing examples and counterexamples, so that
the categories are mutually exclusive. This can be a very ar-
duous task, especially when dealing with real-world commu-
nications, such as speaker-generated semantic features and
their relation to the concepts used as stimuli. As a matter of
fact, as described below, the semantic relation between a fea-
ture and a concept is not always straightforward, and can be
coded in different ways, especially when the concept is ab-
stract. It is therefore very difficult to render the categories
mutually exclusive when the data to which they need to be
applied is inherently ambiguous and allows for different inter-
pretations. We hereby suggest, as was pointed out in supple-
mentary materials provided by Barsalou (1992), to try to infer
what the informant meant when he/she produced a specific
feature, although of course the coder cannot know for sure

3 A crucial aspect needs to be underlined here: Reliability, in contrast to
validity, does not concern truth per se. As was pointed out by Kaplan and
Goldsten (1965), reliability relates to the measuring process, not to the quality
of the taxonomy or the data to which it is applied. It is not correct to ascertain
validity of the taxonomy (or the data collected) only by reporting high degree
of intercoder agreement during the annotation process. In content analysis, the
two variables (reliability and validity) are often related in the following way:
Unreliability (disagreements among observers or annotators) limits the chance
of validity, but, at the same time, reliability does not guarantee validity (ob-
servers might be influenced by the same subjective biases).
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what the informants were thinking during the coding task.
This can be done by taking a probabilistic approach (based
on knowledge of the world, language use, context, etc.) and
coding the semantic relation that is perceived as more salient
for a given concept–feature pair.

As was pointed out in the manual for content analysis writ-
ten by Krippendorff (2013, p. 131), the analysts who code the
data should ideally not be the same people who constructed
(or adapted) the taxonomy. This distinction is necessary be-
cause two (or more) researchers who worked together to de-
velop a coding scheme and engaged in discussions that led to
mutual clarifications and agreements on the same perspectives
will often generate a higher score in intercoder agreement tests
than a fresh set of coders. For this reason, once the taxonomy
is developed and refined through the training process that the
expert analysts undergo, the data should be annotated (again)
by novice coders, who should be able to rely solely on the
taxonomy, its descriptions and the examples provided.
Reliability should then be checked among the annotations
provided by the novice coders. In this way, the annotation
process can be considered replicable.

Project outline

In this project, we apply the general methodological guide-
lines provided in relation to content analyses—surveyed in the
previous section—to the annotation processes aimed at clas-
sifying semantic features into feature types. In this process, we
develop and provide specific guidelines for annotators, appli-
cable to the semantic feature norm paradigm, who need to
apply coding schemes to datasets of semantic features.

The study that we report here tackles the following meth-
odological issues in semantic feature classification:

1. the structure (hierarchical or horizontal) of the taxonomy
and related coding scheme, and the overall number of
categories;

2. the degree of in-depth description of the categories, as
well as the availability of examples and counterexamples
provided with the supplementary materials;

3. the role of coders training;
4. the evaluation of the developed materials by means of

comparison between the annotations provided by trained
versus novice coders.

We exemplify these issues by reporting the coding process
aimed at annotating a dataset of semantic features produced in
a property generation task, in relation to concrete as well as
abstract concepts. The project was divided into four phases,
which are verbally outlined and summarized in Fig. 1. A de-
tailed description of each phase is reported in the Method
section. Each phase targeted one of the four methodological

issues described above. Specifically, in Phase 1 we underwent
an exploratory analysis, in which we surveyed existing coding
schemes, selected a relevant one (previously applied to se-
mantic features produced for both concrete and abstract con-
cepts), applied it to a set of data, and calculated intercoder
agreement scores. In Phase 2, as is illustrated in Fig. 1, we
discussed the results of the coding task and the intercoder
reliability scores that we obtained. We identified the problems
with the first annotation task and planned how to remedy them
(mainly the necessity to use a coding scheme with fewer cat-
egories to facilitate the annotators, and the option of having a
hierarchically structured coding scheme). In Phase 3, we
underwent intensive training sessions to develop detailed ma-
terials that would address the issues identified in the previous
phase and that would need to be tested in Phase 4 (and used in
future replication studies). In Phase 4, as is summarized in
Fig. 1, we evaluated the newly developed coding scheme by
means of annotation tasks performed by three trained coders
and by three novice coders. Finally, we performed formal
reliability tests among all six annotators, as well as between
the trained versus the novice coders.

Method

The materials on which the annotation tasks reported here were
performedwere a set of semantic features produced byAmerican
English native speakers in response to a sample of 185 concrete
and abstract concepts. These concepts appear to be one of the two
metaphor terms in a sample of A-is-B metaphors that were ran-
domly selected from the Metaphor Corpus of linguistic meta-
phors and the VisMet corpus of visual metaphors (for further
details, see Bolognesi, 2016). Some of the stimuli included in
this dataset were also included in established datasets of semantic
features (41 items also appear in McRae et al., 2005, and 46
items also appear in Recchia & Jones, 2012). On these shared
items, a correlation study was performed to check how the col-
lected data related to the two established datasets of semantic
features. The Pearson’s coefficients were, respectively, r = .94
(in relation to McRae et al.’s, 2005, dataset) and r = .96 (in
relation to Recchia & Jones’s, 2012, dataset). The semantic fea-
tures were formulated as one word or as compounds (typically
adjective–noun), and therefore required minimal intervention for
their standardization.

Phase 1

In the first exploratory phase, three independent annotators
applied an existing taxonomy, previously used for the annota-
tion of semantic features, to concrete and abstract concepts.
Reliability tests were performed on the annotations provided
by the three independent coders.

Behav Res (2017) 49:1984–2001 1989



The problems encountered during the task were discussed,
and turned into variables that were addressed in Phases 2 and 3.

We opted for the Recchia and Jones’s (2012) taxonomy,
that was derived from existing coding schemes previously
applied to the annotation of concrete concepts, and was
adapted by the authors for the purpose of accommodating

the annotation of semantic features for both concrete and ab-
stract concepts crowdsourced through online gaming. The
taxonomy consists of 19 categories, and therefore 19 different
coding labels that can be attributed to a concept–feature pair
(e.g., BCommunication^:magazine→ <gossip>; BMaterials^:
hell → <brimstone>). Categories are presented on the same

Fig. 1 Visualization of the project organization
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level and enhanced with a short description of the category,
one example featuring a concrete concept and one example
featuring an abstract concept. With these materials, three in-
dependent annotators with different academic backgrounds
(linguistics, argumentation, and journalism) at a postgraduate
level performed the annotation task and joined as co-authors
of this article. We annotated roughly 30% of our database (a
batch of 50 concepts, amounting to 608 features) independent-
ly and without any previous training, using only the informa-
tion provided by the taxonomy and its related coding scheme.

Phase 2

In this phase, we first discussed the problems encountered in
the previous annotation task and turned the problems into
variables, so as to test them in the following tasks. Since the
main problem encountered appeared to be the high number of
categories that are not hierarchically structured encompassed
by the Recchia and Jones’s (2012) taxonomy, we opted for the
Wu and Barsalou (2009) knowledge-based taxonomy in the
next annotation task, which is structured into four
macrocategories and 27 nested categories.4 More specifically,
the four macrocategories that constitute the core of this taxon-
omy refer to properties of the entity (or concept), properties of
the situation in which the entity typically occurs, introspec-
tions (such as emotions and cognitive operations), and taxo-
nomic features that identify relations, such as synonymy and
hyperonymy. Each macrocategory is then divided into nested
categories that define specific types of properties.

The inner hierarchical structure of this taxonomy allows
one to assess the semantics of a concept–feature pair in two
steps (with a macrocategory and then with a nested category),
which allows for a double reliability check at each of the two
levels. In this phase, we applied the Wu and Barsalou (2009)
taxonomy at the macro level (four categories) to a new batch
of 25 randomly selected concept–feature pairs (265 features,
around 13% of the whole dataset).

Reliability tests were performed on the new annotations
provided by the three independent coders.

Phase 3

In this phase, we took five training sessions, which were
scheduled on a weekly basis and had an average duration of

2.5 h. Together we applied and discussed the nested categories
described in the Wu and Barsalou (2009) taxonomy. During
the training session and discussions, we revised some of the
nested categories to accommodate the annotation of features
related to abstract concepts. We added examples/
counterexamples to exemplify the taxonomy (Appendix 1),
and developed a decisional flowchart (Appendix 2)5 to facil-
itate the application of the coding scheme in future tasks per-
formed by untrained (novice) coders.

Phase 4

In this phase, the revised and adapted coding scheme was
evaluated in an annotation task performed by three trained
coders and three novice coders. Because the annotation task
was performed by two different types of coders (trained vs.
novice), some qualitative observations could be made about
the importance of the training session.

The adapted taxonomy, enriched with the developed mate-
rials, was applied to a new batch of 259 randomly selected con-
cept–feature pairs (~13% of the whole database). In this study,
six coders annotated the batch: three trained coders (who devel-
oped the materials for the adapted taxonomy and performed the
previous annotation tasks) and three novice coders, whowere not
familiar with the task nor the aim of the study, and had never
performed a task like this before. The three novice coders had a
postgraduate educational background in different disciplines:
philosophy, linguistics, and literature.

Analysis

Phase 1

The application of the Recchia and Jones’s (2012) coding
scheme to our data resulted in very low agreement among
the annotators (Krippendorff’s α = .36; Fleiss’s κ = .36).
The difficulties encountered by the three annotators were then
discussed. The following problems emerged:

First, the number of categories (19) was too high, and there-
fore it was difficult for the annotators to familiarize them-
selves with the taxonomy and keep in mind all the coding
options when coding a concept–feature pair. As a conse-
quence, we observed that coders tended to stick with some
Bpreferred^ categories, which they perceived as more familiar.
Figure 2, for example, shows the different distributions of the
annotations provided by Coders 1 and 2 over the 19 catego-
ries. As Fig. 2 shows, Category 19 (Bsuper/subordinates^) was
frequently used by both coders, but it was the most frequent
category only in the annotations of Coder 1. The most

4 The taxonomy is theoretically motivated by a number of factors, which are
also summarized in Cree and McRae (2003). In general, the four
macrocategories do not simply emerge from the collected data, but take into
account how the information is conveyed by sensory channels and how it
reflects aspects of introspective experiences, and they meet the variation of
information found in ontologies (Keil, 1979) as well as event frames and verb
arguments (Barsalou, 1992; Fillmore, 1968; Schank & Abelson, 1977).
Moreover, this taxonomy is described in quite some detail by the authors,
who revised their own taxonomy over the years, also releasing additional
materials to facilitate the annotation process.

5 Both, the taxonomy and the flowchart have also been released online, on the
COGVIM website: https://cogvim.org/materials/.
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frequent category used by Coder 2, on the other hand, was
Category 9 (Bcontingency^).

Number of categories: The value should be limited, so
that all the categories can be available in the mind of the
coder during the task.

Next, some categories seemed to be missing. Annotators
had to add some concept–feature combinations to other cate-
gories because they did not find a category that exactly suited
their interpretation. This was the case, for example, for anto-
nyms that emerged in our dataset, such as hardness → <soft-
ness>, for which there was no dedicated category. However,
this category has a major cognitive value, as is described for
example in Cann et al. (2011), in which the authors reported
that antonyms hold a special status in word association tasks,
especially in relation to adjectives and verbs, and plausibly for
their nominalizations as well.

Category exhaustiveness: The categories should cover
all the domains to which they refer.

Third, the categories descriptions were too generic, and there
was an overlap (they were not mutually exclusive). This was
reflected in the overall poor agreement among annotators, as well
as in some notes that the annotators reported on the annotation
form, suggesting alternative coding options for the same con-
cept–feature pair. For example, factory→ <efficient> could be
annotated as an evaluation, a manner or a nonvisual perceptual

property; similarly, cookie→ <chocolate chips> could be
interpreted as amaterial or a component, and ice cream→<treat>
could be seen as either an evaluation or a superordinate.

Category description: This needs to be as precise as
possible, so as to render the categories conceptually
mutually exclusive.

Finally, as was already observed in Recchia and Jones’s
(2012) article, the relation between features and abstract con-
cepts was more difficult to determine than the relation be-
tween features and concrete concepts. The materials might
not include enough examples and counterexamples, which
would help the annotators understand when a category applies
to the data and when it does not.

Category exemplification: Categories should be exem-
plified through several examples that cover different
cases (e.g., abstract and concrete features, applied to
abstract and concrete concepts) and counterexamples.

In general, the major problem with this taxonomy seemed
to be the large number of categories the coders needed to
browse over to annotate each concept–feature pair, and the
lack of structure among the categories. To resolve these issues,
we decided to adopt another taxonomy (Wu & Barsalou,
2009), which was originally derived from the observation of
features produced for concrete concepts.

Phase 2

Crucially, reliability tests showed that (given the much smaller
number of possible codings, as compared to the previous task)
the agreement among annotators had improved (Fleiss κ =
.76, Krippendorff α = .76).

Still, the agreement was not perfect (i.e., it was not above
.80), and a closer look at the differences between annotations
revealed that the disagreements primarily occurred related to
the annotation of features referring to abstract concepts, as
already pointed out in the annotation process reported in
Recchia and Jones (2012). More specifically, a qualitative
analysis of the disagreements showed that the disagreements
mainly concerned the choice between the category of
BIntrospection^ and the category of BSituation^ properties.
For example, given the concept provider, features such as
<need> or <safety> were coded as BIntrospection^ or as
BSituation^ by different annotators. Similarly, given the con-
cept purpose, the feature <motivation> was coded as
BIntrospection^ or as BSituation^ by different coders. This
phenomenon was observed only qualitatively, but it suggests
that BIntrospection^ and BSituation^ properties could, in prin-
ciple, explain the same concept–feature relations, and there-
fore might be perceived to be more similar to one another.
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Fig. 2 Distributions of the codes for the 19 categories, provided by Coder
1 and by Coder 2 in the annotation task in Phase 1. The rectangles in Coder
1’s and Coder 2’s annotations highlight Coder 2’s preference for Category
9 (Bcontingency^), which is not shared by Coder 1
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This qualitative observation of problematic annotations led us
to discuss the disagreements and seek to resolve the underly-
ing problem. This was the goal of Phase 3 (training) and Phase
4 (Final annotations and training evaluation).

Phase 3

During the training sessions in which the coding scheme was
discussed, the annotators agreed that some of the nested cate-
gories were not perceived as mutually exclusive. These nested
categories were therefore merged into a single one. For exam-
ple, the differences between <External component> and
<Internal component> were not clear when coding features
of abstract concepts (e.g., army→ <soldier>) nor when coding
features of concrete ones (clock→ <hands>, barcode→
<numbers>). Similarly, the difference between BMaterials^
and BInternal components^ or BExternal components^ was
not always clear (coffee→ <beans>, air→ <oxygen>). For this
reason, these three categories were merged into a single one,
which included components, materials, and substances. In
other cases, categories were dropped because they appeared
to be included in other categories. For instance, BIndividuals^
was dropped because the annotators perceived this category to
be included in BSubordinates^ and therefore opted for a better
description of the latter category, which included features de-
scribing categories placed one or more levels below the target
concept in a taxonomy (e.g., body organ→ <lungs>, tablet→
<Ipad>, gorilla→ <King Kong>).

Finally, the descriptions of the nested categories were re-
fined and, where possible, suggestions were given as to what
types of predication would trigger such a category (e.g., Bit
causes X,^ and what would be the opposite category.

The final revised taxonomy (and related coding scheme)
included four macrocategories and 20 nested categories
(Appendix 1). To aid the coding process, we also constructed
a flowchart that could be used during the annotation process
(Appendix 2). In this flowchart, the categories from the re-
vised taxonomy are ordered on the basis of (a) hierarchy (the
annotator would encounter the macrocategories before the
subcategories) and (b) frequency of occurrence of the macro
and nested categories based on the annotations that were ob-
tained in Phase 2 (themore frequent the category occurred, the
earlier the annotator would encounter that category in the
flowchart). Additionally, the (c) resemblance between differ-
ent categories was pointed out in the flowchart to diminish the
chance that coders would accidentally select a category that is
similar to the one they would like to use, but not entirely the
same (for example, in case of coding a property as a synonym,
the question whether it is not a contingency appears in the
flowchart). This flowchart was used in Phase 4. together
with the table that explains the revised taxonomy
(Appendix 1).

Phase 4

The three trained coders applied, independently, the revised tax-
onomy to a new set of data (259 concept–feature pairs, ~13% of
the whole dataset). The intercoder agreement was calculated at
both the macro level, on the basis of four categories (Fleiss κ =
.88, Krippendorff α = .88), and the nested category level, on the
basis of 20 categories (Fleiss κ = .84, Krippendorff α = .84).

Moreover, three novice coders applied, independently, the
revised taxonomy to the same set of data used by the three trained
coders. These coders were instructed to apply the revised taxon-
omy and to use both of the provided tools: the table and the
flowchart. Then the intercoder agreement was calculated among
the three novice coders on both the macro level (Fleiss κ = .84,
Krippendorff α = .84) and the nested category level (Fleiss κ =
.81, Krippendorff α = .81).

The overall reliability of the annotations provided by the six
coders (three trained and three novices) was finally calculated,
resulting in Fleiss κ = .83, Krippendorff α = .83. Table 2 shows
the reliability values calculated between pairs of coders as well.
Cohen’s kappa coefficients between coder pairs are reported.

The differences among the annotations of the trained and
the novice coders (reported in Table 2) were observed on a
qualitative basis and statistically evaluated (see Table 3). It
emerged that the novice coders were less consistent in anno-
tating taxonomic features at the nested category level, which
they tended to code as either BSubordinates^ or BSynonyms^
(e.g., place→ <home>). This tendency was not observed
among the trained coders. On the other hand, the novice
coders confirmed and extended the lack of agreement in
distinguishing consistently between BSituations^ and
BIntrospections,^ which had already been observed in the pre-
vious task with the three main coders before their training
session. In particular, the disagreements emerged when coding
concept–feature pairs that were coded either as BS-obj^ (i.e.,
objects that appear together with the concept in a given situa-
tion) or as BI-cont^ (features expressing contingencies and
other cognitive operations that could be signaled by links such
as Brequires,^ Bprovides,^ Bis correlated with,^ and so on).
This was observed in pairs including concrete concepts, such
as plant→ <water>, and in pairs including abstract concepts,
such as sight→ <light>.

To compare the interrater agreements achieved by the
trained and the novice coders, we applied the linearization
method (Gwet 2015), implemented to address the problem
of testing the difference between two sets of agreement coef-
ficients for statistical significance.6 The linearization method
is similar to the classical t test for means, and in our case it
allowed to compare the reliability coefficients obtained within

6 Kilem Gwet, who developed the linearization method, collaborated with us
and applied the method to our dataset. We are extremely grateful to him for his
availability and willingness to collaborate with us.
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pairs of trained coders to the reliability coefficients obtained
with pairs of novice coders. Table 3 summarizes the results of
the application of the linearization method, where the term
StdErr (d) represents the standard error of the differences of
participant-level linear elements defined in the linearization
method. As can be observed from the table, the t statistics in
both cases were always below 1.96, which indicated that the
difference between the two groups (trained vs. novice coders)
was not statistically significant. The test delivers similar re-
sults for Fleiss and Krippendorff coefficients, which does not
come as a surprise, because no ratings are missing from our
dataset. Moreover, the test shows that the difference between
groups of coders is not statistically significant at both, the
macro level and the nested category level.

Discussion and conclusions

This contribution argues in favor of performing reliability tests
in content analyses, specifically in the case of semantic fea-
tures annotation. In this respect, we first reviewed how (and if)
reliability tests were performed and reported in contributions
that address the topic of semantic feature categorization. We

then explained the possible methodological drawbacks that
derive from the lack (or partial application) of reliability
checks, and finally we reported a four-phase project, in which
we performed several annotation tasks with the intention of
improving our annotations by manipulating different parame-
ters. The results of the four-phase project reported in the
Analysis section allowed us to develop a set of methodologi-
cal guidelines for scholars who need to perform annotation
tasks on datasets of semantic feature norms. Our guidelines
relate to the following points: (1) choosing (and possibly
adapting) a coding scheme that suits the data; (2) choosing
the types of coders (for example trained vs. novice); (3) choos-
ing the data sample on which the annotation task will be per-
formed; and (4) choosing the measure to weigh the reliability
of the annotations.

The first methodological contribution of this study relates
to the general question of which taxonomy (and related coding
scheme) should be chosen to annotate a given dataset of se-
mantic features into feature types. The literature reviewed in
the Theoretical Background section shows that several coding
schemes have been suggested throughout the years and also
that it is a frequent practice to perform revisions and adapta-
tions of existing coding schemes, in order to render the

Table 2 Reliability
measurements between each pair
of coders, based on a sample of
259 semantic features, two
variables (macro and nested
category), and 1,036 decisions in
total

Coder 1 T Coder 2 T Coder 3 T Coder 4 N Coder 5 N Coder 6 N

Var 1:

macro level

(4 cat)

Coder 1 T –

Coder 2 T .887 –

Coder 3 T .873 .867 –

Coder 4 N .883 .825 .868 –

Coder 5 N .791 .758 .802 .775 –

Coder 6 N .844 .807 .834 .845 .886 –

Var 2:

nested level

(20 cat)

Coder 1 T –

Coder 2 T .883 –

Coder 3 T .816 .816 –

Coder 4 N .871 .816 .799 –

Coder 5 N .782 .744 .732 .758 –

Coder 6 N .820 .774 .740 .816 .866 –

The trained coders are marked with a T, and the novice coders are marked with an N.

Table 3 Summary of the linearization method analysis, aimed at comparing the agreement coefficients between the two groups of coders (trained and
novice)

Fleiss Krippendorff

Macro-level categories:

Trained: .877917 Novice: .834953 StdErr (d): 0.024232 Trained: .878074 Novice: .835166 StdErr (d): 0.024232

T = 1.773044 < 1.96 T = 1.773044 < 1.96

Nested-level categories:

Trained: .839693 Novice: .812888 StdErr (d): 0.023351 Trained: .8399 Novice: .813128 StdErr (d): 0.023351

T = 1.14797 < 1.96 T = 1.14797 < 1.96
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taxonomy suitable for a given dataset (see, e.g., Barsalou &
Wiemer-Hastings, 2005; Recchia & Jones, 2012). We argue
that this practice is legitimate if it preserves a cognitively valid
and psychologically motivated coding scheme. In phase three
of our study, for example, we merged nested categories that
belong to the same macrocategory under one label (internal
and external components of an entity, within the
encompassing label ‘Components’). This allowed us to pre-
serve the cognitive validity of the coding scheme, and achieve
higher reliability in the annotation task, by simply producing a
less refined distinction between nested categories. In line with
this guideline, we acknowledge the fact that in content analy-
sis, the analysts are faced with the dilemma of achieving high
reliability scores by sacrificing refined distinctions. This is a
trade-off that the analysts need to discuss in relation to their
primary goals. In addition to this, we argue and show that a
hierarchically structured taxonomy is easier to apply and
therefore should be preferred to a horizontal taxonomy with
several categories presented on the same level of specificity.
Moreover, we argue in favor of the development of detailed
materials to support the coders in the annotation tasks. The
more the coding scheme is described in detail, with examples
and counterexamples, the easier it is for the annotators to
understand the distinctions among categories, and apply the
coding scheme correctly.

With regard to coder training, the question arises to what
extent training is necessary and desirable. On the one hand,
coders need to have a clear idea about what to code, so training
is both necessary and desirable. On the other hand, training
might diminish the value of high agreement between coders; if
they are trained in the same way, it is likely that they code in
the same way, and therefore agreement might not be an indi-
cation of an appropriate coding scheme, but rather of a suc-
cessful training.

On the basis of the present research, we believe that the
danger of coder training should not be overestimated. In phase
four of the present research, we contrasted codings by trained
and novice annotators by means of the linearization method
(Gwet, 2015). This showed no significant difference between
trained and novice coders; both on the macro level and at the
nested category level, the trained and novice annotators code
the data in similar ways. Since training can enhance under-
standing of the coding scheme and provide annotators with a
more concrete idea of the kind of data that belongs to each
coding category, we are of the opinion that training could be
helpful when dealing with a complex taxonomy or complex
data. Coder training could, moreover, aid in fine-tuning the
coding scheme. As was demonstrated in Phases 1–3 of the
present research, training can point toward difficulties in the
researched taxonomy and may, for example, also help to iden-
tify (counter)examples of the different coding categories.

Another issue relates to the sample size of the dataset to be
coded by multiple coders. A typical experimental setup is that

multiple coders do not code the entire dataset, but just a subset
of it. The idea behind this is that if intercoder reliability is
sufficient for this subset, each coder could individually anno-
tate the remainder of the dataset in a reliable way as well. It is
thus an efficient way to check for reliability. This is, however,
only the case if the subset that is coded by multiple coders is
representative of the entire dataset. As we pointed out earlier,
we assume that the bigger the sample size of the subset, the
more likely it is to get a fair idea about the reliability of each
individual coder. After all, provided that the subset is random-
ly selected, we can predict with greater confidence that anno-
tators would code the remaining data in the same way. The
exact size of the subset should be determined by taking into
account the complexity of the coding scheme and the com-
plexity of the data. In general, the more complex the scheme
and data, the larger the subset needs to be to provide fair
coverage of the dataset’s inner variability, and therefore a fair
idea about the reliability of the annotators’ application of the
coding scheme. Complexity of the schememight result from a
large number of categories (again, the more categories, the
more complex the scheme). Complexity of the data might
result, for example, from semantic features produced for both
concrete and abstract concepts.

Apart from the size of the subset, the measure that is chosen
to weigh intercoder reliability needs to be discussed: what, in
the end, is the overall value of testing intercoder reliability be
means of alpha-like or kappa-like measures? The advantage of
using such measures is, of course, that they provide a more or
less standardized measure to check for reliability. However, it
should be emphasized that alpha-like or kappa-like measures
are by no means direct measures of truth or quality: a coding
scheme might have no theoretical or cognitive foundations,
and yet coders might use it in the same way and thereby obtain
high intercoder reliability. This, however, does not mean that
these measures cannot provide any useful information: suffi-
ciently high scores can be regarded as an indication of the
adequacy of the examined taxonomy.

In the present study, the reported Krippendorff’s α and
Fleiss’s κ scores were identical. This was expected, since dis-
agreements between coded categories were considered equal
and all data was coded.We nevertheless recommend reporting
Krippendorff’s α, in case the disagreements might be of dif-
ferent magnitudes (e.g., in the case of coding sets of categories
in which disagreement might be partially or fully) or in case
some data are missing.

A final point that we wish to rise with the present contri-
bution relates to the overall need and importance of
performing reliability checks, especially in the present
crowdsourcing era. As a matter of fact, it has been recently
suggested that crowdsourced annotations—that is, annota-
tions performed by several remote workers that are recruited
online (i.e., a large sample of novice coders)—can overcome
the problems related to the Bantiquated ideal of a single correct
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truth^ (Aroyo&Welty, 2015:15), typically performed by (one
or) a few experts and measured by means of intercoder agree-
ment coefficients. With this study, we argue in favor of the
need for reliability checks, and we report a study in which the
reliability scores achieved by experts—that is, trained
coders—do not substantially differ from the reliability scores
achieved by novice coders (Phase 4). In this perspective, we
argue that, from a theoretical and methodological point of
view, the optimal situation is realized precisely when trained
and novice coders do not differ in their performances, as this
implies that the annotations are replicable and do not rely on a
single truth mastered by a few experts, and that the coding
scheme and the other developed materials are clear.

To conclude, the contributions of this study are threefold:
We suggest methodological guidelines to tackle several issues
that researchers who deal with content analysis of semantic
features typically run into; we propose a revised coding
scheme (based on Wu & Barsalou, 2009, knowledge-based

taxonomy), which can be applied to the annotation of seman-
tic features collected for both abstract and concrete concepts;
and finally we release a dataset of 185 abstract and concrete
concepts and their related semantic features, collected in a
property generation task and fully annotated with the revised
coding scheme.

Author note This study is sponsored by an EU Marie Curie Intra
European Fellowship, awarded to Dr Marianna Bolognesi
(COGVIM n° 629076, Project Acronym: COGVIM; Call identifier
FP7-PEOPLE-2013-IEF). The authors are extremely grateful to
Professor Lawrence Barsalou for providing supplementary mate-
rials and notes about the Wu and Barsalou taxonomy, Christian
Burgers for his comments on a previous draft of the article, and
Kilem Gwet for applying the linearization method to our dataset.
The authors are also grateful to the two anonymous reviewers,
thanks to whom the quality of the article has been substantially
improved. The authors declare that the research was conducted in
the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Table 4 with the adapted taxonomy (based on Wu & Barsalou, 2009)

Macrocategory Nested
Category

Nested Category Description Examples (With
Concrete and Abstract
Instances)

Counterexamples (With
Concrete and Abstract
Instances, If Applicable and
Relevant) and Their Correct
Coding

Concept properties (E)
Properties of a concrete or an

abstract entity

Perceptual
properties

(E-perc)

Sensory properties of the concept,
including visual features, smell,
sound, texture, taste.

Seagull–white
Seaweed–slimy
Turtle–hard
Fruit–sweet
Icecream–cold
No examples with

abstract concepts

Situation–sticky (I-eval)

Non-perceptual
properties

(E-sys)

A global (objective) systemic prop-
erty of an entity or its parts, in-
cluding states, conditions,
abilities, traits.

Plastic spoon–cheap
President–important
Purpose–necessary
Kid–development
Rank–high

Swan–beautiful (I-eval)
Sweater–comfortable

(I-eval)
Toy–fun (I-eval)

Components,
materials and
substances

(E-comp)

Features that define external and
internal components of a concept,
as well as its material or substance

(signals: <concept>has, is made of, it
constitutes of <feature>)

Airplane–wings
Airplane–engine
Pen–metal
Air–oxygen
Knowledge–facts
Explanation–details
Time–hours

Bottle–water (S-obj)
Finger–ring (S-obj)
Gold–earrings (I-cont)

Larger wholes,
thematic
larger
wholes, and
disciplines

(E-whol)

Awhole to that the entity belongs
(opposite of entity component).
Often this is quite abstract.

Breasts–woman
Drain–sink
Tree–nature
Graph–math
Tablet–technology
School–education
Building–architecture

Shopping cart–supermarket
(S-loc)

Plant–garden (S-loc)

Entity
behaviors

(E-beh)

A typical or chronic behavior of an
entity

Swan–swims
Wheel–spinning
Attitude–changes

Army–protection (S-fun)
Airplane–transportation

(S-fun)

Appendix 1
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Table 4 (continued)

Macrocategory Nested
Category

Nested Category Description Examples (With
Concrete and Abstract
Instances)

Counterexamples (With
Concrete and Abstract
Instances, If Applicable and
Relevant) and Their Correct
Coding

Provider–giving
River–running

Barcode–identification
(S-fun)

Situation properties (S)
Properties of a situation in which the

concept is embedded

Objects
(S-obj)

Objects and entities that appear in a
situation together with the target
concept.

Air–trees
Appeareance–makeup
Brightness–eyes
Bulldozer–dirt
Idea–lightbulb
Matches–candle
Motion–planets

Yolk–egg (E-whol)
World–oceans (E-comp)

Participants
(S-par)

Humans and animals associated with
a situation in which the concept
appears, but that do not have a
direct taxonomic relation to the
concept.

Mouthwash–dentist
Newspaper–journalist
War–enemies
Country–people
Explanation–teacher

Army–group of people
(T-sup)

President–Obama (T-sub)

Actions
(S-act)

An action performed by an agent in a
situation in which the target
concept appears.

Alcohol–drinking
Appeareance–seeing
Attention–looking
Brightness–squinting

Airplane–fly (E-beh)

Properties of
contextual
entities

(S-other)

A physical state of a situation or any
of its components (excluding the
target concept).

Location–lost
Jail–orange
America–blue red white
Coffee–tired
Coke–red and white

Condition–testable (E-sys)
Cookie–sweet (E-sys)

Function
(S-fun)

A quite abstract property that
describes the typical goal or role
that an entity serves for an agent
(often human) in a given situation.

Tank–destruction
Airplane–travel
Matches–smoking
Money–buying
Shopping cart–shopping

Airplane–fly (E-beh)

Locations,
containers,
and buildings

(S-loc)

A place in a situation in which the
entity can be found. The entity can
be also contained or placed on the
surface of such location.

Radio–car
Rhino–Africa
School–building
Coke–can
Brightness–outside
Clock–wall
Judgment–court
Knowledge–school
Idea–brain

Tree–forest (E-whol)
Air–nature (E-whol)
Bomb–Hiroshima (S-time)

Time and events
(S-time)

A time period or an event associated
with a situation. The relation can
be coded as such describes when
or in which circumstance the
concept appears.

Sweater–winter
Toy–Christmas
Brightness–morning
Possibility–future
Jeep–adventure

No counterexamples

Introspections (I)
Properties of a participant’s mental

state as she reacts to a situation in
terms of emotional responses or
internal operations triggered by
the mental simulation of the target
concept

Evaluations
(I-eval)

A clearly positive or negative
evaluation of a situation or one of
its components.

Swan–beautiful
School–boring
Sweater–comfortable
Lion–majestic

Ice–cream–sweet (E-perc)
Beggar–poor (E-sys)
President–important (E-sys)

Emotions
(I-emo)

An affective or emotional state
toward a situation or one of its
components (focus on the
perceiver, and on traditional
emotional states; apply when the
concept can make one feel x).

Dandelion–happy
War–sad
Maze–confusing

Bullet–death (I-cont)
Cigarette–deadly (E-sys)
Possibility–hope (I-cont)

Contingencies
and complex
cognitive
operations

A contingency or a cognitive
operation that relates different
aspects of a situation. Cognitive
operations include conditional and

End–no more
End–new beginning
Skin–sunburn
Success–power

End–death (E-syn)
cp
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Table 4 (continued)

Macrocategory Nested
Category

Nested Category Description Examples (With
Concrete and Abstract
Instances)

Counterexamples (With
Concrete and Abstract
Instances, If Applicable and
Relevant) and Their Correct
Coding

(I-cont) causals (signals: if x then y, x
enables y, x generates y, x
produces y, x causes y, x becomes
y, x underlies y, x depends on y, x is
based on y, x requires y, etc.) and
explicit negations, if they do not
fall under other categories.

Metaphorical and symbolic relations
between a feature and a concept
are found here.

Trumpet–jazz
Understanding–empathy
Water–life
Water–ice
Body–self
Bullet–violence
Canvas–creativity
Constraint–obstacle
Door–opportunity
Dot–end
Dove–peace
Elephant–Republican

party
Obstacle–challenge
Organ–life
Time–clock
Tree–life
Yolk–cholesterol

Taxonomic properties (T)
Properties that identify categories in

the taxonomy in which the
concept belongs (higher levels,
lower levels or same level as the
concept)

Synonyms,
description
and linguistic
clues

(T-syn)

A synonym of the target concept (as
found on dictionaries and
thesauri), or a short description of
the concept verbalised at the same
taxonomic level. Also, typical
utterances that people say in a
situation described by the target
concept.

Place where people meet
Accumulation–gathering

of things
Carpet–rug
Coke–Coca–Cola
Condition–situation
Consequence–effect
Discussion–debate
Possibility–could happen

Constraint–obstacle (I-cont)
Doorway–opportunity

(I-cont)

Antonyms
(T-ant)

An antonym of the concept—that is,
the relation between concept and
feature must express a dual
polarization with respect to one
semantic trait. Typically this
applies to adjectives or nouns
derived from adjectives.

Hardness–softness
Brightness–darkness

Man–woman (T-coor)
Boy–girl (T-coor)
Fork–knife (T-coor)
Apple–not an orange

(I-cont)

Superordinates
(T-sup)

A feature describing a category
placed one or more levels above
the target concept, in a taxonomy
(is-a, is-a-kind-of).

Apple–fruit
Crocodile–reptile
America–country
Army–military
Attitude–behavior
Drain–hole
Explanation–description
Opinion–idea
Homeland–place
Icecream–treat
Idea–concept
Maze–game

Building–architecture
(E-whol)

Tablet–technology (E-whol)
Tree–nature (E-whol)

Subordinates
and instances

(T-sub)

A feature describing a category
placed one or more levels below
the target concept, in a taxonomy
(reversed is-a, is-a-kind-of). It can
be very specific, to the point that it
describes a unique individual or
instance.

Body organ–lungs
Organism–plant
Organization–nonprofit
Origin–birth
Pen–quill
Place–home
Provider–healthcare
Tablet–Ipad
President–Obama
Gorilla–King Kong

Rubbish–paper (E-comp)
Tree–fruit (E-comp)
Air–oxygen (E-comp)
Body–skin (E-comp)
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Appendix 2

Table 4 (continued)

Macrocategory Nested
Category

Nested Category Description Examples (With
Concrete and Abstract
Instances)

Counterexamples (With
Concrete and Abstract
Instances, If Applicable and
Relevant) and Their Correct
Coding

Mouthwash–Listerine
Accumulation–of
snow

Coordinate
(T-coor)

A feature describing a category that
shares the same direct
superordinate with the target
concept, in a taxonomy.

Pepper–salt
Tablet–laptop
Yolk–egg white
Zebra–horse
Gold–silver

Bread–butter (S-obj)
Cigarette–lighter (S-obj)

(check the main categories again)
Not I-con?

Not T-coor? / I-con?

Not E-whol?

Not S-obj?

Not E-comp?

Not I-eval?

Not I-eval?

Not S-fun?

Not   
S-obj / 
I-con?

Not E-beh?
Not     
S-loc?

Not E-whol    
/ / S-�me?

Not E-whol / 
E-comp?

Not E-beh?
Not T-sup / 
T-sub?

Not         
E-sys?

Not     
E-perc / 
E-sys?

Not     
E-perc / 
I-con?

Not     
E-syn?

TAXONOMY?
(T)

yes LEXICAL 
RELATION?

yes CODE AS: Synonym, descrip�on and linguis�c clues

Antonym

no HIERARCHY? yes CODE AS: Superordinate
Coordinate
Subordinate

no GO BACK TO 
START

no CONCEPT 
PROPERTY?
(E)

yes COMPONENT, 
MATERIAL OR 
SUBSTANCE?

yes CODE AS:
Components, 
materials and 
substances

yes PERCEPTUAL 
PROPERTY?

yes CODE AS: 
Perceptual 
property

no ENTITY 
BEHAVIOUR?

yes CODE AS: En�ty 
behaviour

no SITUATION 
PROPERTY?
(S)

yes FUNCTION? yes CODE AS:
func�on

no LARGER WHOLES, 
THEMATIC LARGER 
WHOLES, AND 
DISCIPLINES?

yes CODE AS: 
Larger wholes, 
thema�c 
larger wholes, 
and 
disciplines

no no GO BACK TO 
START 

LOCATION, 
CONTAINER 
OR 
BUILDING?

yes CODE AS: 
Loca�on, 
container or 
building.

yes CODE 
AS: 
Object

CODE AS: 
Ac�on

yes CODE AS: 
Par�cipan
ts

yes CODE AS: 
Time and 
events

yes CODE AS:
Proper�es of 
contextual 
en��es

no OBJECT? no ACTION
?

no PARTICI-
PANT?

TIME OR 
EVENT?

no PROPERTIES 
OF CON-
TEXTUAL 
ENTITIES?

no GO BACK TO 
START 

no INTRO-
SPECTION? (I)

yes EVALUATION? yes CODE AS:
Evalua�on

yes CODE AS:
Emo�on

yes CODE AS:
Con�ngency

no EMOTION? no CONTINGENCY? no GO BACK TO 
START 

no GO BACK TO 
START 

START

no PROPERTY? no CODE AS: Non-
perceptual 
property

Fig. 3 Decisional flowchart developed to facilitate the annotators’ task
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