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Abstract

Fluctuations in global neural gain, arising from brainstem arousal systems, have been found to shape attention, learning,
and decision-making as well as cortical state. Comparatively, little is known about how fluctuations in neural gain affect
cognitive control. In the present study, we examined this question using a combination of behavioral methods, pupillometry,
and computational modeling. Simulations of a comprehensive model of the Stroop task incorporating task conflict and both
proactive and reactive forms of control indicated that increasing global gain led to an overall speeding of reaction times,
increased Stroop interference, and decreased Stroop facilitation. Pupil analyses revealed that the pre-trial pupil derivative (i.e.,
rate of change), a putative non-invasive index of global gain, showed the same diagnostic relationships with the Stroop-task
performance of human participants. An analysis of the internal model dynamics suggested that a gain-related increase in
task conflict and corresponding (within-trial) increase in reactive control are vital for understanding this pattern of behav-
ioral results. Indeed, a similar connectionist model without this task-conflict-control loop could not account for the results.
Our study suggests that spontaneous fluctuations in neural gain can have a significant impact on reactive cognitive control.

Keywords Cognitive control - Neural gain - Arousal - Pupillometry - Modeling - Stroop

Introduction

The view of the brain as a passive input—output device is
losing prominence with the emerging understanding of the
importance of spontaneous brain-wide dynamics in perceiv-
ing and acting upon the environment. Key in regulating these
ongoing brain-wide dynamics are global fluctuations of neu-
ral gain: the degree to which neural signaling is amplified or
suppressed (Aston-Jones & Cohen, 2005; Eldar et al., 2013,
2016; Mather et al., 2016; Servan-Schreiber et al., 1990;
Shine et al., 2021). An increase in global gain is thought
to enhance both excitatory and inhibitory neural signals,
thereby increasing the contrast between weak and strong
connections.

Global fluctuations in neural gain are made possible
through brain-wide neuromodulation arising from brain-
stem arousal systems, including the locus coeruleus (LC),
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whose noradrenergic projections innervate a large part of
the central nervous system (Aston-Jones & Cohen, 2005;
Berridge & Waterhouse, 2003; Joshi et al., 2016). The abil-
ity to flexibly modulate brain-wide neural dynamics through
changes in the activity of the LC and other neuromodulatory
systems provides the brain with a powerful tool for appro-
priately adapting behavior in a rapidly changing and unpre-
dictable environment, both from moment to moment and
over slower timescales. What exactly prompts changes in
this activity, and how subsequent fluctuations in neural gain
impact interactions with the environment are important, yet
largely unanswered questions.

Although it is impossible to directly measure neural gain
in human participants, an increasing body of research sug-
gests that changes in neuromodulatory activity (and conse-
quently neural gain), most prominently of the LC, can be
non-invasively tracked by measuring pupil diameter (Bre-
ton-Provencher & Sur, 2019; Joshi et al., 2016; Murphy,
O’Connell, et al., 2014; Murphy, Vandekerckhove, et al.,
2014; Reimer et al., 2016). In particular, the first derivative
(rate of change) of pupil size may be best suited to capture
neural gain effects following noradrenergic neuromodula-
tion (Joshi et al., 2016; Murphy et al., 2021; Reimer et al.,
2016; van den van den Brink, Murphy, et al., 2016). Using
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pupil size measures as a proxy for neural gain, research-
ers have found evidence of the expression of neural gain
effects in cortical network activity and the rate of hippocam-
pal sharp-wave ripples (Eldar et al., 2013; McGinley et al.,
2015; van den van den Brink, Pfeffer, et al., 2016; Vinck
etal., 2015; Warren et al., 2016). Furthermore, several stud-
ies have found behavioral correlates of neural gain effects in
for example the domains of learning (Eldar et al., 2013), per-
ceptual processing (Eldar et al., 2016), and decision-making
under time pressure (Murphy et al., 2016).

While rapid progress is being made in linking inferred
changes in neural gain to measurable behavioral outcomes,
the domain of cognitive control remains rather unexplored
in this regard. Cognitive control encapsulates the set of
cognitive processes that allow us to flexibly respond to the
environment in a goal-directed manner, instead of being
subject to the constraints of automaticity. The limitations of
cognitive control are exemplified in the classic Stroop task;
even when participants manage to limit the number of errors,
there is a robust slow down of the reaction time (RT) in trials
where the stimulus dimensions are conflicting (e.g., the word
BLUE shown in green text) compared to neutral trials (e.g.,
the string XXXX shown in red text). Moreover, participants
often respond quicker when the stimulus dimensions match
(e.g., the string BLUE shown in blue text) than on neutral
trials. The mechanisms underlying these Stroop interfer-
ence and facilitation effects have been subject to intensive
study for several decades since these effects could eluci-
date important characteristics of the capacity for cognitive
control. An influential theory attempting to explain these
phenomena states that cognitive control can be simulated
as the sustained (proactive) pattern of activation across a
set of task-demand representations that creates a top-down
bias leading to the production of a response other than the
one prepotently associated with a given stimulus (Botvinick
et al., 2001; Cohen & McClelland., 1990; Cohen & Huston,
1994; Miller & Cohen, 2001). More recently, this theory has
been extended by introducing the concept of task conflict
(i.e., the simultaneous activation of conflicting task-demand
representations) and by distinguishing proactive and reactive
modes of cognitive control (Braver, 2012; Kalanthroff et al.,
2018). Hereby, the proactive mode is characterized by sus-
tained activation of task-demand representations while the
reactive mode is characterized by a more transient response-
to-trial-evoked conflict (Cohen & Servan-Schreiber, 1992;
Servan-Schreiber et al., 1990).

This theory is capable of explaining an impressive array
of behavioral results from the Stroop task. However, even
though early computational modeling work based on this
theory of cognitive control did touch upon the subject
of gain modulation (Cohen & Servan-Schreiber, 1992;
Servan-Schreiber et al., 1990), it is still unclear whether
the theory can be extended to incorporate effects of
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changes in neural gain (and dynamical brain states in gen-
eral). More generally, as both the modulation of behavior
by gain and the more directed modulation of behavior by
cognitive control influence many aspects of our interac-
tions with the environment, it is imperative to elucidate
how these specific systems interact with each other. The
class of computational models described above—in which
both gain modulation and cognitive control are formally
defined in the algorithms that translate stimulus input
into behavior—provide a testbed for addressing these
questions.

Here, we set out to investigate this interaction by com-
putationally and empirically exploring the effect of neural
gain modulation in the context of cognitive control. To this
end, we implemented fluctuations in neural gain in the pro-
active control/task conflict (PC-TC) model, the most recent
instantiation of the theory introduced above, which accounts
for a wide range of phenomena associated with Stroop-task
performance (Kalanthroff et al., 2018). We also assessed
empirically—by assessing performance of human partici-
pants on a standard Stroop task with simultaneous measure-
ments of pre-trial baseline pupil size—whether the frame-
work can be extended to capture the effects of pupil-linked
changes in neural gain.

Below, we show that the PC-TC model is robust in
explaining Stroop data even when accounting for changes
in inferred neural gain states. The PC-TC model correctly
predicts the overall decrease of reaction time with increased
global gain (larger pupil rate of change), accompanied by
a relative increase in Stroop interference and decrease
in Stroop facilitation. By comparison, an earlier model
grounded in the same theory (Cohen & Huston, 1994)
predicts the overall decrease in reaction time, but cannot
account for the gain-related increase in interference.

We conclude by analyzing the mechanisms through which
the PC-TC model recapitulates the empirical findings, high-
lighting the representation and use of task conflict as key for
the theory to successfully incorporate the effects of changing
neural gain.

Methods
Participants

Twenty-eight individuals (11 males, aged 18-35) partici-
pated in the study. They spoke fluent Dutch and received
monetary compensation for their participation. The study
was approved by the Psychology Research Ethics Commit-
tee of Leiden University (CEP code: 2,806,978,983), and
participants signed informed consent prior to their inclusion
in the study.
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Task

Participants performed a Stroop color-naming task (Fig. 1a)
with three word stimuli (Dutch equivalents of blue, green,
and red) and three neutral non-word stimuli (“XXXXX,”
“SSSSS,” “ZZ7Z77”) which were presented in blue, green
or red Helvetica font color (size 36) in the middle of a black
screen, using Psychtoolbox for MATLAB. Equal numbers
of incongruent, neutral, and congruent trials were presented
in random order. The words were presented until the par-
ticipant responded, with a maximum duration of 2 s. Dur-
ing the response-to-stimulus interval (RSI), the letter string
was replaced by a white fixation point for 3.3 s, allowing
the evoked pupil response to return to baseline level before
measurement of baseline pupil diameter on the subsequent
trial (Supplementary Fig. 1).

Participants first received automated task instructions
to respond to the font color using the left, down, and right
arrow keys for red, green, and blue, with their right index,
middle, and ring fingers, respectively. They were also asked

Empirical results
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Fig. 1 Results of the empirical study and the PC-TC model simula-
tions. a Top: example of an incongruent trial followed by a neutral
trial. In the first trial the correct answer is “blue.,” in the second trial
the correct answer is “green.” Bottom: mean RT (left) and accuracy
(right). Orange line indicates the simulated RTs from the Kalanthroff
model. Error bars indicate SEM. b Architecture of the PC-TC model.
¢ Empirical data: RT as a function of pupil derivative. d Empirical
data: interference (incongruent RT-neutral RT) and facilitation (neu-
tral RT—congruent RT) as a function of pupil derivative. For ¢ and d,

to respond as quickly as possible, but without making any
errors. The participants then completed a practice block of
36 trials with feedback provided through a brief change in
the color of the fixation point: green or red for correct and
incorrect responses, blue indicating “too late” if no response
was given after 2 s. This feedback was only present in the
practice block. After the practice block, participants were
presented with 6 blocks of 126 trials, each block lasting
approximately 8.5 min, with 2-min breaks in between. This
amounts to 756 trials in total, evenly divided over the three
conditions (incongruent, neutral, and congruent). Partici-
pants were shown their mean block accuracy at the end of
each block.

Pupillometry

Pupil diameter was recorded under low levels of ambient
light (< 7.2 cd/m?) at a sampling rate of 250 Hz, with an
EyeLink 1000 eye-tracker which was calibrated before each
block of trials. The participant’s head was supported by a

PC-TC model (2018) simulations
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single-trial data were first z-scored within participants, then all data
were pooled across participants and sorted by pupil derivative into
equal-sized bins. e Simulation data: RT as a function of gain. f Simu-
lation data: interference (incongruent RT-neutral RT) and facilitation
(neutral RT—congruent RT) as a function of gain. ISI, interstimulus
interval; RT, reaction time; C, congruent; N, neutral; I, incongruent;
PC, proactive control; z, z-score; log, log transformed; A, difference.
Note that the legend in e and f also applies to respectively ¢ and d
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chinrest at a viewing distance of 65 cm. Pupil diameter was
recorded in arbitrary pixels and subsequently converted to
mm using data recorded from an artificial pupil of precisely
known diameter. The data were low-pass filtered (fourth-
order Butterworth) at a cutoff frequency of 6 Hz and seg-
mented into epochs from — 0.5 to 0 s relative to the onset of
each stimulus. Trials with a blink (as defined by the manu-
facturer’s software) or gaze shift exceeding 3 degrees of
visual angle from fixation were excluded from all analyses.
The remaining epochs that violated amplitude (any sam-
ple <1 mm) or gradient (any difference in consecutive sam-
ples>0.02 mm) criteria, both measured in the pre-filtered
data, were also rejected from the analysis. This resulted in an
average of 6.0% (standard deviation=8.0%) rejected trials.

Similar to previous reports (Gilzenrat et al., 2010; Mur-
phy, O’Connell, et al., 2014; Murphy, Vandekerckhove,
et al., 2014), single-trial measures of pre-trial baseline pupil
diameter were estimated in the cleaned datasets by com-
puting the average pupil size during the 0.5-s pre-stimulus
window. Measures of pupil derivative were estimated for the
same trials by computing the signed change in pupil diam-
eter over the two consecutive samples directly preceding
stimulus onset (thus capturing the “instantaneous’” rate of
change of pupil diameter, in keeping with how this measure
has been defined in other work; Murphy et al., 2021; Reimer
etal., 2016).

Other work has examined stimulus-evoked pupil dilations
associated with Stroop conflict (Hershman & Henik, 2019)
and other manifestations of processing conflict and reactive
control (van der Wel & van Steenbergen, 2018). Unlike in
this work, our stimuli were not matched for luminance, and
luminance-related differences in evoked pupil responses to
individual stimuli would significantly confound the single-
trial analyses of relationships between pupil size and behav-
ior that are our focus. Thus, we restrict our analyses to pupil
size at or before stimulus onset, which is not subject to such
luminance effects.

Statistical Analysis

We conducted the statistical analyses in R-Studio using the
Ime4 package for building and fitting linear models (Bates
et al., 2015). The full reproducible code is available in the
supplementary materials. We ran two linear models, one
using baseline pupil size and the other using the pupil deriv-
ative as regressors, but otherwise equal. The pupil regressors
were first z-scored within blocks to minimize slow between-
block fluctuations potentially due to non-cognitive factors
(e.g., differences in position relative to the eye-tracker) and
then concatenated across blocks. The dependent variable RT
was log transformed, concatenated across blocks, and then
z-scored. Trials on which the z-scored RT exceeded 3.5 were
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excluded. All other regressors were mean-centered. We fitted
the following linear regression model:

RT ~ l4congruent + incongruent + pupil
+ (congruent X pupil) + (incongruent X pupil)

+ crep + wrep + repalt + cae + ntrial

where congruent and incongruent are binary regressors
that were set to 1 in congruent and incongruent conditions,
respectively. Pupil represents single-trial baseline pupil
size or pupil derivative. Several other binary regressors
were included to capture additional sources of variance in
Stroop-task performance following the recommendations
of Notebaert and Verguts (2007): crep, which was set to 1
when the trial was a color repetition; wrep, which was set
to 1 when the trial was a word repetition; repalt, which was
set to 1 in case of a complete repetition or alternation (both
color and word same or different than on the previous trial);
and cae, the conflict adaptation variable, which was set to
1 if the congruency status was the same as on the previous
trial. We also included the continuous regressor ntrial (trial
number with block), to account for within-block time-on-
task effects on RT. As Notebaert and Verguts did not find
any effect of previous trial congruency on RT, we did not
include that regressor in the model (see (Notebaert & Ver-
guts, 2007; table 1).

The model was fit to each participant’s data separately,
after which we conducted a one-sample #-test comparing
the group distribution of coefficients to zero and inspected
the statistical results for our regressors of interest. Similar
conclusions were reached using nested model comparisons.

The Stroop GRAIN Model

We performed all computational modeling using the PsyN-
euLink package (PsyNeuLink, http://www.psyneuln.deptc
panel.princeton.edu). The Stroop GRAIN (graded, random,
activation-based, interactive, and nonlinear) model (Fig. 3a)
includes color and lexical input layers with units that repre-
sent the stimulus color and word (Cohen & Huston, 1994).
These connect to a single response layer with units rep-
resenting potential responses. In Fig. 3a, the thicker lines
(stronger connection weights) from the lexical layer to the
response layer reflect the assumption that stimulus—response
associations in the word-reading pathway are generally
stronger than those in the color-naming pathway. To exert
control, units in a task-demand layer provide a top-down bias
to the color or lexical layer, depending on whether the task
is to name the color or read the word. This top-down bias
in turn helps overcome the response competition caused by
activation of the task-irrelevant pathway. The units within
each layer inhibit each other. An important characteristic
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of the model is that the lexical and color input layers have
bidirectional excitatory connections with the response layer
and the task-demand layer. Consequently, not only do the
task-demand units inject a sustained bias to processing in the
color- and word-processing pathways (thus exerting proac-
tive cognitive control), but the input units also activate the
corresponding task-demand units in a bottom-up fashion.
Because we used non-lingual neutral stimuli (unpronounce-
able letter strings), the neutral unit was not connected with
the task-demand unit representing the word task.

All model parameters and functions were adopted from
the original paper (Cohen & Huston, 1994) with a few excep-
tions (Supplementary Table 1). We fitted the model (with
gain fixed at 1; see below) to our group-averaged empirical
behavioral data (mean correct RTs for congruent, neutral,
and incongruent conditions) by adjusting the value of the
within-layer inhibition parameter, and the slope and inter-
cept of a linear function that converted model processing
cycles to milliseconds. Furthermore, to simulate the effects
of global gain modulation, we added a neuromodulatory gain
unit to the fitted model that multiplicatively scaled the slope
of the network’s activation function relating a unit’s input x
to its corresponding output F(x). The activation function of
the response layer and task layer is as follows:

1 .
F(x) = (m) X gain

while the activation function of the stimulus layers is as
follows:

1 .
F()C) = (m) X gain

The neuromodulatory unit affected the gain of all units
in the network equally, simulating the diffuse and global
effects of brainstem arousal systems such as the noradren-
ergic system. See the next section for a note on the specific
formulation of gain modulation we focus on here and other
alternatives we considered.

The PC-TC Model

The proactive control/task conflict (PC-TC) model (Kalan-
throff et al., 2018) is similar to the Stroop GRAIN model
except for three assumptions. First, the simultaneous activa-
tion of the units in the task-demand layer leads to task con-
flict, which is defined as the product of the activation values
of the two task-demand units multiplied by a task inhibition
parameter. This task conflict inhibits the two units in the
response layer until the conflict is resolved, which slows
down RTs. This assumption reflects the idea that uncertainty
about what task needs to be performed puts a temporary
brake on action selection, and constitutes a form of reactive

cognitive control. Second, in the PC-TC model, the connec-
tion between the lexical/color layers and the response layers
is unidirectional (from word/color to response) instead of
bidirectional as in the GRAIN model. Third, a central idea of
the PC-TC model is that the degree of task conflict is partly
determined by the amount of proactive control that can be
recruited in advance of the Stroop stimulus. Higher proac-
tive control leads to quicker resolution of task conflict, and
thereby a faster increase in activation in the response layer.
While in the Stroop GRAIN model, the sustained top-down
input is fixed, the PC-TC model explicitly allows for vary-
ing levels of sustained top-down input to the task-relevant
task-demand unit. Lowering proactive control renders the
task-demand representations vulnerable to task-irrelevant
bottom-up input from the lexical input layer. This increases
task conflict, resulting in increased reactive control through
suppression of activity in the response layer. This slows
down responses but protects the model from making errors.

We fitted the model to our empirical data by doing a
grid search to find the combination of proactive control,
task inhibition, and linear cycles-to-RT function (intercept,
slope) parameters that best matched the mean correct RTs in
the different conditions (Supplementary Table 2). Further-
more, we added a gain parameter to the network’s activation
function in the same manner as with the GRAIN model.
The adapted activation function for the PC-TC model is as
follows:

1 .
Fx) = <m> X gain — ¢

—— % 0.0180. As in the GRAIN
model, gain acts as a multiplicative factor for all units in the
network. We note that there are several possible ways to
implement gain modulation through the activation functions
of both the PC-TC and GRAIN models. One implementation
involves the application of a multiplicative term to the expo-
nent in the denominator of the activation function. We
observed that in the presence of an additive constant term in
the exponent (there in both the PC-TC function and the func-
tion for the GRAIN stimulus layer), this implementation has
the unexpected consequence of suppressing weak excitatory
inputs when gain is high. Such an effect is inconsistent with
the enhancement of weak inputs that is generally considered
to be a cardinal feature of increased gain, so we do not con-
sider this implementation further. Instead, we focus primar-
ily on an implementation, whereby the gain term is applied
multiplicatively to the entire activation function (sometimes
referred to as “multiplicative gain”; Munn et al., 2021). We
additionally considered a third form whereby a multiplica-
tive term is applied only to the input x in the exponent. This
implementation similarly yielded the overall RT speeding,
a clear decrease in Stroop facilitation, and a weaker increase

Hereby, c is defined as
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in Stroop interference with increasing gain that we report
below, albeit under a more restricted range of gain values
outside of which the model generated unrealistically slow or
fast RTs (data not shown).

Simulation Method

For both models, we simulated congruent, neutral, and
incongruent conditions for different levels of gain to inves-
tigate the impact of changing gain on Stroop-task perfor-
mance. Before the start of each simulated trial, all units were
initialized to zero. Each trial started with a settling period of
500 cycles, which simulated the time before stimulus presen-
tation, During this settling period input was provided to the
appropriate task-demand unit, and the system was allowed to
settle into a “ready state” for that task. In the PC-TC model,
the continuous input to the appropriate task-demand unit
originated from the proactive control unit. In the GRAIN
model, the value of the appropriate task-demand unit was
simply set to 1. After the settling period, the inputs repre-
senting the Stroop stimulus for that trial were set to 1 for the
remaining duration of the trial. The activation of the color
and lexical units set in motion a cascade of unit-updating
cycles that continued until one of the response units reached
the pre-specified threshold. The simulated RT was defined
as the number of update cycles from stimulus presentation
until the threshold crossing, passed through a linear func-
tion (with free slope and intercept parameters, see above) to
convert cycles to milliseconds. The intercept of the linear
function was assumed to capture the duration of sensory
encoding and motor execution—the non-decision compo-
nent of the RT.

Results
Empirical and Simulated Behavior

Empirical RTs showed significant Stroop facilitation (neu-
tral-congruent =20 ms, #(27)=4.68, p<0.001) and inter-
ference effects (incongruent-neutral=351 ms, #(27)=7.80,
p<0.001; Fig. 1a). Accuracy showed a pattern consistent
with these effects on RT but was near ceiling.

To constrain the PC-TC model, we fitted the model to the
empirical RTs on correct trials (see “Methods” for the fitting
procedure and Supplementary Table 2 for model parameter
values). After model fitting and applying the linear function
to convert RT in cycles to RT in milliseconds, the simula-
tions produced identical Stroop facilitation (20 ms) and near-
identical interference (52 ms; Fig. 1a).
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Gain-Behavior and Pupil-Behavior Relationships

Using the constrained PC-TC model, we systematically var-
ied the level of global gain to examine the effect of gain on
RT. Increasing gain was associated with a strong overall
speeding of RTs (Fig. 1e). Furthermore, increasing gain was
associated with a monotonic increase in Stroop interference
in combination with a monotonic decrease in Stroop facili-
tation (Fig. 1f). These predictions were robust to a range of
values of Gaussian noise input in the task-demand layer and
the response layer (0.1 <o<1).

Next, we compared these model predictions to empiri-
cally observed pupil-behavior relationships, as established
using a multiple linear regression model (see “Methods™
for regression equation and Supplementary Tables 3 and 4
for the full results). A cardinal effect of gain modulation
common across candidate models of the Stroop task (PC-
TC, GRAIN, as well as a well-known predecessor; Cohen
et al., 1990, data not shown) is the general speeding of RTs
with increased gain described for the PC-TC model above.
We leveraged this effect to arbitrate between two candidate
pupillometric proxies for gain state that have been described
in the literature: pre-stimulus “baseline” pupil diameter
(Eldar et al., 2013; Gilzenrat et al., 2010; Jepma et al.,
2009; Murphy et al., 2021; Warren et al., 2016) and its first
derivative (i.e. rate of change; Murphy et al., 2021; Reimer
et al., 2016; van den van den Brink, Murphy, et al., 2016,
van den Brink, Pfefter, et al., 2016). We found a robust main
effect of pupil derivative (mean f+s.e.m.=-0.031+0.008,
1(27)=-3.78, p<0.001) but not baseline pupil diameter
(mean f+s.e.m.=0.024+0.014, #27)=1.84, p=0.07) on
RT, and this derivative effect was in the predicted direction
(increased derivative, putatively reflecting states of higher
gain, being associated with faster RTs; Fig. 1c). We, there-
fore, focused on pupil derivative as our candidate proxy for
changes in gain state.

We found that increased pupil derivative was associ-
ated with increased Stroop interference as captured by the
incongruent term in our multiple linear regression model
(mean f+s.e.m.=0.038 +0.016, #27)=2.31, p<0.05).
Moreover, increased pupil derivative was associated with
decreased Stroop facilitation as captured by the congru-
ent term in our multiple linear regression model (mean
p+s.em.=0.041+0.018, 1(27)=2.41, p<0.05) (Fig. 1d).
Thus, these results support key predictions of the PC-TC
model about the effect of global gain changes on Stroop-task
performance: all three predicted effects (general speeding,
increased interference, decreased facilitation) were observed
in the relationship between RT and pupil derivative. As
was the case for the RT main effect, neither the interfer-
ence (mean f+s.e.m.= —0.024+0.017, #27)=-0.22,
p=0.83) nor facilitation (mean f+s.e.m.=-0.004+0.018,
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#(27)= —1.40, p=0.17) effects were observed for baseline
pupil diameter.

We note that some disparities remain between the
model predictions (Fig. le,f) and observed pupil deriv-
ative-behavior relationships (Fig. Ic,d). In particular, the
overall strength of the RT main effect, captured by the
steepness of the negative-going lines in Fig. Ic and e,
appears stronger in the model than in the data; and, there
is an apparent asymmetry in the magnitude of the effect
of gain on Stroop facilitation and interference that is pre-
sent in the model (stronger effect of gain on facilitation;
Fig. 1f) but absent in the data (Fig. lc¢). In general, we

0.95

1.00
gain

1.05 0.95

Fig. la. b RT as a function of gain. ¢ Interference (incongruent RT—
neutral RT) and facilitation (neutral RT—congruent RT) as a function
of gain. RT, reaction time; log, log transformed; A, difference

adopted a conservative fitting approach, fitting a noise-
free version of the model only to the mean RTs across
the three trial types of the Stroop task and leaving zero
degrees of freedom to optimize the fit to the observed
pupil-behavior relationships; and we note that fine-tuning
of the model parameterization has the capacity to resolve
the abovementioned discrepancies. Specifically, further
simulations showed that injecting noise into the stimulus,
task demand, and/or response layers of the model serves to
decrease the overall strength of all gain-RT relationships,
while leaving the relative pattern of facilitation and inter-
ference effects intact (data not shown); increasing the level
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of proactive control serves to selectively increase the slope
of the relationship between gain and Stroop interference
without substantially affecting the gain-facilitation effect
(Supplementary Fig. 2).

Unit Activation Trajectories

To understand how the specific pattern of gain effects
described above is produced by the PC-TC model, we
examined the unit activation trajectories during simulated
trials with low (0.9) and high (1.1) gain (Fig. 2). High gain
produces a general speeding of RTs because all signals are
amplified, leading the network to generally reach deci-
sions triggered by a fixed response threshold more quickly.
One consequence of this general amplification, however,
is an increase in the activations of the two task-demand
units. This increases task conflict, which acts to slow down
responses through the reactive control mechanism of task-
conflict-to-response inhibition. Importantly, this latter
chain of events occurs only on congruent and incongru-
ent trials, on which the task-irrelevant word-reading task
unit is activated by bottom-up input from the lexical input
layer. Because our neutral stimuli are non-lingual letter
strings, they evoke minimal task conflict (Monsell et al.,
2001), and hence there is no task-conflict-to-response inhi-
bition for these stimuli, regardless of the level of gain.
Because higher gain produces greater RT-slowing conflict
for congruent and incongruent RTs, but not neutral RTs,
it increases Stroop interference (incongruent RT minus
neutral RT) and decreases Stroop facilitation (neutral RT
minus congruent RT).

GRAIN Model

If the effects of gain on Stroop interference and facilita-
tion are indeed mediated by gain effects on task-conflict-
to-response inhibition, then a model without task conflict
should not produce these effects. To test this prediction,
we repeated our simulations using the GRAIN model of
the Stroop task (Cohen & Huston, 1994), which formed
the basis for the PC-TC model but does not include task-
conflict-to-response inhibition (Fig. 3a; see Supplementary
Table 1 for model parameter values). As noted above, we
found that this model also produced a general speeding
of RTs with increased gain (consistent with our empirical
result for pupil derivative, but not baseline pupil diam-
eter; Fig. 3b). However, contrary to the PC-TC model, the
GRAIN model did not produce the gain-related increase
in Stroop interference observed in the empirical data, but
rather a decrease in interference (Fig. 3c). Similar results
were obtained when we ran the PC-TC model simulations
after removing the task-conflict-to-response inhibition
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link. These results confirm the notion that the effects of
gain on cognitive control reflect an interaction between
gain, task conflict, and the resulting reactive cognitive
control, at least in the context of the Stroop task.

Discussion

We aimed to examine the effects of neural gain on cogni-
tive control, using a classic Stroop task, pupillometry, and
computational modeling. To simulate the effects of global
gain modulation, we added a neuromodulatory gain unit to
the PC-TC model (Kalanthroff et al., 2018) and examined
the effects of a range of gain values on the model’s Stroop
task-performance. Increasing gain led to an overall speeding
of RTs, increased Stroop interference, and decreased Stroop
facilitation. Pupil analyses revealed that our empirical proxy
of neural gain, the pre-trial pupil derivative (i.e., rate of
change), showed the same diagnostic relationship with task
performance: a larger pupil derivative was associated with
an overall speeding of RTs accompanied by opposing effects
on Stroop interference and facilitation.

An analysis of the internal dynamics of the PC-TC model
suggested that high gain produces a general speeding of RTs
because all signals are amplified and, coupled with a fixed
response threshold, the network thus settles on a decision
more quickly. Furthermore, this general signal amplification
increases the degree of task conflict present in congruent and
incongruent trials, which works against the general speed-
ing effect to slow down responses (and protect accuracy)
on these trials through a (within-trial) increase in reactive
control. This increase in reactive control produces a counter-
intuitive rise in interference (incongruent minus neutral RT)
and a drop in facilitation (neutral minus congruent RT), thus
accounting for our simulated and empirical Stroop findings.
In contrast, very similar models without a task conflict-
control loop (Cohen & Huston, 1994) could not account for
these findings. Thus, the concept of task conflict is vital in
understanding the effects of neural gain on cognitive control
processes in the Stroop task.

A psychological process that may correspond to the
pre-stimulus fluctuations in pupil-linked neural gain that
we capitalized on here is temporal expectation, the ability
to actively predict the timing of upcoming sensory input.
Growing temporal expectation is accompanied by a grad-
ual increase in pupil size (Jennings et al., 1998; Shalev &
Nobre, 2022) and neural gain (Auksztulewicz et al., 2019).
Interestingly, phasic alerting, a purely exogenous surge of
temporal attention, increases flanker and Simon interfer-
ence (but not Stroop interference), while speeding up overall
RTs (Macleod et al., 2010; Nieuwenhuis & de Kleijn, 2013;
Schneider, 2019)—a pattern resembling the behavioral
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consequences of increased gain. This suggests that neural
gain may be the mechanism that instantiates the surge in
temporal attention. Future work should examine the rela-
tionships between phasic alerting vis-a-vis pupil size and
neural gain.

How might our findings relate to the large body of exist-
ing work on experimental manipulations affecting perfor-
mance on the Stroop task? To our knowledge, there are no
commonly accepted manipulations of neural gain that can
be applied to human participants. However, we consider the
effects on Stroop-task performance of two types of manipu-
lation that may qualify. First, evidence from rodents and
human participants shows that locomotion is accompanied
by a dilating pupil (Cao et al., 2020; McGinley et al., 2015)
and an increase in the gain of visual responses (Polack et al.,
2013; Reimer et al., 2014). We found one study in which the
Stroop task was administered during low-intensity walking
(Alderman et al., 2014). Stroop interference was increased
compared to a seated control condition, consistent with our
findings. However, it should be noted that, although pupil
size is increased during locomotion, pupil-linked arousal and
locomotion actually make distinct contributions to cortical
activity patterns and stimulus encoding (Vinck et al., 2015)
and so their effects on neural processing appear to be at
least partially dissociable. Second, we reviewed the literature
about the effects on Stroop-task performance of moderate-
and high-intensity auditory noise, another condition that is
associated with increased pupil size (Asgeirsson & Nieu-
wenhuis, 2017). The effects of noise on Stroop interference
are mixed (e.g., Hartley & Adams, 1974; Houston, 1969),
possibly because the effects of auditory noise on human
task performance depend on various factors, including
noise intensity, exposure duration, and type of noise (Smith,
1989)—factors that often differ between studies. Altogether,
we must be cautious in directly relating this work on loco-
motion and noise to our key findings on pupil-linked gain
and Stroop-task performance.

If amplified task conflict through an increase in global
gain can explain our empirical results, could our results also
be explained by amplified task conflict through a reduction
in proactive control? PC-TC model simulations confirm that
a reduction in proactive control increases Stroop interfer-
ence and reduces Stroop facilitation (Kalanthroff et al., 2018,
p. 10; Supplementary Fig. 2), in line with our findings. How-
ever, a reduction in proactive control slows down RTs and
therefore does not mimic the overall speeding of RTs that we
observed with enhanced gain and increased pupil derivative.
Elsewhere, Chiew and Braver (2013) found that increased
pre-trial baseline pupil size was associated with increased
rather than decreased proactive control. This positive asso-
ciation with proactive control would predict opposite rela-
tionships between pupil size and Stroop interference/facilita-
tion to what we observed presently for pupil derivative and,

importantly, this study restricted analysis to baseline pupil
size and did not examine the pupil derivative. In summary,
our pattern of findings cannot be explained by changes in
proactive control. Instead, our explanation is consistent with
a growing literature relating pupil size and its derivative to
global gain (Eldar et al., 2013; Murphy et al., 2016; Warren
etal., 2016).

The degree of Stroop interference in an individual is
commonly used as a measure of cognitive control in a
range of clinical patient populations. This assumption is
in line with a wealth of neuropsychological and neuroim-
aging evidence for a key role of the prefrontal cortex in
Stroop-task performance (reviewed in Cohen et al., 1990).
Furthermore, PC-TC model simulations by Kalanthroff
and colleagues (2018) suggest that abnormal behavioral
patterns of Stroop performance in various psychiatric
patient populations may be caused by impaired proac-
tive control, reduced sensitivity to task conflict, or other
aspects of cognitive control. Nonetheless, other work
highlights the important contributions of other types of
cognitive processes to individual differences in Stroop
interference (e.g., stimulus processing speed and lateral
inhibition; Naber et al., 2016), and challenges the view
that the Stroop task primarily assesses cognitive control.
The present results, like the seminal work by Cohen and
Servan-Schreiber (1992), suggest that abnormal gain (in
the prefrontal cortex and/or other parts of the brain) may
be an important additional factor for explaining aberrant
cognitive control in clinical populations, many of which
can be characterized by disturbed neuromodulatory gain
control (Hauser et al., 2016; Parr et al., 2018).

Lastly, the present work offers a clear example of the
utility of computational modeling for understanding what
can be nuanced and counter-intuitive behavioral effects
arising from relatively simple neurocognitive manipu-
lations—in this case, the suite of effects of global gain
modulation on Stroop-task performance. In leveraging the
PC-TC model to provide a highly parsimonious account of
the complex relationships between fluctuations in pupil
size and Stroop RT—which could not be achieved with
earlier models—our results also provide novel empirical
support for the unique feature of the PC-TC model that dif-
ferentiates it from those earlier iterations: the computation
of task conflict and its use in the deployment of reactive
cognitive control. Our incorporation of gain modulation
into the PC-TC model also furnishes novel predictions; in
particular, relating to how the relationship between gain
modulation and Stroop behavior may depend on the level
of proactive control (Supplementary Fig. 2). Future work
could look to test these predictions by deploying task
designs thought to manipulate proactive control (Entel
et al., 2015).
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