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OBJECTIVES This study sought to identify culprit lesion (CL) precursors among acute coronary syndrome (ACS) pa-

tients based on qualitative and quantitative computed tomography–based plaque characteristics.

BACKGROUND Coronary computed tomography angiography (CTA) has been validated for patient-level prediction of

ACS. However, the applicability of coronary CTA to CL assessment is not known.

METHODS Utilizing the ICONIC (Incident COroNary Syndromes Identified by Computed Tomography) study, a nested case-

control study of 468 patients with baseline coronary CTA, the study included ACS patients with invasive coronary

angiography–adjudicated CLs that could be aligned to CL precursors on baseline coronary CTA. Separate blinded core labo-

ratories adjudicated CLs and performed atherosclerotic plaque evaluation. Thereafter, the study used a boosted ensemble

algorithm (XGBoost) to develop a predictive model of CLs. Data were randomly split into a training set (80%) and a test set

(20%). The area under the receiver-operating characteristic curve of this model was compared with that of diameter stenosis

(model 1), high-risk plaque features (model 2), and lesion-level features of CL precursors from the ICONIC study (model 3).

Thereafter, the machine learning (ML) model was applied to 234 non-ACS patients with 864 lesions to determine model

performance for CL exclusion.

RESULTS CL precursors were identified by both coronary angiography and baseline coronary CTA in 124 of 234 (53.0%)

patients, with a total of 582 lesions (containing 124 CLs) included in the analysis. The ML model demonstrated signifi-

cantly higher area under the receiver-operating characteristic curve for discriminating CL precursors (0.774; 95% con-

fidence interval [CI]: 0.758 to 0.790) compared with model 1 (0.599; 95% CI: 0.599 to 0.599; p < 0.01), model 2

(0.532; 95% CI: 0.501 to 0.563; p < 0.01), and model 3 (0.672; 95% CI: 0.662 to 0.682; p < 0.01). When applied to the

non-ACS cohort, the ML model had a specificity of 89.3% for excluding CLs.

CONCLUSIONS In a high-risk cohort, a boosted ensemble algorithm can be used to predict CL from non-CL precursors

on coronary CTA. (J Am Coll Cardiol Img 2020;13:2162–73) © 2020 by the American College of Cardiology Foundation.
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AB BR E V I A T I O N S

AND ACRONYM S

ACS = acute coronary

syndrome

APCs = atherosclerotic plaque

characteristics

AUC = area under the receiver-

operating characteristic curve

CAD = coronary artery disease

CI = confidence interval

CL = culprit lesion

CTA = computed tomography

angiography

HU = Hounsfield unit

ICA = invasive coronary

angiography

LAP = low-attenuation plaque

MI = myocardial infarction

ML = machine learning
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A cute coronary syndrome (ACS) occurs as a
result of the predisposition of atherosclerotic
plaque to progression and subsequent trans-

formation into high-risk unstable lesions (1,2). Pro-
spective natural history studies of coronary
atherosclerosis have sought to elucidate patient-
specific and lesion-specific characteristics of vulner-
able plaques (3,4). The existent paradigm is based
on the fact that ACS arises from plaque with certain
histopathologic and hemodynamic characteristics,
and that such characteristics can be independent of
the traditional measure of diameter stenosis (5,6).
Furthermore, recent advances in imaging techniques
have permitted the cross-sectional imaging of the cor-
onary vasculature, which has been shown to correlate
with histopathologic findings (7). For instance, inva-
sive intravascular ultrasound imaging has been used
to define coronary vessel wall anatomy as well as to
provide an accurate assessment of atherosclerotic
plaque (8). The PROSPECT (Providing Regional Obser-
vations to Study Predictors of Events in the Coronary
Tree) study used intravascular ultrasound imaging af-
ter percutaneous coronary intervention and found
that the presence of plaque burden $70% and mini-
mal lumen area #4.0 mm2 and the occurrence of
intravascular ultrasound-determined thin-cap
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Recently, coronary computed tomography
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model to identify CL precursors based on quantitative
computed tomography and APCs among patients with
incident ACS using the ICONIC (Incident COroNary
Syndromes Identified by Computed Tomography)
nested case-control study.

METHODS

STUDY POPULATION. The ICONIC study is a nested
case-control study within the international, multi-
institutional CONFIRM (COronary CT Angiography
EvaluatioN For Clinical Outcomes: An InteRnational
Multicenter) registry. Patients from the CONFIRM
registry were included in the ICONIC study if they
underwent coronary CTA prior to an ACS event and
had no prior history of CAD, including a history of
prior percutaneous or surgical revascularization. Pa-
tients were also excluded from the study if they died
without a preceding ACS event. A total of 234 such
individuals with ACS were propensity matched 1:1 to
same-site control subjects without ACS, for a total of
468 individuals. ACS events were adjudicated by the
Clinical and Data Coordinating Center at the Dalio
Institute of Cardiovascular Imaging, blinded to coro-
nary CTA findings. Cardiac enzyme measurements, as
well as electrocardiograms, were used to adjudicate
ACS events according to the World Health Organiza-
tion definition of myocardial infarction (MI) (14).
Coronary CTA–based quantitative and qualitative
evaluations were performed by the coronary CTA
Core Laboratory at Severance Hospital of Yonsei
University, blinded to case status. Both the ICONIC
and CONFIRM studies have been described in more
detail in previous publications (13,15). Every institu-
tion received local review board (Institutional Review
Board) or ethics board approval.

Of the 234 patients with ACS, 124 patients were
included, for whom invasive coronary angiography
(ICA)–adjudicated CLs could be aligned to CL pre-
cursors on baseline coronary CTA (Figure 1). Patient
data including clinical history, laboratory testing,
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FIGURE 1 Flow Chart of the Machine Learning Methodology

Included in analysis are 124 ACS patients with
ICA-adjudicated culprit lesions that could be
aligned to precursor lesions on coronary CTA
Total: 124 culprit and 458 non-culprit lesions

Feature selection: 46 coronary CTA-based
qualitative and quantitative measures

Training set (80% of the dataset)
10-fold cross validation performed in order to

tune the model

Trained and tuned model tested on test set
(20% of the dataset)

Evaluation Metric (AUC)
ML model compared against: 1) diameter stenosis

and 2) PROSPECT-trial determined features

ICONIC Study
Nested case-control study

234 ACS patients 234 non-ACS patients
865 lesions

Determination of accuracy for ruling  out the
presence of culprit lesions

Machine learning model built using a boosted ensemble algorithm (XGBoost), trained and tuned using 10-fold stratified cross-validation.

ACS ¼ acute coronary syndrome; AUC ¼ area under the receiver-operating characteristic curve; CTA ¼ computed tomography angiography;

ICA ¼ invasive coronary angiography; ML ¼ machine learning; PROSPECT ¼ Providing Regional Observations to Study Predictors of Events in

the Coronary Tree.
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percent diameter stenosis, area stenosis, minimum
luminal diameter, minimal lumen area, cross-
sectional plaque burden, and remodeling index.
Finally, APCs were categorized as present or absent
and included positive remodeling (defined as
index $1.1), low-attenuation plaque (LAP) (defined as
plaque containing any voxel #30 HU), spotty calcifi-
cation (any lesion #3 mm) (13), and the napkin-ring
sign. ICA-determined CLs were co-registered to the
coronary CTA precursor lesions using the distance
from coronary ostia as well as bifurcations as fidu-
ciary landmarks.
MACHINE LEARNING. Model creation and feature selection.
A total of 46 coronary CTA–based qualitative and
quantitative plaque features were used in the ML
model in order to create a predictive model of CLs
(Supplemental Table 1). Models were then built using
a boosted ensemble algorithm (XGBoost), using an
open-source XGBoost library. XGBoost uses an
ensemble of gradient-boosted decision trees, and has
been widely applied within the domains of computer
science and medicine. The advantage of using a
boosted ensemble algorithm is the fact that it can
combine multiple weak classifiers to produce a single
strong classifier, which can improve prediction
modeling. The SHAP (SHapley Additive exPlanations)
method was used to explain the output of the ML
model. The SHAP method assigns each variable an
importance value for a particular prediction, and in
this instance was used to order to determine the in-
fluence of a particular variable on CL prediction, as
well as the direction of that association (17). Such a
step provides insight into the inner workings of
complex models, such as those created using
ensemble methodologies, and strikes a balance be-
tween accuracy and interpretability.
Model training. The total dataset was split into training
(80%) and testing (20%) sets in such a way that the
ratio of CLs to non-CLs was maintained. This training
set was further split into 10 folds while maintaining
the ratio of CLs to non-CLs for grid search of model
hyperparameters using 10-fold cross-validation. In
this step, the model with a given selection of hyper-
parameters was trained on 9 folds and tested on the

https://doi.org/10.1016/j.jcmg.2020.03.025


TABLE 1 Baseline Computed Tomography–Based Quantitative and Qualitative Plaque Measures, Stratified by Lesion Status

Culprit Lesions (n ¼ 124) Nonculprit Lesions (n ¼ 458) p Value

Reference vessel area, mm2 8.93 (6.71–14.3) 6.77 (4.61–10.74) <0.001

Ostium to MLD lesion distance, mm 35.300 (21.380–46.510) 40.860 (26.300–71.760) 0.0016

Atherosclerotic plaque characteristics, %

Positive remodeling 79.84 80.79 0.813

Spotty calcification 18.54 13.10 0.124

Low-attenuation plaque 25.00 14.63 0.006

Napkin-ring sign 3.23 0.66 0.040

Lesion length, mm2 28.76 (19.64–47.81) 18.3 (13.35–28.2) <0.001

Vessel volume (of the lesion), mm3 253.24 (136.80–546.17) 135.36 (70.38–255.65) <0.001

Lumen volume (of the lesion), mm3 173.72 (96.49–318.35) 98.04 (57.86–181.87) <0.001

Plaque volume (of the lesion), mm3 90.75 (26.51–193.66) 24.71 (9.64–67.2) <0.001

Plaque burden, % 63.25 (43.38–79.34) 50.14 (35.79–64.78) <0.001

Fibrous volume (of the lesion), mm3 34.30 (12.190–91.70) 11.27 (4.59–30.69) <0.001

Fibrofatty volume (of the lesion), mm3 8.36 (1.08–30.05) 1.75 (0.13–9.16) <0.001

Necrotic core volume (of the lesion), mm3 0.15 (0.00–2.36) 0.00 (0.00–0.34) <0.001

Dense calcium volume (of the lesion), mm3 17.89 (2.25–73.52) 5.73 (1.38–20.03) 0.001

Values are median (interquartile range) or %, unless otherwise indicated.

MLD ¼ minimal lumen diameter.
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remaining fold 10 different times so that each fold
was used as the test set exactly once. The average of
the area under the receiver-operating characteristic
curve (AUC) on each test fold was calculated and the
set of hyperparameters that led to the highest average
AUC was chosen. Using this set of hyperparameters,
the model was then trained on the entire training set
and evaluated on the test set. We report the AUCs
from the test set.

MODEL PERFORMANCE: RULING IN AND RULING

OUT CLs. The performance of the ML model in pre-
dicting CLs was compared with that of diameter ste-
nosis (model 1), high-risk plaque features (model 2),
and lesion-level features of CL precursors from the
ICONIC study (model 3). Diameter stenosis was cate-
gorized according to the recommendations of the
Coronary Artery Disease Reporting and Data System
consensus document as follows: 0%, 1% to 24%, 25%
to 49%, 50% to 69%, 70% to 99%, and 100% occluded
(model 1) (18). On coronary CTA, high-risk plaque
features included the presence of positive remodel-
ing, LAP, spotty calcification, and the napkin-ring
sign (model 2). The ICONIC study had shown that CL
precursors, compared with within-subject non-CLs,
exhibited higher hazard for diameter stenosis, lesion
length, plaque volume, all plaque constituents
(calcified, noncalcified, fibrous, fibrofatty, and
necrotic core), mean and max plaque burden, high-
risk plaque, and LAP (13). Thereafter, these features
were used in an XGBoost model to predict CL pre-
cursors within the ICONIC study ACS cohort (model
3). Finally, the ML model was applied to the ICONIC
non-ACS cohort in order to determine model speci-
ficity in ruling out the presence of CLs.

STATISTICAL ANALYSIS. Data were analyzed with
the use of R version 3.5.0 (RStudio, Boston, Massa-
chusetts) and Python (Python Software Foundation,
Beaverton, Oregon). Continuous variables were
expressed as median (interquartile range), whereas
categorical variables were expressed as count and
percentage. Differences between continuous and
categorical variables were analyzed by the Wilcoxon
rank sum test, chi-square test, and Fisher exact test as
appropriate. Subsequent computed tomography–
based comparison models were created to include
diameter stenosis (model 1), high-risk plaque features
(model 2), and lesion-level features of CL precursors
from the ICONIC study (model 3) for the prediction of
CLs, with the AUC and the associated 95% confidence
interval (CI) used for comparison of the different
models. All tests were 2-sided and conducted at the
0.05 significance threshold, while the different
models were compared using the corrected p value
threshold for multiple comparisons (p per number of
comparisons) (3).

RESULTS

The study cohort comprised of 124 individuals with
ACS, with a total of 582 coronary plaques, of which
124 were ICA-determined CLs that were co-registered
to precursor lesions on coronary CTA (median time
between coronary CTA and first ACS event was 34.50
[interquartile range: 3.25 to 430.00] days). Of the 124



FIGURE 2 Prediction of Culprit Lesion Precursors Across Four Different Models
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patients, 38 (30.6%) fulfilled the World Health Orga-
nization criteria for MI (ST-segment elevation MI and
non–ST-segment elevation MI), and 86 (69.4%) were
classified as unstable angina. The mean age was 62.6
� 11.3 years, and 82 (66.1%) were men. In terms of
prevalent cardiovascular conditions, 78 (62.9%) in-
dividuals had hypertension, 73 (58.9%) had hyper-
lipidemia, 31 (25.0%) had diabetes mellitus, and 34
(27.4%) were active smokers. With respect to clinical
presentation, 95 (76.6%) presented with chest pain, of
which 34 (35.8%) had typical anginal chest pain.
There were significant baseline differences in quan-
titative and qualitative plaque measures between CLs
and non-CLs (Table 1). Characteristics of patients with
ACS excluded from the analysis have been summa-
rized (Supplemental Table 2).

PREDICTION OF CLs. A total of 46 coronary CTA–
based qualitative and quantitative plaque features
were used in the constructed ML model for CL pre-
diction. The ML model exhibited a significantly
higher AUC for discriminating CL precursors
(0.774; 95% CI: 0.758 to 0.790) compared with
model 1 (0.599; 95% CI: 0.599 to 0.599; p < 0.01),
model 2 (0.532; 95% CI: 0.501 to 0.563; p < 0.01), and
model 3 (0.672; 95% CI: 0.662 to 0.682; p < 0.01)
(Figure 2). Figure 3 shows feature importance ranking
for the ML model for prediction of CLs, with quanti-
tative plaque features, as determined on coronary
CTA, occupying 19 of the top 20 most significant
features. The distance between the start of a lesion
and the minimal lumen diameter was the highest-
ranked predictor of CLs, followed by plaque volume,
luminal area stenosis, plaque burden in maximal
stenosis section, and dense calcium volume
(>350 HU). The segment where an atherosclerotic
lesion starts was the only ordinal variable in the top
20 features, while none of the high-risk plaque fea-
tures were among the most predictive features.

SHAP assigns each variable an importance value
for CL prediction, as well as the direction of that
association. SHAP provides information not only
about how important a feature is in a particular
prediction (vertical position), but also about
whether the feature value was high or low for that
dataset (color), and also whether the effect of that
value resulted in a higher prediction (CL prediction)
or lower prediction (non-CL prediction) (horizontal
position). For example, higher values for the top
feature (start of a lesion to minimal lumen diam-
eter) were predictive of CL precursors, indicating
that the length and location of baseline plaque
influenced short-term plaque stability. Further,
higher plaque burden was predictive of CL
precursors, while lower plaque burden was predic-
tive of being a non-CL (Figure 3). According to the
feature ranking done by SHAP, baseline plaque
location (“Shape of a lesion to minimal lumen
diameter”) and plaque volume factored higher than
baseline luminal area stenosis in the maximal ste-
nosis section. Quantitative descriptors of plaque
composition such as dense calcium volume, dense
calcium area, fibrous plaque volume, and fibrous
fatty plaque area were all in the top 20 important
features of CLs.

Subgroups were stratified by age ($65 or <65
years), sex (male vs. female), and coronary vessel (left
anterior descending artery vs. left circumflex artery
vs. right coronary artery) (Table 2). The ML model was
statistically superior to all computed tomography–
based models in CL determination across most sub-
groups, with the exception of female patients, in
which diameter stenosis (model 1) was superior to the

https://doi.org/10.1016/j.jcmg.2020.03.025


FIGURE 3 Feature Importance Ranking of the Machine Learning Model for Culprit Lesion Prediction
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ML model for prediction of CL precursors (AUC: 0.748
vs. 0.835; p < 0.01). In addition, lesion-level features
of CL precursors from the ICONIC study (model 3)
were superior to the ML model in predicting CLs in
the right coronary artery (AUC: 0.858 vs. 0.714;
p < 0.01). Model 2 incorporating high-risk plaque
features performed poorly across all subgroups.
RULING OUT NON-CLs. The non-ACS ICONIC study
cohort, comprising 234 individuals with 864 lesions,
was used in order to evaluate the performance of the
ML model in ruling out the presence of CLs. The non-
ACS cohort had a mean age of 62.4 � 11.0 years and
146 (62.4%) were men, while 124 (53.0%) had chest
pain. A total of 169 (72.2%) individuals had



TABLE 2 Subgroup Analysis Comparing the Performance of the Machine Learning Model With Diameter Stenosis, High-Risk Plaque, and ICONIC Study

Lesion-Level Model

Subgroup (Number of Lesions) Machine Learning AUC ICONIC Lesion-Level AUC p Value Diameter Stenosis AUC p Value High-Risk Plaque AUC p Value

Overall 0.774 � 0.021
(0.758–0.789)

0.672 � 0.013
(0.662–0.682)

<0.01 0.599 � 0.000
(0.599–0.599)

<0.01 0.531 � 0.040
(0.500–0.563)

<0.01

Age $65 yrs (n ¼ 62) 0.796 � 0.026
(0.776–0.816)

0.721 � 0.016
(0.708–0.733)

<0.01 0.720 � 0.000
(0.720–0.720)

<0.01 0.506 � 0.030
(0.483–0.530)

<0.01

Age <65 yrs (n ¼ 55) 0.739 � 0.027
(0.718–0.760)

0.594 � 0.024
(0.576–0.613)

<0.01 0.545 � 0.001
(0.544–0.545)

<0.01 0.552 � 0.079
(0.492–0.611)

<0.01

Male (n ¼ 88) 0.780 � 0.023
(0.763–0.798)

0.661 � 0.015
(0.650–0.673)

<0.01 0.533 � 0.000
(0.533–0.533)

<0.01 0.542 � 0.032
(0.518–0.567)

<0.01

Female (n ¼ 29) 0.748 � 0.044
(0.715–0.781)

0.701 � 0.035
(0.674–0.728)

<0.01 0.835 � 0.000
(0.835–0.835)

<0.01 0.502 � 0.071
(0.449–0.552)

<0.01

Left anterior descending artery (n ¼ 58) 0.795 � 0.015
(0.783–0.807)

0.712 � 0.018
(0.698–0.726)

<0.01 0.564 � 0.000
(0.564–0.564)

<0.01 0.556 � 0.032
(0.531–0.580)

<0.01

Left circumflex artery (n ¼ 27) 0.751 � 0.061
(0.705–0.797)

0.350 � 0.051
(0.311–0.388)

<0.01 0.660 � 0.000
(0.660–0.660)

<0.01 0.226 � 0.138
(0.120–0.328)

<0.01

Right coronary artery (n ¼ 32) 0.714 � 0.039
(0.684–0.743)

0.858 � 0.040
(0.828–0.888)

<0.01 0.644 � 0.000
(0.644–0.644)

<0.01 0.437 � 0.043
(0.404–0.469)

<0.01

Values are mean � SD (range). Numbers are reported on the validation set. The p values are for comparison between the specific model and the machine learning model.

AUC ¼ area under the receiver-operating characteristic curve; ICONIC ¼ Incident COroNary Syndromes Identified by Computed Tomography.
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obstructive CAD on coronary CTA, defined as any
vessel with >50% diameter stenosis, as a result of the
propensity matching criteria within the ICONIC study
cohort (ACS to non-ACS individuals were matched on
clinical risk factors and CAD severity). The median
follow-up after coronary CTA performance was 865
(interquartile range: 597 to 1,497) days. The model
had a specificity of 89.3% for predicting non-CLs (the
model predicted 93 of 864 lesions as being CLs
although, in fact, they were non-CLs). In terms of
misclassified lesions (i.e., lesions that were incor-
rectly predicted as CLs by the ML model), the ML
model tended to misclassify longer lesions, with
heavier plaque burden (including both calcified and
noncalcified components) and lesions in larger ves-
sels. Table 3 lists differences in computed
tomography–based quantitative plaque characteris-
tics between correctly predicted non-CLs and lesions
incorrectly predicted as CLs by the ML model.

DISCUSSION

The current study utilized coronary CTA–determined
quantitative and qualitative atherosclerotic plaque
features within a cohort of individuals with subse-
quent incident ACS, and developed a model for the
prediction of CLs with better accuracy than a model
that featured diameter stenosis, computed
tomography–determined high-risk plaque features, as
well as lesion-level characteristics of CL precursors.
These results were consistent across certain sub-
groups while the most predictive features were
quantitative features. The unexpected finding
regarding the poor performance of high-risk plaque
for CL discrimination could be secondary to the fact
that the derivation cohort included ACS patients,
with previous investigations showing that even
though high-risk plaque was an independent predic-
tor of ACS, the cumulative number of lesions with and
without high-risk plaque was similar in ACS cohorts,
as compared with the low incidence of high-risk pla-
que in a non-ACS cohort (in our cohort, 40 of 126
[32.0%] of CLs had high-risk plaque, whereas 93 of
458 [20.3%] of the non-CLs had high-risk plaque) (19).
The results of the present analysis are important, as
they provide a better understanding of the relation-
ship between computed tomography–determined
plaque features (in terms of both qualitative and
quantitative measures) and the presence of CL pre-
cursors in a high-risk cohort, albeit over a median
follow-up interval of 865 days. It also provides a
model featuring quantitative and qualitative plaque
characteristics that can be used to determine plaque
stability in a non-ACS cohort.

Prior to the inception and adoption of invasive
and noninvasive coronary imaging, a significant
body of knowledge on the natural history of coro-
nary atherosclerosis came from pathology studies
demonstrating that an ACS event occurs as a result
of atherosclerotic plaque erosion or rupture, which
frequently occurs in the setting of thin-cap fibroa-
theromas that are characterized by the presence of a
large necrotic core and covered with a thin fibrous
cap (<65 mm) separating it from the coronary lumen
(5). The identification of thin-cap fibroatheromas
within the context of vulnerable plaque and



TABLE 3 Differences in Computed Tomography–Based Plaque Characteristics Between Correctly Predicted Non-Cls and Those Incorrectly

Predicted as Cls by the Machine Learning Model

Plaque Characteristic Correctly Classified Non-CLs (n ¼ 773) Incorrectly Classified Non-CLs (n ¼ 93) p Value

Plaque volume in segment/lesion 25.3 (9.4–70.1) 116.2 (46.3–269.4) <0.05

Plaque burden in maximal stenosis section 47.1 (33.8–61.5) 69.6 (52.4–79.5) <0.05

Dense calcium volume in lesion 7.0 (1.5–22.7) 41.2 (9.8–93.2) <0.05

Dense calcium area in maximal stenosis section 0.6 (0.0–2.1) 1.2 (0.0–6.2) <0.05

Fibrous plaque volume in lesion 11.8 (4.0–29.7) 47.7 (20.7–269.4) <0.05

Lumen diameter stenosis in maximal stenosis section 20.6 (11.7–32.1) 36.6 (27.1–46.5) <0.05

Noncalcified plaque volume in lesion 15.2 (4.8–39.0) 61.1 (9.8–93.2) <0.05

Vessel volume in lesion 133.3 (70.0–261.8) 397.3 (162–638.2) <0.05

Lumen volume in lesion 102.6 (55.8–191.5) 239.4 (104.5–371.6) <0.05

Fibrous fatty plaque area in maximal stenosis section 0.1 (0.0–1.0) 0.4 (0.0–2.6) <0.05

Peak vessel area in lesion 9.9 (6.7–14.3) 15.9 (11.5–20.0) <0.05

Maximal plaque thickness in lesion 1.6 (1.2–2.0) 2.2 (1.9–2.7) <0.05

Length of lesion 18.41 (13.7–29.5) 34.6 (20.1–56.9) <0.05

Mean plaque burden in lesion 17.8 (10.2–28.3) 31.1 (20.6–42.1) <0.05

Reference vessel area 7.2 (4.9–11.3) 10.8 (8.2–14.3) <0.05

Vessel area of maximal plaque cross-section in lesion 9.2 (6.1–12.9) 13.9 (10.1–17.4) <0.05

Values are median (interquartile range).

CL ¼ culprit lesion.
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unheralded acute MI raised the possibility of
improved risk stratification above and beyond
population-derived risk scores that are based on
classical risk-factor profiles. As such, there has been
keen interest in developing catheter-based imaging
techniques for the detection of various anatomic
components of thin-cap fibroatheromas, as well as
metabolic processes of high-risk plaque, culmi-
nating in the application of intravascular ultra-
sound, near-infrared spectroscopy, and optical
coherence tomography to visualize and characterize
atherosclerotic plaque. For instance, the PROSPECT
trial enrolled 697 patients with ACS who underwent
3-vessel coronary angiography as well as imaging
after percutaneous coronary intervention (3). The
PROSPECT trial showed that lesions at enrollment
that were associated with subsequent events, at a
median follow-up period of 3.4 years, were charac-
terized by a minimal luminal area of #4.0 mm2 and
plaque burden of $70%, or were identified as thin-
cap fibroatheromas. The VIVA (Virtual Histology in
Vulnerable Atherosclerosis) study enrolled 170 pa-
tients with stable angina or troponin-positive ACS
who underwent 3-vessel intravascular ultrasound
(a total of 30,372 mm of intravascular ultrasound
analyzed) and evaluated the association between
intravascular ultrasound-identified thin-cap fibroa-
theromas and major adverse cardiac events (20).
Thin-cap fibroatheromas was associated with major
adverse cardiac events on individual plaque anal-
ysis, while noncalcified thin-cap fibroatheromas was
associated with major adverse cardiac events on a
patient-level analysis. Similar to intravascular ul-
trasound, studies using optical coherence tomogra-
phy suggest that fibrous cap thickness is an
important distinguishing feature between ruptured
and nonruptured thin-cap fibroatheromas, while
plaque burden and luminal area were features
associated with ruptured culprit plaque (21). One
major criticism of the aforementioned investigations
is that “events” were driven by revascularization,
which could explain why features such as plaque
burden and minimal lumen area correlated with
adverse events. In the present analysis, events were
core lab–adjudicated ACS events, especially in pa-
tients with unstable angina who were judged based
on World Health Organization criteria and not based
on revascularization decisions.

Coronary CTA–determined qualitative and quanti-
tative measures have been shown to correlate with
the occurrence of ischemia and adverse cardiovascu-
lar events. Further, the incremental prognostic value
of coronary CTA–determined APCs has been further
validated within large multicenter prospective trials
(22). In a prespecified analysis of the PROMISE (Pro-
spective Multicenter Imaging Study for Evaluation of
Chest Pain) trial, 4,415 symptomatic patients but with
stable chest pain underwent baseline coronary CTA
and had the presence of high-risk plaque determined
by a core lab. The presence of high-risk plaque was
associated with a higher rate of major adverse car-
diovascular events (6.4% vs. 2.4%; hazard ratio: 2.73;
95% CI: 1.89 to 3.93), even after adjustment for
traditional risk scores. Similar analysis with the
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The aforementioned approach could provide a method for determination of atherosclerotic plaque stability, which could help with therapy selection and downstream

testing.
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ROMCAT II (Rule Out Myocardial Infarction/Ischemia
Using Computer-Assisted Tomography II) trial
showed that the presence of high-risk plaque on
coronary CTA was associated with adverse events
(odds ratio: 8.9; 95% CI: 1.8 to 43.3; p ¼ 0.006). Such
findings highlight the potential of coronary CTA–
based atherosclerotic plaque characterization for
risk assessment that encompasses overall measures
of atherosclerotic plaque burden, as well as lesion-
specific APCs. In the present study, quantitative
measures of plaque burden played a larger role in the
prediction of CLs when compared with plaque char-
acteristics. This may be due to the proportionally
larger number of quantitative variables included in
this study, some of which may be co-associated. As
the assessment of vulnerable plaque has progressed
from identification to volumetric quantification,
future studies incorporating volumetric vulnerable
plaque assessment may further elucidate and
enhance the prediction of CLs. Such extensive plaque
characterization could embellish the drive toward
precision medicine, wherein cardiovascular care
moves from being a global risk-assessment field with
population-derived clinical risk profiles into one
that incorporates accurate phenotypic plaque
characterization that precisely predicts at-risk in-
dividuals through the detection of vulnerable plaque
(Central Illustration).
There is an increasing need for improved detection
and discrimination between stable and vulnerable
plaque on noninvasive imaging studies. Current Eu-
ropean guidelines consider the presence of multi-
vessel CAD with 2 major epicardial vessels having
>50% stenosis as very high risk, necessitating the
institution of aggressive lipid-lowering therapy (23).
Although increasing diameter stenosis portends
higher risk, only 24.8% of the culprit precursors in the
ICONIC study were obstructive (diameter
stenosis $50%), thus highlighting the importance of
whole plaque evaluation. ML, which employs math-
ematical modeling to examine for multidimensional
associations between certain features, has been
increasingly used, on a per-patient level, for the
prediction of adverse cardiovascular events using
both structured clinical and imaging data (Supple-
mental Table 3). ML can be particularly useful for
identifying imaging markers of plaque vulnerability
that significantly outperform conventional quantita-
tive and qualitative computed tomography–based
high-risk plaque features (24,25). This is particularly
essential because plaque characteristics display
complex inter-relationships that may be hard to
model with simple regression-based methodologies.
Furthermore, deep learning algorithms, which use
methods based on learning data representations, are
aptly suited for image analysis and can be utilized for

https://doi.org/10.1016/j.jcmg.2020.03.025
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examining plaque characteristics that are impossible
to capture in structured reports or even within human
vision (e.g., shape, location, and relationship to other
structures, in addition an extensive assessment of
pixel-by-pixel variations as it relates to a specific
plaque phenotype or clinical outcome).

STUDY LIMITATIONS. Despite the novelty of the
conducted investigation, there are certain limitations
that are noteworthy to mention. As previously
described, individuals with ACS within the ICONIC
study cohort had been selected from the larger
observational CONFIRM registry investigation. As
such, there could be unmeasured confounders with
respect to patient selection as well as potentially
other biases regarding the propensity-matching
approach employed within the ICONIC study cohort,
hence limiting the generalizability of the present
findings. For example, the proximity of ACS events
after CTA acquisition indicates that this referral
population is at higher risk than the general popula-
tion. Further, the impact of coronary CTA on decision
making, including changes in medical therapy, is
unclear. Thus, the current findings are mainly limited
to a higher-risk patient population and cannot be
generalized to stable angina or even asymptomatic
patients. Second, quantitative plaque and luminal
measures were performed with a semiautomated
software (QAngio CT Research Edition version
2.1.9.1), a process that is laborious and not easily
reproducible. Third, the median follow-up period af-
ter coronary CTA performance was 865 days, which is
fairly short, especially when the endpoint is the
occurrence of an ACS event on a patient level and the
development of unstable plaque on a lesion level. It is
possible that non-CLs could become culprits over
longer follow-up, and it is uncertain whether the
same plaque characteristics influence long-term pla-
que stability. Fourth, the results of the present study
were not externally validated on a separate cohort.
However, no cohort exists in which a primary pre-
vention cohort underwent extensive baseline coro-
nary CTA–derived qualitative and quantitative plaque
assessment for suspected CAD and subsequently had
CL adjudication on ICA as well as co-registration of
CLs to the coronary CTA precursor lesions. Last, this
study was limited to CLs that could be identified by a
clinical committee, with the presence of significant
diameter stenosis on ICA being the major driver for
determining the presence of a CL. As such, the per-
formance of this model in the setting of CLs that are
nonobstructive, or lesions that lead to clinically silent
events, is not known.
The results of present analysis have several
important clinical implications. First, with the
increasing wealth of knowledge regarding the in-
fluence of qualitative and quantitative plaque
analysis for future cardiovascular event prediction,
there is an unmet need for advanced analytic ap-
proaches for data processing as well as precise and
patient-tailored risk prediction. ML has been
applied for assimilation of complex datasets for
patient-level risk prediction, and this study shows
that it is possible to integrate a multitude of qual-
itative and quantitative plaque characteristics for
prediction of plaque stability. Second, there is
inconsistency and significant variability regarding
the acceptable definitions for high-risk plaque, with
often arbitrary cutoff values used to define the
presence or absence of such features. Our approach
plots the influence of each value on the prediction
of plaque stability, using the SHAP method, which
can be used as a platform in future analysis for
refined and more precise definition of high-risk
features. Third, the ability to predict likely CLs in
symptomatic high-risk patients could be useful for
therapy selection and downstream testing. For
instance, if the ML model predicts that a left main
or proximal left anterior descending artery plaque
might become a culprit, then a clinician may
consider aggressive preventative therapies, regular
follow-up, and performance of invasive evaluation
in the setting of breakthrough symptoms. However,
the utility of such an approach needs to be sup-
ported by evidence from clinical trials.

CONCLUSIONS

An ML approach incorporating coronary CTA–
determined qualitative and quantitative plaque
features was better at predicting CL precursors
compared with diameter stenosis or computed
tomography–determined high-risk plaque features
and was robust across several subgroups. Further-
more, it was accurate in ruling out the presence of
CL precursors in a non-ACS cohort. This study
highlights the utility of ML for predicting culprit
from non-CL precursors in a high-risk cohort on
coronary CTA.
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: An ML

model that integrates coronary CTA–determined qualita-

tive and quantitative plaque features showed improved

detection of CL precursors in a high-risk cohort compared

with contemporary risk assessment methods, and was

robust across several subgroups including younger indi-

viduals (<65 years of age) and in the left anterior

descending artery distribution. When applied to a non-

ACS cohort, the model had a specificity of 89% for ruling

out the presence of CL precursors.

TRANSLATIONAL OUTLOOK: Future analysis is

required in order to externally validate the ML model

across various cohorts and to determine its generaliz-

ability. Such work has the potential to further enhance

the ability for accurate phenotypic plaque characteriza-

tion that precisely predicts at-risk individuals through the

detection of CL precursors.
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