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Abstract
A prominent feature of severe streptococcal infections is the 
profound inflammatory response that contributes to system-
ic toxicity. In sepsis the dysregulated host response involves 
both immunological and nonimmunological pathways. 
Here, we report a fatal case of an immunocompetent healthy 
female presenting with toxic shock and purpura fulminans 
caused by group B streptococcus (GBS; serotype III, CC19). 
The strain (LUMC16) was pigmented and hyperhemolytic. 
Stimulation of human primary cells with hyperhemolytic 

LUMC16 and STSS/NF-HH strains and pigment toxin resulted 
in a release of proinflammatory mediators, including tumor 
necrosis factor, interleukin (IL)-1β, and IL-6. In addition, 
LUMC16 induced blood clotting and showed factor XII activ-
ity on its surface, which was linked to the presence of the pig-
ment. The expression of pigment was not linked to a muta-
tion within the CovR/S region. In conclusion, our study shows 
that the hemolytic lipid toxin contributes to the ability of GBS 
to cause systemic hyperinflammation and interferes with the 
coagulation system. © 2019 The Author(s)

Published by S. Karger AG, Basel
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tribution of modified material requires written permission.



Siemens et al.J Innate Immun 2020;12:291–303292
DOI: 10.1159/000504002

Introduction

Streptococcal toxic shock syndrome (STSS) is typical-
ly caused by Streptococcus pyogenes (group A streptococ-
cus [GAS]). Reports of septic shock and multiorgan dys-
function due to Streptococcus agalactiae (group B strep-
tococcus [GBS]) are increasing [1, 2]. STSS is characterized 
by a systemic cytokine storm, and key streptococcal trig-
gers are the superantigens (SAgs) [3]. SAgs belong to a 
family of exotoxins, which activate T cells by binding in-
tact to the MHC (major histocompatibility complex) 
class-II molecules on antigen-presenting cells and to the 
variable β-chains of the T-cell receptor. Once the MHC 
specificity of T cells is bypassed, excessive activation of 
Vβ-specific T cells with subsequent downstream activa-
tion of other cell types occurs, which leads to an overzeal-
ous inflammatory response [3]. To date, SAg genes have 
been identified only in a few bacterial species, including 
group A, C, and G streptococci, Staphylococcus aureus, 
Yersinia pseudotuberculosis, and Mycoplasma arthritidis 
[4]. Despite the association with GBS and septic shock 
[5], GBS strains lack SAgs and the nature of the proin-
flammatory factors remains elusive.

Disseminated intravascular coagulation (DIC) is a fre-
quent complication of systemic inflammation in severe 
invasive infections [6]. Blood coagulation can be initiated 
through extrinsic and intrinsic systems and ultimately re-
sults in the generation of thrombin [7, 8]. Recent studies 
have suggested that the contact system, which represents 
the intrinsic coagulation pathway, plays a role in throm-
bus formation in DIC [7, 9]. The human contact system 
consists of two main proteases, factor XII (FXII) and plas-
ma prekallikrein, and one nonenzymatic cofactor, high-
molecular-weight kininogen. Any foreign biological or 
artificial surfaces activate FXII, which in turn activates 
coagulation factor XI (FXI), resulting in subsequent 
thrombus formation [10]. There is a close relationship to 
DIC and systemic inflammatory responses. Several sep-
sis-associated cytokines, including tumor necrosis factor 
(TNF), interleukin (IL)-1β, and IL-6, have been shown to 
stimulate procoagulant activities [11]. Blockage of IL-6, 
but not of TNF, attenuated endotoxin-induced activation 
of coagulation [12, 13]. The role of IL-1β has not been 
fully elucidated yet. However, blocking of the IL-1 recep-
tor in patients with sepsis resulted in reduced thrombin 
generation [14].

Classically, infections with Gram-negative bacteria 
have been associated with DIC [15]. However, the inci-
dence of DIC in patients with Gram-positive bacterial in-
fections seems to be similar [16]. GBS is a major pathogen 

in neonatal sepsis and in nonpregnant adults with under-
lying medical conditions and/or immunosuppressive 
treatment [17, 18]. One of the key GBS virulence factors 
is the β-hemolytic pigment. The GBS pigment, whose 
transcription is regulated by the CovR/S two-component 
system [19], is hemolytic and cytolytic [20, 21], and its 
biosynthesis is catalyzed by the enzymes encoded within 
the cyl operon [22]. Mutations in the CovR/S system or in 
the cyl operon have been associated with expression of the 
pigment at the bacterial surface and with hyperhemolysis 
[23, 24], and such GBS strains are considered to be more 
pathogenic than nonhemolytic strains [23, 25].

Here, we report the fatal case of a previously healthy 
woman who died from septic shock accompanied by DIC 
and purpura fulminans, caused by a hyperhemolytic and 
pigmented GBS strain. A detailed characterization of the 
strain coupled to functional studies implicated the pig-
ment as a key factor in eliciting prothrombotic and in-
flammatory responses.

Subjects and Methods

Bacterial Strains
The LUMC16 strain was identified from blood cultures by 

direct matrix-assisted laser desorption ionization time-of-flight 
mass spectrometry (Bruker Daltonik GmbH). The isolate showed 
a 100% match with S. agalactiae by 16S rRNA gene sequencing 
(GenBank accession No. KY321279) and expressed the group B 
Lancefield antigen. Susceptibility to antibiotics was determined by 
Etest (AB Biodisk), and the minimal inhibitory concentration val-
ues were: penicillin 0.047, cefuroxime 0.047, erythromycin 0.125, 
clindamycin 0.064, and meropenem 0.023 µg mL–1.

The serotyping of the isolates was performed by latex aggluti-
nation. For determination of the sequence type (ST)/clonal com-
plex (CC), genomic DNA was extracted with the QIAamp DNA 
Mini Kit followed by multilocus sequence typing, as described pre-
viously [26], using the PubMLST database (https://pubmlst.org/
sagalactiae/). The case isolate was compared to two well-character-
ized phenotypical GBS variants, one hyperhemolytic (STSS/NF-
HH) and one with low hemolytic activity (STSS/NF-LH) (serotype 
Ib, ST8), obtained from a patient with STSS and necrotizing fasci-
itis (NF) [23]; three noninvasive GBS isolates, i.e., Cervix (serotype 
III), Wound, and Urine (serotype Ib); and three isolates from nec-
rotizing soft tissue infection (NSTI) cases (4012, 6051, and 6061) 
enrolled in the EU-funded project INFECT during 2013–2017 
(ClinicalTrials.gov, NCT01790698). All GBS isolates were cul-
tured in Todd Hewitt broth supplemented with 1.5% (w/v) yeast 
extract at 37  ° C.

In vitro Cell Assays
Human neutrophils, peripheral blood mononuclear cells 

(PBMCs), and monocytes were isolated from whole blood or buffy 
coats from volunteers as previously detailed [27–29]. Neutrophil 
degranulation was determined by measurement of resistin and 
heparin-binding protein (HBP) in neutrophil (5 × 105 cells) super-
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natants collected after 2 h of bacterial (multiplicity of infection 10) 
or pigment stimulations [30–32]. Resistin and HBP levels were de-
termined by ELISA (BioVendor and Axis-Shield) according to the 
manufacturer’s instructions.

Human PBMCs (5 × 105 cells) and monocytes (5 × 105 cells) 
were stimulated with bacteria (multiplicity of infection 10) or pig-
ment for 6 h, and the levels of TNF, IL-1β, IL-4, IL-5, IL-6, IL-8, 
and IL-10 were determined by DuoSet ELISA (all R&D Systems) 
according to the manufacturer’s instructions. For assessment of 
cytotoxicity, buffer stimulations and Triton X-100-lysed cells 
were used as negative and positive controls, respectively. Cytotox-
icity was determined via CytoTox 96 Non-Radioactive Cytotoxic-
ity Assay Kit (Promega) according to the manufacturer’s guide-
lines.

Pigment Purification and Hemoglobin Release Assay
GBS pigment from LUMC16 and STSS/NF-HH was purified as 

previously described [20]. Briefly, bacterial cells were pelleted and 
washed three times with distilled water and twice with DMSO. The 
cell pellet was then suspended in DMSO-0.1% TFA-0.1% starch 
overnight to extract the pigment, cell debris was pelleted, and the 
supernatant containing the pigment was saved. The pigment was 
then precipitated by addition of NH4OH (final concentration, 
0.25%). The precipitated pigment was washed three times with 
HPLC-grade water and twice with DMSO, dissolved in DMSO: 

0.1%TFA, and purified using Sephadex LH-20 (GE Healthcare). 
Fractions containing purified pigment were pooled and precipi-
tated with NH4OH (Sigma-Aldrich) as described above, and 
washed three times with HPLC-grade water (Sigma-Aldrich) and 
twice with DMSO.

Pigment from the STSS/NF-HH strain was used for all experi-
ments due to a higher yield in extraction as compared to the 
LUMC16 strain. To confirm that the pigment isolated from STSS/
NF-HH was the same substance as from the LUMC16 strain, 
MALDI-FTICR-MS was performed. Pigment extracts from 
LUMC16, STSS/NF-HH, and STSS/NF-LH (buffer control) were 
transferred to conductive ITO coated slides (Bruker) and lyophi-
lized for 30 min. The samples were coated with 2,5-dihydroxyben-
zoic acid as the matrix substance (10 mg/mL dissolved in 90% ace-
tonitrile, 10% [v/v] water, and 0.1% [v/v] trifluoroacetic acid) us-
ing an HTX TM-Sprayer under the following conditions: spray 
temperature 60  ° C, flow rate 0.12 mL/min, drying time 10 s, and 
14 passages. Pigment measurements were done using a solariX 
FTMS system (Bruker) in positive mode. The parameters were: 
plate offset 100 V, deflector plate 200 V, laser shots 100, and fre-
quency 1,000 Hz. The transfer optic parameters were: time of flight 
0.9 ms, frequency 4 MHz, and RF amplitude 350 Vpp. Pigment was 
exclusively present in samples from LUMC16 and STSS/NF-HH 
strains (m/z value 677.3862), whereas no peak was detected in ex-
tracts of the STSS/NF-LH strain (online suppl. Fig. 1; for all online 
suppl. material, see www.karger.com/doi/10.1159/000504002). 
This was used as a buffer control (negative control).

To confirm the hemolytic activity of the pigment, a hemoglobin 
release assay was performed using a method previously described 
with minor modifications [33]. In brief, 10% (v/v) human blood in 
PBS was co-incubated with 1 × 105 bacteria or serial dilutions of 
the pigment in a final volume of 1 mL for 6 h or 1 h at 37  ° C, re-
spectively. Hemoglobin release was measured by recording the ab-
sorbance at 490 nm. PBS- or water-treated blood served as a nega-
tive or positive control, respectively.

Clotting and Chromogenic Substrate Assays
Recalcification clotting times of the blood, activated partial 

thromboplastin time (aPTT), and prothrombin time (PT) and 
FXII activation at the bacterial surface were measured as previ-
ously described [34]. The experiments were repeated three times 
in triplicate.

Whole Genome Sequencing and Processing
DNA isolation, sequencing, and processing of the data are de-

scribed in the online supplementary Methods. The sequencing 
data are deposited in the NCBI SRA and Genome database under 
accession No. SAMN10414105–13 and BioProject accession  
No. PRJNA505411 (ftp://ftp-trace.ncbi.nlm.nih.gov/sra/review/
SRP168694_20181211_101246_b1659515b9d1a59ebbc 
790e01084a8f0). Designation of the strains within the BioProject 
database is summarized in online supplementary Table 1.

Quantitative PCR Analysis
Bacterial RNA was isolated using FastRNA Blue (MP Biomed-

icals). cDNA synthesis was performed using the SuperScript First-
Strand Synthesis System (Invitrogen). Quantitative PCR amplifi-
cation was performed with the following primers: GBS_cylK_for 
ATTTATCTGGCGATCGGTTG, GBS_cylK_rev CCTTTGGCA
AACCAATTAAATAAC, GBS_cylE_for GTCGTAGTGGACAG-
GCAATCAC, GBS_cylE_rev CGAAATGATCGACAATGCAG, 
GBS_gyrA_for CTTGGTGATGGGACGTTCAGG, GBS_gyrA_
rev GCTGAAGCAGCACGACGAAC [35], and SYBR GreenER 
Kit (Invitrogen) using an ABI Prism 7500 sequence detection sys-
tem (Applied Biosystems). The levels of gyrA transcription were 
used for normalization.

Statistics
Statistical significance of differences for multiple comparisons 

was determined using the Kruskal-Wallis test with Dunnett’s post 
test. Statistical significance of differences between two samples was 
calculated using Welch’s t test. Statistical analyses were performed 
using GraphPad Prism version 6. A p value < 0.05 was considered 
significant.

Results

Case Report
A previously healthy 55-year-old woman was admit-

ted to the intensive care unit of Leiden University Medical 
Center (LUMC) with septic shock. The day before she 
had woken up in good condition, but during the course 
of the day she had felt slight abdominal discomfort. With-
in the following hours, she had developed diarrhea, nau-
sea, vomiting, and severe pain in her extremities and 
back. A prehospital primary survey revealed hypoxemia 
and hypotension and she was transferred to a hospital.

In the emergency room, ventilator support and aggres-
sive fluid resuscitation were administered, and treatment 
with cefuroxime, ciprofloxacin, metronidazole, and 
clindamycin was started immediately. Laboratory tests 
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revealed lactic metabolic acidosis, acute kidney injury, el-
evated liver enzymes, thrombocytopenia, and leukocyto-
sis. The coagulation parameters were compatible with 
DIC. A CT scan showed signs of enteritis and less en-
hancement of the pancreas, duodenum, and proximal je-
junum without any abnormality of the mesenteric arter-
ies. Upon arrival at the intensive care unit of the tertiary 
center, she had progressed to septic shock with purpura 
fulminans and DIC (Fig.  1a). Later, antibiotics were 
switched to benzylpenicillin and clindamycin, and intra-
venous polyspecific immunoglobulins were given, since 
blood cultures yielded Gram-positive cocci in chains, 
which were later identified as GBS. Within 36 h after the 

first symptom, the patient died from septic shock and 
multiorgan failure. The autopsy showed no macroscopic 
abnormalities – in particular, no asplenia or malignan-
cies. No portal of entry could be identified.

Pigmented GBS Strains Are Hyperhemolytic
Cultures of the case’s LUMC16 strain displayed a 

hyperhemolytic and pigmented phenotype (Fig.  1b; 
LUMC16), and the isolate belonged to serotype III and 
CC19 (ST-19-like). The unusual presentation, with DIC 
and septic shock in an immunocompetent individual, led 
us to explore strain properties that could explain the se-
vere course of infection. For this purpose, we included 
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Fig. 1. Pigmented LUMC16 and STSS/NF-HH GBS strains cause 
hyperhemolysis. a Patient diagnosed with STSS, DIC, and purpura 
fulminans. b Pigmentation of the indicated strains after 16-h 
growth in THY medium. c, d Hemolytic activity of the indicated 
GBS strains shown by a clearance zone around the colonies on 
sheep blood agar plates (c) and by hemoglobin release assay with 
human blood (d). Each symbol represents one independent ex-

periment. Bars denote median values (n = 4). e Relative mRNA 
expression of the indicated genes encoding for pigment biosynthe-
sis from stationary-phase bacterial cultures (n = 4). DIC, dissemi-
nated intravascular coagulation; GBS, group B streptococcus; HH, 
hyperhemolytic; LH, low hemolytic; NF, necrotizing fasciitis; 
NSTI, necrotizing soft tissue infection; STSS, streptococcal toxic 
shock syndrome.
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strains of different serotypes isolated from invasive (STSS, 
NF, and NSTI) and noninvasive infections (Fig. 1b). The 
strain selection included two previously characterized 
phenotypic variants, HH and LH, isolated from the same 
tissue culture of an STSS/NF case [23]. Among the strain 
collection, only LUMC16 and STSS/NF-HH were pig-
mented (Fig. 1b). LUMC16 displayed a remarkably strong 
hemolysis, even exceeding the activity of STSS/NF-HH, 
as evident by hemolysis zones on blood agar plates 
(Fig. 1c) and in the hemoglobin release assay (Fig. 1d). In 
addition, the pigmented strains LUMC16 and STSS/NF-

HH showed a greater abundance of cylE and cylK tran-
scripts than a natural nonpigmented STSS/NF-LH GBS 
variant (Fig. 1e). However, no differences in gene expres-
sion levels between the two pigmented strains were noted.

Comparative Whole Genome Analyses of the Strains
In our previous report, the presence of the pigment 

and hemolytic phenotype of STSS/NF-HH were attrib-
uted to a deletion of valine in CovR [23]. However, this 
result was based on targeted covR/S single gene se-
quencing. Therefore, we conducted whole genome 
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analyses of all strains included in this study. A fully se-
quenced and annotated genome of the 2603VR GBS 
strain (serotype V), which was isolated from an invasive 
infection of a nonpregnant female, was used for the se-
quence variant (SV) analyses. In total, between 1.9 and 
2.2 million bp and 1,911–2,147 CDS were identified 
(online suppl. Table 1). Between 83 and 87% of the 
2603VR genes were shared in strains of this study (on-
line suppl. Fig. 2).

A neighbor joining tree, created from assembled whole 
genomes, showed that LUMC16 is more closely related to 
the 2603VR reference strain than to all other strains 
(Fig. 2a). Comparative analyses of the nine strains with the 
2603VR strain resulted in identification of a wide array of 
SVs, ranging from 1,180 SVs in the LUMC16 strain back-
ground to 8,953 SVs in the 6061 NSTI strain (Fig. 2b). In 
all, 49.2% of the identified SVs in LUMC16 were of a syn-
onymous nature (Fig. 2c; online suppl. Table 2). In addi-
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Fig. 3. Hyperhemolytic LUMC16 and STSS/NF-HH strains induce a 
toxic shock syndrome-associated proinflammatory response in hu-
man PBMCs and monocytes. a Human PBMCs (left panel) and 
monocytes (right panel) were stimulated with viable bacteria for 6 h  
and cytotoxic effects were assessed. Each symbol represents pri-
mary cells from one donor. Bars denote median values (n = 4). 
b–e TNF (b), IL-1β (c), IL-6 (d), and IL-8 (e) release by human 
primary PBMCs and/or monocytes in response to bacterial stimu-

lation. Each symbol represents stimulation of PBMCs/monocytes 
from one healthy volunteer. Horizontal lines denote median values 
(n = 4). The level of significance was determined using the Kruskal-
Wallis test with Dunnett’s multiple comparison (** p < 0.01, *** p <  
0.001). HH, hyperhemolytic; LH, low hemolytic; NF, necrotizing 
fasciitis; PBMCs, peripheral blood mononuclear cells; STSS, strep-
tococcal toxic shock syndrome; Unstim., unstimulated.
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tion, a range of nonsynonymous SVs was identified. Fur-
thermore, 26 insertions and deletions within the LUMC16 
genome were detected (Fig.  2c; online suppl. Table 3). 
Analysis of the genome of the STSS/NF-HH strain con-
firmed a deletion of a triplet encoding for valine at position 
30 within the covR gene (online suppl. Table 4). Except for 
the GBS Urine strain harboring a V85I substitution in 
CovS, no other mutations in the entire CovR/S region and 
its surroundings were found (online suppl. Table 4).

Since both LUMC16 and STSS/NF-HH were pigment-
ed, we also analyzed the entire cyl operon, which encodes 
the genes for enzymes involved in pigment biosynthesis. 
There was only one SV identified, leading to a T186P sub-
stitution within CylJ (SAG0672), which was present in 
both LUMC16 and STSS/NF-HH (online suppl. Table 5). 
Furthermore, no mutations in CovR binding sites were 
found. Strain 4012 from an NSTI patient showed the 
highest frequency of SVs within the cyl operon as com-
pared to the 2603VR strain.

Pigmented and Hyperhemolytic GBS  
Strains Induce Toxic Shock Syndrome-Associated 
Inflammatory Responses
We next examined the impact of all strains on different 

immune compartments. First, to exclude the potential se-
cretion of molecules with proliferative activity by GBS 
strains, human PBMCs were stimulated with bacterial su-
pernatants and proliferative responses were assessed. All 
strains failed to induce T-cell proliferation (online suppl. 
Fig. 3). Next, PBMCs, monocytes, and neutrophils were 
infected with viable bacteria, and pro- and anti-inflam-
matory responses, including degranulation by neutro-
phils, were assessed.

Both pigmented strains, LUMC16 and STSS/NF-
HH, showed slightly higher cytotoxicity, as assessed  

by LDH release, towards PBMCs and monocytes (Fig.   
3a) – as well as significantly higher levels of the proin-
flammatory cytokines TNF, IL-1β, and IL-6 – than oth-
er strains (Fig. 3b–d). IL-8, as a general marker of in-
flammation, was equally induced in all stimulations 
(Fig. 2e), whereas only negligible levels of anti-inflam-
matory cytokines IL-4, IL-5, and IL-10 were detected 
(online suppl. Fig.  4). Assessment of neutrophil re-
sponses to different strains showed only low levels of 
cytotoxicity (online suppl. Fig. 5A). In contrast, analysis 
of resistin and HBP release revealed that all nine strains 
were potent inducers of neutrophil activation and de-
granulation (online suppl. Fig. 5B, C). However, no dif-
ferences between pigmented and nonpigmented strains 
were found.

The GBS Pigment Induces Proinflammatory Responses
Since LUMC16 and STSS/NF-HH were pigmented, 

we next assessed the role of the pigment in inducing in-
flammation. Therefore, pigment was extracted (online 
suppl. Fig. 1) and its hemolytic activity was confirmed by 
the hemoglobin release assay (Fig.  4a). Next, PBMCs, 
monocytes, and primary neutrophils were stimulated 
with the pigment for 6 h or 2 h, respectively, and effector 
molecule levels were determined. Concentration-depen-
dent cytotoxic effects on PBMCs, monocytes (Fig. 4b), 
and neutrophils (online suppl. Fig. 7A) were observed. 
IL-1β (Fig. 5b) and IL-8 (Fig. 5d) release by PBMCs and 
monocytes, as well as neutrophil degranulation (online 
suppl. Fig. 7), remained independent of pigment concen-
trations, whereas TNF (Fig. 5a) and IL-6 (Fig. 5c) pro-
duction by PBMCs or monocytes showed a dose-depen-
dent response. No anti-inflammatory responses were in-
duced in any of the pigment stimulations (online suppl. 
Fig. 6). 
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LUMC16 Strain Activates Coagulation
To assess a potential role of the bacteria in interfering 

with the coagulation pathway, GBS strains and bacterial 
supernatants were incubated with human plasma for 30 
min and then removed by centrifugation. aPTT (Fig. 6a) 
as well as PT (Fig. 6b) were determined in plasma. Sig-
nificantly prolonged PT but not aPTT values (Fig. 6a, b) 
were observed for the majority of GBS strains as com-
pared to plasma samples incubated with buffer alone. The 
majority of supernatants did not change aPTT, but pro-
longed PT (online suppl. Fig.  8). These results suggest 
that some GBS strains bind factors involved in the extrin-
sic pathway of coagulation on their surface.

To examine whether GBS could induce clotting of hu-
man blood, GBS strains were incubated with citrated hu-

man blood, and recalcification clotting times were deter-
mined over a 4-h period. All GBS strains were able to trig-
ger coagulation (Fig. 6c; online suppl. Fig. 8C). Incubation 
of bacteria with human plasma did not induce clotting af-
ter recalcification, suggesting that induction of blood clot-
ting by GBS is mainly dependent on human cellular com-
ponents. As certain pathogenic bacteria are able to activate 
the human contact system [10], bacteria were incubated 
with human plasma, and activation of contact system pro-
teases at the bacterial surface was assessed. Only LUMC16 
showed FXIIa/PK activity at the bacterial surface (Fig. 6d). 
Although LUMC16 and STSS/NF-HH are both pigment-
ed, only LUMC16 showed FXIIa/PK activity, suggesting a 
role of surface molecules or the composition of the bacte-
rial cell membrane being responsible for binding contact 
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factors. Examination of the bacterial surface via scanning 
electron microscopy showed no differences in surface 
structure between the strains (online suppl. Fig. 9).

GBS Pigment Induces Plasma Clotting
We next assessed the contribution of the GBS pig-

ment to the clotting cascade. While the addition of dif-

ferent amounts of the pigment to plasma had no effect 
on aPTT (Fig. 7a), reduced PT values were observed as 
compared to plasma and buffer controls (Fig. 7b). This 
suggests that the pigment has procoagulant activity. In 
fact, addition of the pigment to human plasma substan-
tially reduced the time until a clot was formed as com-
pared to buffer controls (Fig. 7c). To confirm the in-
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volvement of the contact system, human plasma was 
incubated with the pigment and FXIIa/PK activity was 
determined. Samples preincubated with high amounts 
of pigment showed enhanced FXIIa/PK activity 
(Fig. 7d).

Discussion

While STSS is typically caused by GAS, reports of sep-
tic shock due to GBS are increasing [1]. Invasive GBS dis-
ease is frequently observed in patients with comorbidities 
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[36]. Here we report a fatal case with an unusually severe 
manifestation involving septic shock, DIC, and purpura 
fulminans in an immunocompetent individual. The caus-
ative GBS strain belonging to serotype III and CC19 was 
pigmented and hyperhemolytic. A series of experiments 
was undertaken to assess cytotoxic, inflammatory, and 
coagulation responses elicited by LUMC16 compared to 
other invasive and noninvasive GBS isolates. The results 
revealed for the first time that the hemolytic pigment in-
duces proinflammatory and coagulatory activities in a 
dose-dependent manner.

The most severe condition caused by GBS is STSS 
[37]. SAgs have been identified as key mediators of TSS 
caused by GAS or S. aureus, mainly due to their induc-
tion of immune cell expansion and excessive cytokine 
release [3]. This phenomenon was not observed in our 
experiments with GBS. The hallmarks of the causative 
organism were its hyperhemolytic and proinflammatory 
activities. This is illustrated by a large zone of clearing 
around LUMC16 colonies grown on blood agar plates, 
an almost 100% hemoglobin release in the correspond-
ing assay, and the stimulatory capacity of the immune 
cells. Pigment is a pore-forming agent, which has been 
associated with cytolytic injury to mast cells [38], with 
pyroptosis in human macrophages [21], with bacterial 
penetration of the human placenta [20], and with inva-
sion of the amniotic cavity and fetal injury by circum-
venting neutrophils and neutrophil extracellular traps 
[39]. When extrapolating these findings to human dis-
ease, it is conceivable that hyperpigmented GBS may 
contribute to a fulminant clinical course as seen in our 
case and a previous report [23].

When human blood is exposed to bacterial surfaces, 
which can bind the zymogen FXII, this factor autoacti-
vates into an enzyme, leading to subsequent thrombin 
formation in vitro [40]. Apart from bacteria, FXII itself 
can trigger inflammation by causing degranulation of hu-
man neutrophils [41] or inducing proinflammatory cyto-
kine release from macrophages [42]. Our results suggest 
that, in contrast to other strains, LUMC16 is associated 
with a marked activation of the contact system, i.e., acti-
vated FXII and plasma kallikrein, on the bacterial surface 
by an as yet unidentified mechanism. The data further 
imply that the pigment itself is able to trigger the coagula-
tion of plasma, independently of cellular blood compo-
nents. The mechanisms underlying GBS pigment-medi-
ated coagulation activation remain to be delineated.

The genes responsible for pigment synthesis are en-
coded in the cyl gene cluster and are under the control of 
the two-component system CovR/S [20]. In contrast to 

the previous report linking hyperhemolysis to a muta-
tion in the covR gene [23], no mutations in covR/S or the 
cyl operon were found in LUMC16. In general, LUMC16 
was more similar to the 2603VR strain and showed a 
highly reduced number of SVs as compared to other 
strains. However, genes encoding for the pigment syn-
thesis pathway were upregulated in the LUMC16 back-
ground to the same extent as in the STSS/NF-HH strain. 
This is in line with the report by Lupo et al. [35], who 
showed that although some hyperpigmented and hyper-
hemolytic GBS strains had covR mutations, others did 
not, implicating the involvement of other regulatory 
pathways. It may be noted that covR/S mutations are 
overrepresented among GAS STSS strains [43], but a 
similar association has not been observed in GBS clinical 
isolates [44].

In conclusion, the present case demonstrates a fatal 
outcome of STSS accompanied by DIC caused by a GBS 
strain in an immunocompetent woman. The strain 
showed hyperhemolytic activity and proinflammatory 
and prothrombotic stimulation capacity, which were 
linked to the presence of the pigment and hyperhemoly-
sis. These findings have direct implications on the contri-
bution of the GBS pigment to systemic inflammation and 
interference with coagulation, and they warrant further 
experimental studies to identify mechanistic actions of 
the pigment and how these can be abolished.
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