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Abstract
We abstract the concept of a randomized controlled trial as a triple (𝛽, b, s), where
𝛽 is the primary efficacy parameter, b the estimate, and s the standard error
(s > 0). If the parameter 𝛽 is either a difference of means, a log odds ratio or a
log hazard ratio, then it is reasonable to assume that b is unbiased and normally
distributed. This then allows us to estimate the joint distribution of the z-value
z = b∕s and the signal-to-noise ratio SNR = 𝛽∕s from a sample of pairs (bi, si).
We have collected 23 551 such pairs from the Cochrane database. We note that
there are many statistical quantities that depend on (𝛽, b, s) only through the
pair (z, SNR). We start by determining the estimated distribution of the achieved
power. In particular, we estimate the median achieved power to be only 13%. We
also consider the exaggeration ratio which is the factor by which the magnitude
of 𝛽 is overestimated. We find that if the estimate is just significant at the 5%
level, we would expect it to overestimate the true effect by a factor of 1.7. This
exaggeration is sometimes referred to as the winner’s curse and it is undoubt-
edly to a considerable extent responsible for disappointing replication results.
For this reason, we believe it is important to shrink the unbiased estimator,
and we propose a method for doing so. We show that our shrinkage estima-
tor successfully addresses the exaggeration. As an example, we re-analyze the
ANDROMEDA-SHOCK trial.
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1 INTRODUCTION

It is nearly three quarters of a century since what is generally regarded as the first modern randomized clinical trial, the
UK Medical Research Council study of the effectiveness of streptomycin in tuberculosis.1 Since then, tens of thousands of
randomized controlled trials (RCT) have been conducted. The purpose of this article is to study this wealth of information,
and to try to learn from it.

We have collected the results of more than 20 000 RCTs from the Cochrane Database of Systematic Reviews (CDSR),
which is the leading journal and database for systematic reviews in health care. These data allow us to determine the
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broad statistical properties of RCTs. In particular, we are able to estimate the distribution of the achieved power across
all RCTs. We find that the achieved power is often quite low. Low statistical power has been noticed before in specific
domains of biomedical research, see for instance.2,3

The fact that achieved power is typically low does not imply that the usual sample size calculations aiming for 80%
or 90% power are wrong. The goal of such calculations is to guarantee high power against a particular alternative that is
considered to be of clinical interest. The fact that high power is often not achieved is merely an indication that treatments
often do not provide the benefit that was hoped for.

Low power has important implications for the interpretation of the results of a given trial. It is well known that con-
ditional on statistical significance, the estimate of the effect size is positively biased. This bias is sometimes called the
“winner’s curse”, and it is especially large when the power is low.4-6 With the Cochrane data we can quantify the bias
quite precisely.

To be more specific, we will represent an RCT by a triple (𝛽, b, s) where 𝛽 is the primary effect parameter and b is an
unbiased, normally distributed estimator of 𝛽, with standard error s. The main idea of the article is that we can use the
observed pairs (b, s) from the RCTs in the Cochrane database to estimate the joint distribution of the z-value z = b∕s and
the signal-to-noise ratio SNR = 𝛽∕s. We can use this joint distribution to calculate the distribution of many interesting
statistical quantities, conditional on the observed z-value. For example, we can compute the conditional coverage of the
usual 95% confidence interval, given z. Or we can compute the conditional median of the exaggeration |b∕𝛽|, given z.

We realize that some readers may consider the very notion of a probability distribution for the 𝛽’s to be inherently
Bayesian. However, non-Bayesians may wish to think of this distribution as just an empirical model for the true effects
across all trials, and in order to understand the variation of estimates in relation to putative parameter values invoking a
(joint) probability model is a powerful tool.

Applying our method, we find considerable overestimation of the effect and under-coverage of the confidence interval
when the z-value exceeds 1.5. These are serious issues which are undoubtedly a part of the explanation for the phe-
nomenon of poor replication.2,4,7,8 In Section 4 we note that the joint distribution of the SNR and the z-value allows us to
compute the conditional expectation E(SNR | z). Since 𝛽 = s ⋅ SNR, this immediately suggest s ⋅ E(SNR | z) as a (shrinkage)
estimator for 𝛽. We find that this new estimator almost entirely eliminates the problem of overestimation.

In summary, the purpose of the article is 2-fold. First, we analyze some key statistical properties of the population of
RCTs in the Cochrane database, such as the achieved power, the exaggeration, and the coverage. Second, we propose a
novel shrinkage estimator to address the exaggeration. We conclude this article with a short discussion.

2 STATISTICAL ANALYSIS OF A COLLECTION OF RCTS

In this article, we abstract the concept of a RCT as a triple (𝛽, b, s), where 𝛽 is the primary efficacy parameter, b the estimate
and s the standard error (s > 0). The parameter 𝛽 is either a difference of means, a log odds ratio or a log hazard ratio.
We will ignore small sample issues by assuming that b is a normally distributed, unbiased estimator of 𝛽 with known
standard error s. In other words, we will make the following assumption.

Assumption 1. Conditionally on 𝛽 and s, b is normally distributed with mean 𝛽 and SD s.

While this assumption may appear to be overly simplistic, we emphasize that inference based on Wald type confidence
intervals and associated P-values is very common. When the sample size is not too small, say at least 60, this is quite
appropriate.

Of course, we never observe the true effect 𝛽 but Assumption 1 implies that we can use observed pairs (bi, si)
(i = 1, 2, … ,n) to estimate the joint distribution of the z-value z = b∕s and the signal-to-noise ratio SNR = 𝛽∕s. This
works as follows. We start by estimating the marginal distribution of the z-value directly from the observed sample
z1 = b1∕s1, … , zn = bn∕sn. By Assumption 1, the z-value is the sum of the SNR and independent standard normal “noise”.
This means that the distribution of the z-value is the convolution of the distribution of the SNR and the standard normal
distribution. Therefore, we can obtain the marginal distribution of the SNR by deconvolution of the estimated density of
the z-value and the standard normal density. Now we have the marginal distributions of both the z-value and the SNR.
Assumption 1 tells us that the conditional distribution of the z-value given the SNR is normal with mean SNR and SD 1.
Putting it all together, we have the joint distribution of the z-value and the SNR.

We start with the estimation of the marginal distribution of the z-value. We have obtained pairs (bi, si) from 23 551 RCTs
from the Cochrane Database of Systematic Reviews (CDSR). These derived data are publicly available at Reference 9. Each
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F I G U R E 1 Top panel: The histogram of the observed z-values together with our fit based on a mixture of 4 zero-mean normal
distributions. Bottom panel: The symmetrized histogram together with the same fit

T A B L E 1 Estimated 4-part normal mixture distributions of the z-value and the
SNR

Comp. 1 Comp. 2 Comp. 3 Comp. 4

Proportions 0.32 0.31 0.30 0.07

SD of the z-value 1.17 1.74 2.38 5.73

SD of the SNR 0.61 1.42 2.16 5.64

pair belongs to a different study, and we have tried to obtain the estimate and standard error of the first or primary effect.
The R code to generate the data and additional details about the data collection are provided in Reference 10. Briefly, for
each systematic review the data were downloaded from the Cochrane Library as an XML file, parsed, and aggregated in
a large database in R. The database included the sample sizes, mean and SD (for continuous outcomes) or the number of
events (for dichotomous outcomes) for both the intervention and control arm. Intervention effects and standard errors
were estimated using mean differences for continuous outcomes, and odds ratios for dichotomous outcomes. In order
to identify which studies were RCTs, parsing of all the study characteristics tables on the Cochrane Library website was
required and the database was extended with this information.

The histogram of the observed z-values is shown in the top panel Figure 1. We see that it is nearly symmetric, but not
quite. This (near) symmetry was also observed by Djulbegovic et al who conducted a large meta-analysis of 860 published
and unpublished phase III RCTs.11 We prefer not to use the information about the sign of the z-values, for two reasons.
First, using this information implies that we would treat the active treatment differently from control in our inferences.
In most settings, that would not be acceptable. Second, many of the results that we present here depend on the z-value
only through its absolute value.

Disregarding the sign, the symmetrized histogram of the z-values is shown in the bottom panel of Figure 1. We con-
structed it by using the R command hist(c(-z,z)). The symmetrized histogram of the z-values is symmetric and
unimodal. Such distributions can be well approximated by a mixture of zero-mean Gaussians. We have used the R pack-
age “flexmix”,12 which implements the EM algorithm, to estimate it. We tried 1 up to 6 components, and found that more
than 4 components made no discernible difference to the estimated distribution. The estimated mixture density fits the
original histogram of the z-values reasonably well. The fit to the symmetrized histogram is excellent. The estimates of the
4 mixture components are given in Table 1.
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F I G U R E 2 Histogram of a sample of size 106 from the estimated distribution of the power

Recalling that the z-value is the sum of the SNR and independent standard normal noise, we can obtain the distribution
of the SNR by deconvolution. Since the distribution of the z-value is a mixture of normal distributions, this is particularly
easy; we simply subtract 1 from the variances of the components. The resulting SDs are given in Table 1.

By Assumption 1, the conditional distribution of the z-value given the SNR is normal with mean SNR and SD 1. The
conditional distribution of the SNR given the z-value is slightly more complicated, but it can be obtained by straightfor-
ward application of Gaussian theory. It is again a mixture of Gaussians, and in the Appendix we provide the relevant
formulas and a few lines of R code to compute it. We demonstrate the code in Section 4.3.

3 POWER, EXAGGERATION, AND COVERAGE

Many statistical quantities depend on (𝛽, b, s) only through the z-value and the SNR. Since we now have an estimate of
their joint distribution across all the RCTs in the Cochrane database, we can quantify the achieved power, exaggeration
(ie, overestimation of the magnitude of 𝛽), and coverage.

3.1 Power

The achieved power of the two-sided Wald test of H0 ∶ 𝛽 = 0 at level 5% depends on the SNR and is given by

power = Φ(−1.96 − SNR) + 1 − Φ(1.96 − SNR), (1)

where Φ is the cumulative distribution function of the standard normal distribution. The power is an even function, so it
depends on the SNR only through its absolute value. In fact, the power is a strictly increasing function of absolute value
of the SNR. Using formula (1), it is easy to transform a sample from the distribution of the SNR into a sample from the
distribution of the power. We generated such a sample of size 106 and show the histogram in Figure 2. In Table 2 we report
a number of quantiles of the distribution of the power. For example, the median of the power is 13%. The average power
is 28%. O’Hagan et al13 discuss the importance of average power to which they refer as the “assurance”.

Most RCTs are designed to have 80% or 90% power against an alternative that is considered to be of clinical interest. As
we can see from Figure 2 and Table 2, the achieved power is usually much lower than 80%. Indeed, we estimate that about
88% of RCTs have power less than 80%. However, this does not mean that most sample size calculations are mistaken. It
merely indicates that many treatments do not have the effect that was considered to be of clinical interest. Finding good
treatments is not easy! Other factors may also contribute to low power, such as difficulties with subject recruitment or
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T A B L E 2 Estimated quantiles of the absolute value of the
signal-to-noise ratio and the achieved power

Q10 Q25 Q50 Q75 Q90

|SNR| 0.14 0.36 0.83 1.73 3.03

Power 0.05 0.07 0.13 0.41 0.86
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F I G U R E 3 These curves show the mathematical relation between the exaggeration ratio (expected type M error) as a function of the
SNR and the power

larger between-subject variation than anticipated. In any case, the fact remains that the achieved power in the majority
RCTs is quite low, and this has consequences for our inferences.

3.2 Exaggeration

Another important statistical quantity is the ratio R = |b|∕|𝛽|. Its expectation E(R | 𝛽, s) could be called the relative bias
of the magnitude. In the absence of bias, it is equal to one. However, the fact that b is unbiased for 𝛽 implies that |b| is
positively biased for |𝛽| (Jensen’s inequality). So the unbiasedness of b implies that E(R | 𝛽, s) is always greater than one.

Gelman and Carlin5 define the “expected type M error” or “exaggeration ratio” as

E(R | 𝛽, s, |b|∕s > 1.96). (2)

It represents the factor by which the magnitude of the effect may be expected to be overestimated when we condition
on significance at the 5% level (two-sided). This exaggeration is sometimes referred to as the winner’s curse. Undoubtedly,
the winner’s curse is to a considerable extent responsible for disappointing replication results.

It turns out that the exaggeration ratio depends on 𝛽 and s only through the absolute value of the SNR. In fact, van
Zwet and Cator6 show that the exaggeration ratio is decreasing in |SNR|. Since the power is a strictly increasing function
of |SNR|, it follows the exaggeration ratio is also a decreasing function of the power, see also References 4,5. In Figure 3
we show the exaggeration ratio as a function of |SNR| and as a function of the achieved power. If the achieved power is
13% (which is the median across the RCTs in the Cochrane database), then the exaggeration is about 3. This means that
if a study with median power reaches significance, we would expect the magnitude of the effect to be overestimated by a
factor of 3.

Of course, in practice we do not know 𝛽 so we know neither the achieved power nor the exaggeration ratio. However,
note that R is just a function of the SNR and the z-value

R = |b||𝛽| = |b|∕s|𝛽|∕s
= |z||SNR| . (3)

Since we have the joint distribution of the SNR and the z-value, we can calculate the conditional distribution of
R given z. We represent the conditional distribution of R given z by its three quartiles in the left panel of Figure 4.
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F I G U R E 4 Left panel: The distribution of the ratio R = |b|∕|𝛽| conditional on the z-value, represented by its three quartiles. Right
panel: The distribution of the ratio |𝛽|∕|𝛽| conditional on the z-value

We notice that considerable bias is already present at fairly small values of z. When z = 1.96, the conditional median of
R is about 1.7.

3.3 Coverage

We conclude this section by considering the conditional coverage of the usual 95% confidence interval given the observed
z-value. Note that

P(b − 1.96 s < 𝛽 < b + 1.96 s | z) = P(z − 1.96 < SNR < z + 1.96 | z). (4)

Again, the joint distribution of the SNR and the z-value allows us to calculate this expression. We plot the conditional
coverage in Figure 5. We see that if z exceeds 2, the conditional coverage is much lower than the nominal level of 95%.

4 SHRINKAGE

When the z-value exceeds about 1.5, we see substantial overestimation of the magnitude of the effect in Figure 4 and
undercoverage of the confidence interval in Figure 5. These are clearly very serious problems. In this section we propose
a novel, data-based shrinkage estimator by conditioning on the observed z-value.

4.1 A shrinkage estimator

We have estimated the conditional distribution of the SNR given the z-value, so we also have the conditional expectation
E(SNR | z). Since 𝛽 = s ⋅ SNR, this immediately suggests an alternative estimator for 𝛽, namely

𝛽 = s ⋅ E(SNR | z). (5)

Since the marginal distribution of the SNR is a mixture of zero-mean normal distributions, 𝛽 will be “pulled” towards
zero so that |𝛽| will be less than |b|. In other words, 𝛽 is a shrinkage estimator. We stress that the estimator does not
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F I G U R E 5 Probability that the interval [b − 1.96 s, b + 1.96 s] covers 𝛽 conditional on the z-value

apply a universal shrinkage factor. More shrinkage will be applied to noisy estimates with small z-values, while almost
no shrinkage is applied to estimates with large z-values. In this sense, the amount of shrinkage is adaptive to the amount
of information in the data.

We can see in the left panel of Figure 4 that |b| is typically very biased for |𝛽|. In the right panel we show the
three quartiles of the conditional distribution of |𝛽|∕|𝛽| given z. We see that the shrinkage successfully addresses the
exaggeration.

4.2 Independence assumption

Until now, we carried out all our inferences conditionally on the z-value. However, we observe both b and s, so we are
ignoring some potentially relevant information. In particular, we may not conclude that our shrinkage estimator 𝛽 is equal
to the Bayes estimator (posterior mean) E(𝛽 | b, s).

Assumption 1 in Section 2 actually makes it possible to estimate the complete joint distribution of (𝛽, b, s) from a
sample of pairs (b1, s1), … , (bn, sn). However, modeling the three-dimensional distribution of (𝛽, b, s) is much harder than
the two-dimensional distribution of (z, SNR), especially since z and SNR have such a simple relation to each other. The
following Proposition formalizes when the joint distribution of z and SNR is sufficient for computing the conditional
distribution of 𝛽 given (b, s).

Proposition 1. Let f𝛽|b,s denote the conditional density of 𝛽 given (b, s) and fSNR|z denote the conditional density of SNR
given z. If the pair (b, s) and the SNR are conditionally independent, given the z-value, then

f𝛽|b,s(x) = 1
s

fSNR|z(x∕s). (6)

Proof. Let fSNR|b,s denote the conditional density of SNR given (b, s). Since 𝛽 = s ⋅ SNR, we have

f𝛽|b,s(x) = 1
s

fSNR|b,s(x∕s). (7)

The conditional independence condition now says

fSNR|b,s(x) = fSNR|z(x), (8)

and the result follows. ▪
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Under the condition of Proposition 1, the conditional distribution of 𝛽 given (b, s) is equal to the conditional
distribution of the SNR given z, scaled by a factor s. In particular,

E(𝛽 | b, s) = s ⋅ E(SNR | z) = 𝛽. (9)

Moreover, from the conditional distribution of the SNR given z, we can construct an interval such that the conditional
probability of covering the SNR is 95%. Under the condition of Proposition 1 we can simply scale this interval by s to get
an interval for 𝛽 which has 95% coverage, conditionally on z.

The distribution of the z-value across the Cochrane database carries only information about the distribution of the
SNR, which in turn carries only information about the distribution of the achieved power. So, if we use the observed
z-value as a basis for inference about 𝛽 via (6), then we are using only information about the distribution of the achieved
power across the Cochrane database. We are ignoring any additional information that may be present in the pair (b, s).

Doing inference about 𝛽 via (6) has one more practical advantage. Scaling by s means that the inference about 𝛽
is equivariant under changes of the unit of measurement of the outcome. In other words, it does not matter for our
conclusions if the outcome happens to be measured in grams or kilograms, for example.

4.3 Example

To demonstrate our shrinkage estimator, we will consider the recent ANDROMEDA-SHOCK RCT.14 The aim of this trial
was to determine if treating patients on the basis of so-called capillary refill time (CRT) is superior to treating them on the
basis of blood lactate levels. The primary outcome was survival at 28 days and the primary effect parameter was the hazard
ratio which was estimated at 0.75 with 95% confidence interval from 0.55 to 1.02. This is just shy of statistical significance
at the 5% level, which led the investigators to conclude that the experimental strategy “did not reduce all-cause 28-day
mortality”.

We can relate the results of this particular RCT to what we know about RCTs in general. This means that we must view
the ANDROMEDA-SHOCK trial as a “typical” RCT in the sense that its signal-to-noise ratio is exchangeable with that
of the other RCTs in the Cochrane database. In other words, we use only the information that ANDROMEDA-SHOCK
trial is an RCT. We use none of the particular features of the trial such as the disease, the treatment, the population, the
sample size, the type of outcome, et cetera. Moreover, we also treat the two arms of the trial exchangeably.

The estimated log hazard ratio is b = log(0.75) = −0.29 with 95% confidence interval from −0.6 to 0.02. From this
confidence interval, we can compute the standard error of b to be s = 0.16. The z-value is−0.29∕0.16 = −1.81. We can now
run the code below to compute our shrinkage estimator of the log hazard ratio. Note that the function conditional(),
which is provided in the Appendix, must be sourced first.

s <- 0.16
p <- c(0.32,0.31,0.3,0.07) # from Table 1
tau <- c(0.61,1.42,2.16,5.64) # from Table 1
res <- conditional(z=-1.81,p=p,tau=tau) # conditional distr. of the SNR given z

(Appendix)
s * sum(res$q * res$m) # betahat = s*E(SNR | z)

We find 𝛽 = −0.18 and notice the considerable shrinkage compared to b = −0.29. Next, we can also construct an
interval that covers the SNR with probability 95% conditionally on the observed z-value. Computing the quantiles of a
one-dimensional normal mixture distribution is not difficult. It can be done via a root-finding algorithm, but we can also
use the function qmixnorm from the R package “KScorrect”.

KScorrect::qmixnorm(p=c(0.025,0.975),mean=res$m,sd=res$sigma,pro=res$q,expand=0.5)
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We find the 95% interval from −3.0 to 0.43 for the SNR. We multiply this interval by s to get an interval for 𝛽 which
also has 95% coverage conditionally on z. In this way, we find the interval from −0.48 to 0.07 for 𝛽 . Finally, we can also
compute the conditional probability that 𝛽 is negative, given the observed z-value.

sum(res$q * pnorm(0,mean=res$m,sd=res$sigma))

We find that this probability is 91%. This is in line with a Bayesian re-analysis of the ANDROMEDA-SHOCK trial.15

5 DISCUSSION

We have analyzed the primary results of a collection of more than 20 000 RCTs from the Cochrane Database of Systematic
Reviews (CDSR). By estimating the joint distribution of the SNR and the z-value, we have been able to study the distribu-
tion of the achieved power. We have found that the achieved power is often very low. We have demonstrated how this leads
to overestimation and undercoverage when the observed z-value exceeds about 1.5. We propose a shrinkage estimator
that addresses these issues by conditioning on the observed z-value. The estimator is easy to compute from the reported
effect estimate and its standard error. We have demonstrated its use by re-analyzing the ANDROMEDA-SHOCK trial.

Our shrinkage estimator allows us to take into account the well-known fact that many RCTs have low achieved power.
We are not suggesting that our estimator should replace other approaches, but we do believe that it provides a useful
addition to whichever pure Bayesian or frequentist alternative the reader might prefer as their first choice of analysis
based on their own philosophical preference. We expect that Bayesians would want to use more prior information than
the distribution of the achieved power across all RCTs. See Reference 16 for an extensive and balanced discussion of
Bayesian approaches to RCTs. On the other hand, frequentists would prefer not to use any prior information at all.

We are not the first to use the Cochrane database to obtain general information about RCTs. Turner et al17 and Rhodes
et al18 used the database to get information about the heterogeneity of effects within a meta-analysis of a particular treat-
ment. We do believe that we are the first to propose using the database to obtain prior information about the SNR, or
equivalently, the achieved power across all RCTs.

While the Cochrane collaboration puts much effort in collecting all available studies on a particular topic (both pub-
lished and unpublished), it is likely that the database suffers from at least some publication bias, file drawer effects, fishing,
forking paths etc. Unfortunately, this means that the true (achieved) power is likely to be even lower and the exaggeration
even greater.

Strictly speaking, our analysis concerns only the Cochrane database. However, we believe that problems of low power
and exaggeration are similar—if not worse—in many other areas of research.
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APPENDIX

Here we discuss the conditional distribution of the SNR given the z-value. Now, suppose the SNR is distributed as a mixture
of k zero-mean normal components with mixture proportions p1, … , pk and SDs 𝜏1, … , 𝜏k. Then z is also a mixture of k
zero-mean normals with the same mixture proportions, but SDs

√
𝜏2

i + 1. The density of z is

g(z) =
k∑

i=1

pi√
𝜏2

i + 1
𝜑

(
z∕
√

𝜏2
i + 1

)
, (A1)

where 𝜑 is the standard normal density function.
The conditional distribution of the SNR given z is again a mixture of normals. The mixing proportions are

qi =
pi√
𝜏2

i + 1
𝜑

(
z∕
√

𝜏2
i + 1

)
1

g(z)
, (A2)

the means of the components are

mi =
z 𝜏2

i

𝜏2
i + 1

, (A3)

and the variances of the components are

v2
i =

𝜏2
i

𝜏2
i + 1

. (A4)
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Here we present anR function to compute the conditional distribution of the SNR given the z-value when the marginal
distribution of the SNR is a mixture of zero-mean Gaussians with a vector of mixing proportions p and associated SDs
tau. The conditional distribution is again a Gaussian mixture with proportions q, means m and SDs sigma. The usage
of the function is demonstrated in Section 4.3.

conditional <- function(z,p,tau) {
tau2 <- tau∧2
q <- p*dnorm(z,0,sqrt(tau2+1))
q <- q/sum(q) # conditional mixing probs
m <- z*tau2/(tau2+1) # conditional means
v <- tau2/(tau2+1) # conditional variances
sigma <- sqrt(v) # conditional std devs
data.frame(q,m,sigma)
}


