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AbstrAct
Objective
To review and appraise the validity and usefulness of 
published and preprint reports of prediction models 
for diagnosing coronavirus disease 2019 (covid-19) 
in patients with suspected infection, for prognosis of 
patients with covid-19, and for detecting people in 
the general population at increased risk of covid-19 
infection or being admitted to hospital with the 
disease.
Design
Living systematic review and critical appraisal by the 
COVID-PRECISE (Precise Risk Estimation to optimise 
covid-19 Care for Infected or Suspected patients in 
diverse sEttings) group.

Data sOurces
PubMed and Embase through Ovid, up to 1 July 2020, 
supplemented with arXiv, medRxiv, and bioRxiv up to 
5 May 2020.
stuDy selectiOn
Studies that developed or validated a multivariable 
covid-19 related prediction model.
Data extractiOn
At least two authors independently extracted data 
using the CHARMS (critical appraisal and data 
extraction for systematic reviews of prediction 
modelling studies) checklist; risk of bias was 
assessed using PROBAST (prediction model risk of 
bias assessment tool).
results
37 421 titles were screened, and 169 studies 
describing 232 prediction models were included. The 
review identified seven models for identifying people 
at risk in the general population; 118 diagnostic 
models for detecting covid-19 (75 were based on 
medical imaging, 10 to diagnose disease severity); 
and 107 prognostic models for predicting mortality 
risk, progression to severe disease, intensive care 
unit admission, ventilation, intubation, or length of 
hospital stay. The most frequent types of predictors 
included in the covid-19 prediction models are 
vital signs, age, comorbidities, and image features. 
Flu-like symptoms are frequently predictive in 
diagnostic models, while sex, C reactive protein, and 
lymphocyte counts are frequent prognostic factors. 
Reported C index estimates from the strongest form 
of validation available per model ranged from 0.71 to 
0.99 in prediction models for the general population, 
from 0.65 to more than 0.99 in diagnostic models, 
and from 0.54 to 0.99 in prognostic models. All 
models were rated at high or unclear risk of bias, 
mostly because of non-representative selection of 
control patients, exclusion of patients who had not 
experienced the event of interest by the end of the 
study, high risk of model overfitting, and unclear 
reporting. Many models did not include a description 
of the target population (n=27, 12%) or care setting 
(n=75, 32%), and only 11 (5%) were externally 
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WhAt is AlreAdy knoWn on this topic
The sharp recent increase in coronavirus disease 2019 (covid-19) incidence has 
put a strain on healthcare systems worldwide; an urgent need exists for efficient 
early detection of covid-19 in the general population, for diagnosis of covid-19 in 
patients with suspected disease, and for prognosis of covid-19 in patients with 
confirmed disease
Viral nucleic acid testing and chest computed tomography imaging are standard 
methods for diagnosing covid-19, but are time consuming
Earlier reports suggest that elderly patients, patients with comorbidities (chronic 
obstructive pulmonary disease, cardiovascular disease, hypertension), and 
patients presenting with dyspnoea are vulnerable to more severe morbidity and 
mortality after infection

WhAt this study Adds
Seven models identified patients at risk in the general population (using proxy 
outcomes for covid-19)
Thirty three diagnostic models were identified for detecting covid-19, in addition 
to 75 diagnostic models based on medical images, 10 diagnostic models for 
severity classification, and 107 prognostic models for predicting, among others, 
mortality risk, progression to severe disease
Proposed models are poorly reported and at high risk of bias, raising concern 
that their predictions could be unreliable when applied in daily practice
Two prediction models (one for diagnosis and one for prognosis) were identified 
as being of higher quality than others and efforts should be made to validate 
these in other datasets
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validated by a calibration plot. The Jehi diagnostic 
model and the 4C mortality score were identified as 
promising models.
cOnclusiOn
Prediction models for covid-19 are quickly entering 
the academic literature to support medical decision 
making at a time when they are urgently needed. This 
review indicates that almost all pubished prediction 
models are poorly reported, and at high risk of bias 
such that their reported predictive performance is 
probably optimistic. However, we have identified 
two (one diagnostic and one prognostic) promising 
models that should soon be validated in multiple 
cohorts, preferably through collaborative efforts 
and data sharing to also allow an investigation of 
the stability and heterogeneity in their performance 
across populations and settings. Details on all 
reviewed models are publicly available at https://www.
covprecise.org/. Methodological guidance as provided 
in this paper should be followed because unreliable 
predictions could cause more harm than benefit in 
guiding clinical decisions. Finally, prediction model 
authors should adhere to the TRIPOD (transparent 
reporting of a multivariable prediction model for 
individual prognosis or diagnosis) reporting guideline.
systematic review registratiOn
Protocol https://osf.io/ehc47/, registration https://
osf.io/wy245.
reaDers’ nOte
This article is a living systematic review that will 
be updated to reflect emerging evidence. Updates 
may occur for up to two years from the date of 
original publication. This version is update 3 of 
the original article published on 7 April 2020 (BMJ 
2020;369:m1328). Previous updates can be found 
as data supplements (https://www.bmj.com/
content/369/bmj.m1328/related#datasupp). When 
citing this paper please consider adding the update 
number and date of access for clarity.

introduction
The novel coronavirus disease 2019 (covid-19) 
presents an important and urgent threat to global 
health. Since the outbreak in early December 2019 
in the Hubei province of the People’s Republic of 
China, the number of patients confirmed to have 
the disease has exceeded 47  million as the disease 
spread globally, and the number of people infected is 
probably much higher. More than 1.2 million people 
have died from covid-19 (up to 3 November 2020).1 
Despite public health responses aimed at containing 
the disease and delaying the spread, several countries 
have been confronted with a critical care crisis, and 
more countries could follow.2-4 Outbreaks lead to 
important increases in the demand for hospital beds 
and shortage of medical equipment, while medical 
staff themselves can also become infected. Several 
regions have had or are experiencing second waves, 
and despite improvements in testing and tracing, 
several regions are again facing the limits of their test 
capacity, hospital resources and healthcare staff.5 6

To mitigate the burden on the healthcare system, 
while also providing the best possible care for patients, 
efficient diagnosis and information on the prognosis 
of the disease are needed. Prediction models that 
combine several variables or features to estimate the 
risk of people being infected or experiencing a poor 
outcome from the infection could assist medical staff 
in triaging patients when allocating limited healthcare 
resources. Models ranging from rule based scoring 
systems to advanced machine learning models (deep 
learning) have been proposed and published in 
response to a call to share relevant covid-19 research 
findings rapidly and openly to inform the public health 
response and help save lives.7

We aimed to systematically review and critically 
appraise all currently available prediction models for 
covid-19, in particular models to predict the risk of 
covid-19 infection or being admitted to hospital with 
the disease, models to predict the presence of covid-19 
in patients with suspected infection, and models to 
predict the prognosis or course of infection in patients 
with covid-19. We included model development and 
external validation studies. This living systematic 
review, with periodic updates, is being conducted 
by the international COVID-PRECISE (Precise Risk 
Estimation to optimise covid-19 Care for Infected or 
Suspected patients in diverse sEttings; https://www.
covprecise.org/) group in collaboration with the 
Cochrane Prognosis Methods Group.

Methods
We searched the publicly available, continuously 
updated publication list of the covid-19 living syste-
matic review.8 We validated whether the list is fit for 
purpose (online supplementary material) and further 
supplemented it with studies on covid-19 retrieved from 
arXiv. The online supplementary material presents the 
search strings. We included studies if they developed 
or validated a multivariable model or scoring system, 
based on individual participant level data, to predict 
any covid-19 related outcome. These models included 
three types of prediction models: diagnostic models 
to predict the presence or severity of covid-19 in 
patients with suspected infection; prognostic models 
to predict the course of infection in patients with 
covid-19; and prediction models to identify people 
in the general population at risk of covid-19 infection 
or at risk of being admitted to hospital with the  
disease.

We searched the database repeatedly up to 1 July 
2020 (supplementary table 1). As of the third update 
(search date 1 July), we only include peer reviewed 
articles (indexed in PubMed and Embase through 
Ovid). Preprints (from bioRxiv, medRxiv, and arXiv) 
that were already included in previous updates of the 
systematic review remain included in the analysis. 
Reassessment takes place after publication of a 
preprint in a peer reviewed journal. No restrictions 
were made on the setting (eg, inpatients, outpatients, 
or general population), prediction horizon (how 
far ahead the model predicts), included predictors, 
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or outcomes. Epidemiological studies that aimed 
to model disease transmission or fatality rates, 
diagnostic test accuracy, and predictor finding studies 
were excluded. We focus on studies published in 
English. Starting with the second update, retrieved 
records were initially screened by a text analysis tool 
developed using artificial intelligence to prioritise 
sensitivity (supplementary material). Titles, abstracts, 
and full texts were screened for eligibility in duplicate 
by independent reviewers (pairs from LW, BVC, MvS) 
using EPPI-Reviewer,9 and discrepancies were resolved 
through discussion. 

Data extraction of included articles was done by 
two independent reviewers (from LW, BVC, GSC, TPAD, 
MCH, GH, KGMM, RDR, ES, LJMS, EWS, KIES, CW, AL, 
JM, TT, JAAD, KL, JBR, LH, CS, MS, MCH, NS, NK, SMJvK, 
JCS, PD, CLAN, RW, GPM, IT, JYV, DLD, JW, FSvR, PH, 
VMTdJ, BCTvB, ICCvdH, DJM, MK, and MvS). Reviewers 
used a standardised data extraction form based on the 
CHARMS (critical appraisal and data extraction for 
systematic reviews of prediction modelling studies) 
checklist10 and PROBAST (predic tion model risk of 
bias assessment tool; www.probast.org) for assessing 
the reported prediction models.11 We sought to extract 
each model’s predictive per formance by using whatever 
measures were presen ted. These measures included 
any summaries of discrimination (the extent to which 
predicted risks discriminate between participants with 
and without the outcome), and calibration (the extent 
to which predicted risks correspond to observed risks) 
as recommended in the TRIPOD (transparent reporting 
of a multivariable prediction model for individual 
prognosis or diagnosis; www.tripod-statement.org) 
statement.12 Discrimination is often quantified by 
the C index (C index=1 if the model discriminates 
perfectly; C index=0.5 if discrimination is no better 
than chance). Calibration is often quantified by the 
calibration intercept (which is zero when the risks are 
not systematically overestimated or underestimated) 
and calibration slope (which is one if the predicted 
risks are not too extreme or too moderate).13 We 
focused on performance statistics as estimated from 
the strongest available form of validation (in order 
of strength: external (evaluation in an independent 
database), internal (bootstrap validation, cross 
validation, random training test splits, temporal 
splits), apparent (evaluation by using exactly the 
same data used for development)). Any discrepancies 
in data extraction were discussed between reviewers, 
and remaining conflicts were resolved by LW or MvS. 
The online supplementary material provides details 
on data extraction. Some studies investigated multiple 
models and some models were investigated in multiple 
studies (that is, in external validation studies). The 
unit of analysis was a model within a study, unless 
stated otherwise. We considered aspects of PRISMA 
(preferred reporting items for systematic reviews and 
meta-analyses)14 and TRIPOD12 in reporting our study. 
Details on all reviewed studies and prediction models 
are publicly available at https://www.covprecise.org/. 

Patient and public involvement
It was not possible to involve patients or the public in 
the design, conduct, or reporting of our research. A lay 
summary of the project’s aims is available on https://
www.covprecise.org/project/. The study protocol and 
preliminary results are publicly available on https://
osf.io/ehc47/, medRxiv and https://www.covprecise.
org/living-review/.

results
We retrieved 37 412 titles through our systematic 
search (of which 23 203 were included in the present 
update; supplementary table 1, fig 1). We included 
a further nine studies that were publicly available 
but were not detected by our search. Of 37 421 titles, 
444 studies were retained for abstract and full text 
screening (of which 169 are included in the present 
update). One hundred sixty nine studies describing 232 
prediction models met the inclusion criteria (of which 
62 studies and 87 models added since the present 
update, supplementary table 1).15-183 These studies 
were selected for data extraction and critical appraisal. 
The unit of analysis was the model within a study: of 
these 232 models, 208 were unique, newly developed 
models for covid-19. The remaining 24 analyses were 
external validations of existing models (in a study other 
than the model development study). Some models 
were validated more than once (in different studies, as 
described below). Many models are publicly available 
(box 1). A database with the description of each model 
and its risk of bias assessment can be found on https://
www.covprecise.org/.

Primary datasets
One hundred seventy four (75%) models used data 
from a single country (table 1), 42 (18%) models used 
international data, and for 16 (7%) models it was 
unclear how many (and which) countries contributed 
data. Two (1%) models used simulated data and 12 
(5%) used proxy data to estimate covid-19 related risks 
(eg, Medicare claims data from 2015 to 2016). Most 
models were intended for use in confirmed covid-19 
cases (47%) and a hospital setting (51%). The average 
patient age ranged from 39 to 71 years, and the 
proportion of men ranged from 35% to 75%, although 
this information was often not reported. One study 
developed a prediction model for use in paediatric 
patients.27

Based on the studies that reported study dates, 
data were collected from December 2019 to June 
2020. Some centres provided data to multiple studies 
and several studies used open Github184 or Kaggle185 
data repositories (version or date of access often 
unspecified), and so it was unclear how much these 
datasets overlapped across our identified studies. 

Among the diagnostic model studies, the reported 
prevalence of covid-19 varied between 7% and 71% 
(if a cross sectional or cohort design was used). 
Because 75 diagnostic studies used either case-control 
sampling or an unclear method of data collection, the 
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prevalence in these diagnostic studies might not be 
representative of their target population. 

Among the studies that developed prognostic models 
to predict mortality risk in people with confirmed or 
suspected infection, the percentage of deaths ranged 

from 1% to 52%. This wide variation is partly because 
of substantial sampling bias caused by studies 
excluding participants who still had the disease at 
the end of the study period (that is, they had neither 
recovered nor died). Additionally, length of follow-up 
varied between studies (but was often not reported), 
and there is likely to be local and temporal variation 
in how people were diagnosed as having covid-19 or 
were admitted to the hospital (and therefore recruited 
for the studies).

models to predict risk of covid-19 in the general 
population
We identified seven models that predicted risk of 
covid-19 in the general population. Three models 
from one study used hospital admission for non-
tuberculosis pneumonia, influenza, acute bronchitis, 
or upper respiratory tract infections as proxy outcomes 
in a dataset without any patients with covid-19.16 
Among the predictors were age, sex, previous hospital 
admission, comorbidities, and social determinants of 
health. The study reported C indices of 0.73, 0.81, and 
0.81. A fourth model used deep learning on thermal 

Additional records identified through other sources

Articles excluded
Not a prediction model development or
  validation study
Preprint released aer 5 May 2020
Epidemiological model to estimate
  disease transmission or case fatality rate
Commentary, editorial or letter
Methods paper
Duplicate article
No full text
Written in Chinese

82

84
27

19
40
21

1
1

Records screened

Records identified through database searching

Records excluded

Articles assessed for eligibility

Studies included in review (232 models)

275

169

444

36 977

37 421

Diagnostic models
(including 10 severity models

and 75 imaging studies)

Prognostic models
(including 39 for mortality,

28 for progression to
severe or critical state)

Models to identify people
at risk in general population

37 412 9

7 118 107

Fig 1 | Prisma (preferred reporting items for systematic reviews and meta-analyses) flowchart of study inclusions and 
exclusions

box 1: availability of models in format for use in clinical practice

Two hundred and eight unique models were developed in the included studies. Thirty 
(14%) of these models were presented as a model equation including intercept and 
regression coefficients. Eight (4%) models were only partially presented (eg, intercept 
or baseline hazard were missing). The remaining did not provide the underlying model 
equation.
Seventy two models (35%) are available as a tool for use in clinical practice (in addition 
to or instead of a published equation). Twenty seven models were presented as a web 
calculator (13%), 12 as a sum score (6%), 11 as a nomogram (5%), 8 as a software 
object (4%), 5 as a decision tree or set of predictions for subgroups (2%), 3 as a chart 
score (1%), and 6 in other usable formats (3%). 
All these presentation formats make predictions readily available for use in the 
clinic. However, because all models were at high or uncertain risk of bias, we do 
not recommend their routine use before they are externally validated, ideally by 
independent investigators.
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videos from the faces of people wearing facemasks to 
determine abnormal breathing (not covid related) with 
a reported sensitivity of 80%.92 A fifth model used 
demographics, symptoms, and contact history in a 
mobile app to assist general practitioners in collecting 
data and to risk-stratify patients. It was contrasted with 
two further models that included additional blood 
values and blood values plus computed tomography 
(CT) images. The authors reported a C index of 0.71 
with demographics only, which rose to 0.97 and 0.99 
as blood values and imaging characteristics were 
added.151 Calibration was not assessed in any of the 
general population models.

Diagnostic models to detect covid-19 in patients 
with suspected infection
We identified 33 multivariable models to distinguish 
between patients with and without covid-19. Most 
models targeted patients with suspected covid-19. 
Reported C index values ranged between 0.65 and 
0.99. Calibration was assessed for seven models 
using calibration plots (including two at external 
validation), with mixed results. The most frequently 
included predictors (≥10 times) were vital signs (eg, 
temperature, heart rate, respiratory rate, oxygen 
saturation, blood pressure), flu-like signs and 
symptoms (eg, shiver, fatigue), age, electrolytes, image 
features (eg, pneumonia signs on CT scan), contact 
with individuals with confirmed covid-19, lymphocyte 
count, neutrophil count, cough or sputum, sex, 
leukocytes, liver enzymes, and red cell distribution 
width.

Ten studies aimed to diagnose severe disease in 
patients with covid-19: nine in adults with reported 
C indices between value of 0.80 and 0.99, and one in 
children that reported perfect classification of severe 
disease.27 Calibration was not assessed in any of the 
models. Predictors of severe covid-19 used more than 
once were comorbidities, liver enzymes, C reactive 
protein, imaging features, lymphocyte count, and 
neutrophil count.

Seventy five prediction models were proposed 
to support the diagnosis of covid-19 or covid-19 
pneumonia (and some also to monitor progression) 
based on images. Most studies used CT images or 
chest radiographs. Others used spectrograms of 
cough sounds55 and lung ultrasound.75 The predictive 
performance varied considerably, with reported C 
index values ranging from 0.70 to more than 0.99. 
Only one model based on imaging was evaluated by 
use of a calibration plot, and it appeared to be well 
calibrated at external validation.186

Prognostic models for patients with diagnosis of 
covid-19
We identified 107 prognostic models for patients with 
a diagnosis of covid-19. The intended use of these 
models (that is, when to use them, and for whom) was 
often not clearly described. Prediction horizons varied 
between one and 37 days, but were often unspecified.

Of these models, 39 estimated mortality risk and 
28 aimed to predict progression to a severe or critical 
disease. The remaining studies used other outcomes 
(single or as part of a composite) including recovery, 
length of hospital stay, intensive care unit admission, 
intubation, (duration of) mechanical ventilation, 
acute respiratory distress syndrome, cardiac injury 
and thrombotic complication. One study used data 
from 2015 to 2019 to predict mortality and prolonged 
assisted mechanical ventilation (as a non-covid-19 
proxy outcome).115 The most frequently used categories 
of prognostic factors (for any outcome, included at 
least 20 times) included age, comorbidities, vital signs, 
image features, sex, lymphocyte count, and C reactive 
protein.

table 1 | characteristics of reviewed prediction models for diagnosis and prognosis of 
coronavirus disease 2019 (covid-19)

 no (%) of models* or median  
(interquartile range)

country†
Single country data  174 (75)
 China  97 (42)
 Italy  23 (10)
 United States  17 (7)
 South Korea  10 (4)
 France  5 (2)
 Singapore  4 (2)
 Turkey  4 (2)
 Brazil  3 (1)
 Spain  2 (1)
 United Kingdom  2 (1)
 Other single country  8 (3)
International (combined) data  42 (18)
Unknown origin of data  16 (7)
type of data used
Proxy (non-covid-19) data  12 (5)
Simulated data  2 (1)
target setting
Patients admitted to hospital  119 (51)
Patient at triage centre or fever clinic  12 (5)
Patients in general practice  3 (1)
Other  23 (10)
Unclear  75 (32)
target population
Confirmed covid-19  108 (47)
Suspected covid-19  84 (36)
Other  13 (6)
Unclear  27 (12)
type of model
Predict risks of covid-19 in the general population  7 (3)
Diagnostic (covid-19 v not covid-19)  33 (14)
Diagnostic classification of covid-19 severity  10 (4)
Diagnostic, imaging data only  75 (32)
Prognostic  107 (46)
study type
Developed in reviewed study  50 (22)
Developed and internally validated in reviewed study  112 (48)
Developed and externally validated in reviewed study  46 (20)
Externally validated in reviewed study  24 (10)
sample size
Sample size (development)  338 (134-707)
No of events (development)  69 (37-160)
Sample size (external validation)  189 (76-312)
No of events (external validation)  40 (24-122)
*Analysis unit is a model within a study. Some studies investigated multiple models and some models were 
investigated in multiple studies (that is, in external validation studies). 
†A study that uses development data from one country and validation data from another is classified as 
international.
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Studies that predicted mortality reported C indices 
between 0.68 and 0.98. Four studies also presented 
calibration plots (including at external validation for 
three models), all indicating miscalibration15  69 118 
or showing plots for integer scores without clearly 
explaining how these were translated into predicted 
risks.143 The studies that developed models to predict 
progression to a severe or critical disease reported 
C indices between 0.58 and 0.99. Five of these 
models also were evaluated by calibration plots, 
two of them at external validation. Even though 
calibration appeared good, plots were constructed 
in an unclear way.85 121 Reported C indices for other 
outcomes varied between 0.54 (admission to intensive 
care) and 0.99 (severe symptoms three days after 
admission), and five models had calibration plots 
(of which three at external validation), with mixed  
results.

risk of bias
All models were at high (n=226, 97%) or unclear 
(n=6, 3%) risk of bias according to assessment 
with PROBAST, which suggests that their predictive 
performance when used in practice is probably lower 
than that reported (fig 2). Therefore, we have cause for 
concern that the predictions of the proposed models 
are unreliable when used in other people. Figure 2 and 
box 2 gives details on common causes for risk of bias 
for each type of model.

Ninety eight models (42%) had a high risk of bias 
for the participants domain, which indicates that 
the participants enrolled in the studies might not be 
representative of the models’ targeted populations. 
Unclear reporting on the inclusion of participants led to 
an unclear risk of bias assessment in 58 models (25%), 
and 76 (33%) had a low risk of bias for the participants 
domain. Fifteen models (6%) had a high risk of bias for 
the predictor domain, which indicates that predictors 
were not available at the models’ intended time of 
use, not clearly defined, or influenced by the outcome 
measurement. One hundred and thirty five (58%) 
models were rated unclear and 82 (35%) rated at low 
risk of bias for the predictor domain. Most studies used 
outcomes that are easy to assess (eg, death, presence 
of covid-19 by laboratory confirmation), and hence 
95 (41%) were rated at low risk of bias. Nonetheless, 
there was cause for concern about bias induced by 
the outcome measurement in 50 models (22%), for 
example, due to the use of subjective or proxy outcomes 
(eg, non-covid-19 severe respiratory infections). Eighty 
seven models (38%) had an unclear risk of bias due 
to opaque or ambiguous reporting. Two hundred and 
eighteen (94%) models were at high risk of bias for the 
analysis domain. The reporting was insufficiently clear 
to assess risk of bias in the analysis in 13 studies (6%). 
Only one model had a low risk of bias for the analysis 
domain (<1%). Twenty nine (13%) models had low 
risk of bias on all domains except analysis, indicating 
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Fig 2 | PrObast (prediction model risk of bias assessment tool) risk of bias for all included models combined (n=232) and broken down per type of 
model
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adequate data collection and study design, but issues 
that could have been avoided by conducting a better 
statistical analysis. Many studies had small to modest 
sample sizes (table 1), which led to an increased risk of 
overfitting, particularly if complex modelling strategies 
were used. In addition, 50 models (22%) were nei-
ther internally nor externally validated. Performance 
statistics calculated on the development data from 
these models are likely optimistic. Calibration was only 
assessed for 22 models using calibration plots (10%), 
of which 11 on external validation data. 

We found two models that were generally of good 
quality, built on large datasets, and had been rated low 
risk of bias on most domains but with an overall rating 
of unclear risk of bias, owing to unclear details on one 
signalling question within the analysis domain (table 
2 provides a summary). Jehi and colleagues presented 
findings from developing a diagnostic model, however, 
there was substantial missing data and it remains 
unclear whether the use of median imputation 
influenced results, and there are unexplained discre-
pancies between the online calculator, nomogram, 
and published logistic regression model.141 Hence, 
the calculator should not be used without further 
validation. Knight and colleagues developed a 
prognostic model for in-hospital mortality, however, 

continuous predictors were dichotomised, which 
reduces granularity of predicted risks (even though 
the model had a C index comparable with that of a 
generalised additive model).143 The model was also 
converted into an sum score, but it was unclear how 
the scores were translated to the predicted mortality 
risks that were used to evaluate calibration.

external validation
Forty six models were developed and externally 
validated in the same study (in an independent 
dataset, excluding random training test splits and 
temporal splits). In addition, 24 external validations 
of models were developed for covid-19 or before the 
covid-19 pandemic in separate studies. However, none 
of the external validations was scored as low risk of 
bias, three were rated as unclear risk of bias, and 67 
were rated as high risk of bias. One common concern 
is that datasets used for the external validation were 
likely not representative of the target population (eg, 
patients not being recruited consecutively, use of an 
inappropriate study design, use of unrepresentative 
controls, exclusion of patients still in follow-up). 
Consequently, predictive performance could differ 
if the models are applied in the targeted population. 
Moreover, only 15 (21%) external validations had 

box 2: common causes of risk of bias in the reported prediction models

models to predict coronavirus disease 2019 (covid-19) risk in general population
All of these models had unclear or high risk of bias for the participant, outcome, and analysis domain. All were based on proxy outcomes to predict 
covid-19 related risks, such as presence of or hospital admission due to severe respiratory disease, in the absence of data of patients with  
covid-19.16 92 151

Diagnostic models
Ten models (30%) used inappropriate data sources (eg, due to a non-nested case-control design), nine (27%) used inappropriate inclusion 
or exclusion criteria such that the study data was not representative of the target population, and eight (24%) selected controls that were not 
representative of the target population for a diagnostic model (eg, controls for a screening model had viral pneumonia). Other frequent problems 
were dichotomisation of predictors (nine models, 27%), and tests used to determine the outcome (eight models, 24%) or predictor definitions or 
measurement procedures (seven models, 21%) that varied between participants.
Diagnostic models based for severity classification
Two models (20%) used predictor data that was assessed while the severity (the outcome) was known. Other concerns include non-standard or lack 
of a prespecified outcome definition (two models, 20%), predictor measurements (eg, fever) being part of the outcome definition (two models, 20%) 
and outcomes being assessed with knowledge of predictor measurements (two models, 20%).
Diagnostic models based on medical imaging
Generally, studies did not clearly report which patients had imaging during clinical routine. Fifty five (73%) used an inappropriate or unclear study 
design to collect data (eg, a non-nested case-control). It was often unclear (39 models, 52%) whether the selection of controls was made from 
the target population (that is, patients with suspected covid-19). Outcome definitions were often not defined or determined in the same way in 
all participants (18 models, 24%). Diagnostic model studies that used medical images as predictors were all scored as unclear on the predictor 
domain. These publications often lacked clear information on the preprocessing steps (eg, cropping of images). Moreover, complex machine learning 
algorithms transform images into predictors in a complex way, which makes it challenging to fully apply the PROBAST predictors section for such 
imaging studies. However, a more favourable assessment of the predictor domain does not lead to better overall judgment regarding risk of bias for 
the included models. Careful description of model specification and subsequent estimation were frequently lacking, challenging the transparency 
and reproducibility of the models. Studies used different deep learning architectures, some were established and others specifically designed, 
without benchmarking the used architecture against others.
Prognostic models
Dichotomisation of predictors was a frequent concern (22 models, 21%). Other problems include inappropriate inclusions or exclusions of study 
participants (18 models, 17%). Study participants were often excluded because they did not develop the outcome at the end of the study period but 
were still in follow-up (that is, they were in hospital but had not recovered or died), yielding a selected study sample (12 models, 11%). Additionally, 
many models (16 models, 15%) did not account for censoring or competing risks.
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100 or more events, which is the recommended 
minumum.187 188 Only 11 (16%) external validations 
presented a calibration plot.

Table 3 shows the results of external validations that 
had at most an unclear risk of bias and at least 100 
events in the external validation set. The model by Jehi 
et al has been discussed above.141 Luo and colleagues 
performed a validation of the CURB-65 score, origi-
nally developed to predict mortality of community 
acquired pneumonia, to assess its abilty to predict in-
hospital mortality in patients with confirmed covid-19. 
This validation was conducted in a large retrospective 
cohort of patients admitted to two Chinese designated 
hospitals to treat patients with pneumonia from SARS-
CoV-2 (severe acute respiratory syndrome corona-
virus 2).155 It was unclear whether all consecutive 
patients were included (although this is likely given 
the retrospective design), no calibration plot was used 
because the score gives an integer as output rather 
than estimates risks, and the score uses dichotomised 
predictors. Overall, the external validation by Luo et 
al was performed well. Studies that validated CURB-
65 in patients with covid-19 obtained C indexes of 
0.58, 0.74, 0.75, 0.84, and 0.88.130 148 155 164 189 These 
observed differences might be due to differences in 
risk of bias (all except Luo et al were rated high risk 
of bias), heterogeneity in study populations (South 
Korea, China, Turkey, and the United States), outcome 
definitions (progression to severe covid-19 v mortality), 
and sampling variability (number of events were 36, 
55, 131, 201, and unclear). 

discussion
In this systematic review of prediction models related 
to the covid-19 pandemic, we identified and critically 
appraised 232 models described in 169 studies. These 
prediction models can be divided into three categories: 
models for the general population to predict the risk 
of having covid-19 or being admitted to hospital for 
covid-19; models to support the diagnosis of covid-19 
in patients with suspected infection; and models to 
support the prognostication of patients with covid-19. 
All models reported moderate to excellent predictive 
performance, but all were appraised to have high 
or uncertain risk of bias owing to a combination of 
poor reporting and poor methodological conduct 

for participant selection, predictor description, and 
statistical methods used. Models were developed 
on data from different countries, but the majority 
used data from a single country. Often, the available 
sample sizes and number of events for the outcomes of 
interest were limited. This problem is well known when 
building prediction models and increases the risk of 
overfitting the model.190 A high risk of bias implies that 
the performance of these models in new samples will 
probably be worse than that reported by the researchers. 
Therefore, the estimated C indices, often close to 1 and 
indicating near perfect discrimination, are probably 
optimistic. The majority of studies developed new 
models specifically for covid-19, but only 46 carried 
out an external validation, and calibration was 
rarely assessed. We cannot yet recommend any of 
the identified prediction models for widespread use 
in clinical practice, although a few diagnostic and 
prognostic models originated from studies that were 
clearly of better quality. We suggest that these models 
should be further validated in other data sets, and 
ideally by independent investigators.141 143

challenges and opportunities
The main aim of prediction models is to support 
medical decision making in individual patients. 
Therefore, it is vital to identify a target setting in 
which predictions serve a clinical need (eg, emergency 
department, intensive care unit, general practice, 
symptom monitoring app in the general population), 
and a representative dataset from that setting 
(preferably comprising consecutive patients) on which 
the prediction model can be developed and validated. 
This clinical setting and patient characteristics should 
be described in detail (including timing within the 
disease course, the severity of disease at the moment of 
prediction, and the comorbidity), so that readers and 
clinicians are able to understand if the proposed model 
could be suited for their population. Unfortunately, the 
studies included in our systematic review often lacked 
an adequate description of the target setting and study 
population, which leaves users of these models in 
doubt about the models’ applicability. Although we 
recognise that the earlier studies were done under 
severe time constraints, we recommend that any 
studies currently in preprint and all future studies 

table 2 | Prediction models with unclear risk of bias overall and large development samples

study; setting; and outcome model

sample size (total no of 
participants  
(no with outcome))*

Predictive performance
Overall risk of bias 
using PrObast

strongest type  
of validation reported Performance†

Diagnostic models
Jehi et al141; data from US, patients with 
suspected covid-19; covid-19 diagnosis

Jehi model Development 11 672 (818); 
external validation  
2295 (290)

External validation, 
same country, new centres, 
and later period

C index 0.84  
(95% CI 0.82 to 0.86)

Unclear

Prognostic models
Knight et al143; data from UK, suspected or 
confirmed symptomatic inpatients;  
in-hospital mortality

4C Mortality 
Score

Development 35 463 
(11 426); temporal  
validation 22 361 (6729)

Temporal validation C index 0.77  
(95% CI 0.76 to 0.77)

Unclear

PROBAST=prediction model risk of bias assessment tool; covid-19=coronavirus disease 2019.
*According to PROBAST, a large dataset is at least 10 events per candidate variable (EPV) for model development and at least 100 events for validation. If EPV could not be extracted or 
calculated from the study report, 100 events for model development was the lower limit to be included in this table.
†Performance from strongest type of validation reported.
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should adhere to the TRIPOD reporting guideline12 to 
improve the description of their study population and 
guide their modelling choices. TRIPOD translations 
(eg, in Chinese and Japanese) are also available at 
https://www.tripod-statement.org.

A better description of the study population could 
also help us understand the observed variability in the 
reported outcomes across studies, such as covid-19 
related mortality and covid-19 prevalence. The 
variability in mortality could be related to differences 
in included patients (eg, age, comorbidities) and 
interventions for covid-19. The variability in prevalence 
could in part be reflective of different diagnostic 
standards across studies. 

Covid-19 prediction will often not present as a 
simple binary classification task. Complexities in the 
data should be handled appropriately. For example, a 
prediction horizon should be specified for prognostic 
outcomes (eg, 30 day mortality). If study participants 
have neither recovered nor died within that time 
period, their data should not be excluded from 
analysis, which some reviewed studies have done. 
Instead, an appropriate time to event analysis should 
be considered to allow for administrative censoring.13 
Censoring for other reasons, for instance because of 
quick recovery and loss to follow-up of patients who 
are no longer at risk of death from covid-19, could 
necessitate analysis in a competing risk framework.191

We reviewed 75 studies that used only medical 
images to diagnose covid-19, covid-19 related 
pneumonia, or to assist in segmentation of lung 
images, the majority using advanced machine learning 
methodology. The predictive performance measures 
showed a high to almost perfect ability to identify 
covid-19, although these models and their evaluations 
also had a high risk of bias, notably because of poor 
reporting and an artificial mix of patients with and 
without covid-19. Currently, none of these models 
is recommended to be used in clinical practice. An 
independent systematic review and critical appraisal 
(using PROBAST12) of machine learning models for 
covid-19 using chest radiographs and CT scans came 
to the same conclusions, even though they focused 
on models that met a minimum requirement of study 
quality based on specialised quality metrics for the 
assessment of radiomics and deep-learning based 
diagnostic models in radiology.192

A prediction model applied in a new healthcare 
setting or country often produces predictions that 
are miscalibrated193 and might need to be updated 
before it can safely be applied in that new setting.13 
This requires data from patients with covid-19 to be 
available from that system. Instead of developing and 
updating predictions in their local setting, individual 
participant data from multiple countries and healthcare 
systems might allow better understanding of the 
generalisability and implementation of prediction 
models across different settings and populations. This 
approach could greatly improve the applicability and 
robustness of prediction models in routine care.194-198

The evidence base for the development and 
validation of prediction models related to covid-19 
will continue to increase over the coming months. 
To leverage the full potential of these evolutions, 
international and interdisciplinary collaboration 
in terms of data acquisition, model building and 
validation is crucial.

study limitations
With new publications on covid-19 related prediction 
models rapidly entering the medical literature, this 
systematic review cannot be viewed as an up-to-date  
list of all currently available covid-19 related prediction 
models. Also, 80 of the studies we reviewed were only 
available as preprints. These studies might improve 
after peer review, when they enter the official medical 
literature; we will reassess these peer reviewed 
publications in future updates. We also found other 
prediction models that are currently being used in 
clinical practice without scientific publications,199 and 
web risk calculators launched for use while the scientific 
manuscript is still under review (and unavailable on 
request).200 These unpublished models naturally fall 
outside the scope of this review of the literature. As 
we have argued extensively elsewhere,201 transparent 
reporting that enables validation by independent 
researchers is key for predictive analytics, and clinical 
guidelines should only recommend publicly available 
and verifiable algorithms.

implications for practice
All reviewed prediction models were found to have 
an unclear or high risk of bias, and evidence from 
independent external validations of the newly 

table 3 | external validations with unclear risk of bias and large validation samples

study; setting; and outcome model

sample size (total no of  
participants for model validation 
set (no with outcome))*

Predictive performance
Overall risk of bias 
using PrObasttype of validation Performance

Diagnostic models
Jehi et al141; data from US,  
patients with suspected covid-19; 
covid-19 diagnosis

Jehi model Development 11 672 (818);  
external validation 2295 (290)

External validation, same country, 
new centres and later period

C index 0.84  
(95% CI 0.82 to 0.86)

Unclear

Prognostic models
Luo et al155; data from China,  
in-patients with confirmed  
covid-19; in-hospital mortality

CURB-65 1018 (201) Independent external validation C index 0.84  
(95% CI 0.82 to 0 .93)

Unclear

PROBAST=prediction model risk of bias assessment tool; CURB-65=confusion, urea, respiratory rate, blood pressure plus age of at least 65 years.
*According to PROBAST, a large dataset is at least 10 events per candidate variable for model development and at least 100 events for validation.
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developed models is still scarce. However, the urgency 
of diagnostic and prognostic models to assist in quick 
and efficient triage of patients in the covid-19 pandemic 
might encourage clinicians and policymakers to 
prematurely implement prediction models without 
sufficient documentation and validation. Earlier 
studies have shown that models were of limited use 
in the context of a pandemic,202 and they could even 
cause more harm than good.203 Therefore, we cannot 
recommend any model for use in practice at this point.

The current oversupply of insufficiently validated 
models is not useful for clinical practice. Moreover, 
predictive performance estimates obtained from 
different populations, settings, and types of validation 
(internal v external) are not directly comparable. 
Future studies should focus on validating, comparing, 
improving, and updating promising available 
prediction models.13 The models by Knight and 
colleagues143 and Jehi and colleagues141 are good 
candidates for validation studies in other data. 
We advise Jehi and colleagues to make all model 
equations available for independent validation.141 
Such external validations should assess not only 
discrimination, but also calibration and clinical utility 
(net benefit),193 198 203 in large datasets187 188 collected 
using an appropriate study design. In addition, these 
models’ transportability to other countries or settings 
remains to be investigated. Owing to differences 
between healthcare systems (eg, Chinese and 
European) and over time in when patients are admitted 
to and discharged from hospital, as well as the testing 
criteria for patients with suspected covid-19, we 
anticipate most existing models will be miscalibrated, 
but researchers could attempt to update and adjust the 
model to the local setting.

Most reviewed models used data from a hospital 
setting, but few are available for primary care and the 
general population. Additional research is needed, 
including validation of any recently proposed models 
not yet included in the current update of the living 
review (eg, Clift et al204). The models reviewed to date 
predicted the covid-19 diagnosis or assess the risk of 
mortality or deterioration, whereas long term morbidity 
and functional outcomes remain understudied and 
could be a target outcome of interest in future studies 
developing prediction models.205 206

When creating a new prediction model, we re-
commend building on previous literature and expert 
opinion to select predictors, rather than selecting 
predictors in a purely data driven way.13 This is 
especially important for datasets with limited sample 
size.207 Frequently used predictors included in multiple 
models identified by our review are vital signs, age, 
comorbidities, and image features, and these should 
be considered when appropriate. Flu-like symptoms 
should be considered in diagnostic models, and sex, 
C reactive protein, and lymphocyte counts could be 
considered as prognostic factors.

By pointing to the most important methodological 
challenges and issues in design and reporting of the 
currently available models, we hope to have provided 

a useful starting point for further studies, which 
should preferably validate and update existing ones. 
This living systematic review has been conducted in 
collaboration with the Cochrane Prognosis Methods 
Group. We will update this review and appraisal 
continuously to provide up-to-date information for 
healthcare decision makers and professionals as more 
international research emerges over time.

conclusion
Several diagnostic and prognostic models for covid-19 
are currently available and they all report moderate 
to excellent discrimination. However, these models 
are all at high or unclear risk of bias, mainly because 
of model overfitting, inappropriate model evaluation 
(eg, calibration ignored), use of inappropriate data 
sources and unclear reporting. Therefore, their 
performance estimates are probably optimistic and not 
representative for the target population. The COVID-
PRECISE group does not recommend any of the current 
prediction models to be used in practice, but one 
diagnostic and one prognostic model originated from 
higher quality studies and should be (independently) 
validated in other datasets. For details of the reviewed 
models, see https://www.covprecise.org/. Future stu-
dies aimed at developing and validating diagnostic 
or prognostic models for covid-19 should explicitly 
describe the concerns raised and follow existing 
methodological guidance for prediction modeling 
studies, because unreliable predictions could cause 
more harm than benefit in guiding clinical decisions. 
Prediction model authors should adhere to the TRIPOD 
(transparent reporting of a multivariable prediction 
model for individual prognosis or diagnosis) reporting 
guideline. Finally, sharing data and expertise for the 
validation and updating of covid-19 related prediction 
models is urgently needed. 
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