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The “significance filter” refers to focusing exclusively on
statistically significant results. Since frequentist proper-
ties such as unbiasedness and coverage are valid only
before the data have been observed, there are no guar-
antees if we condition on significance. In fact, the sig-
nificance filter leads to overestimation of the magnitude
of the parameter, which has been called the “winner’s
curse.” It can also lead to undercoverage of the confi-
dence interval. Moreover, these problems become more
severe if the power is low. These issues clearly deserve
our attention. They have been studied mostly through
empirical observation and simulation, while there are
relatively few mathematical results. Here we study them
both from the frequentist and the Bayesian perspective.
We prove that the relative bias of the magnitude is a
decreasing function of the power and that the usual
confidence interval undercovers when the power is less
than 50%. We conclude that it is important to apply the
appropriate amount of shrinkage to counter the winner’s
curse.
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1 INTRODUCTION

The ongoing debate about the role of statistical significance in scientific research Roze-
boom (1960), Meehl (1978) has recently intensified Wasserstein and Lazar (2016), Benjamin
et al. (2018), Wasserstein, Schirm, and Lazar (2019), McShane, Gal, Gelman, Robert, and Tack-
ett (2019), Amrhein and Greenland (2018), and Ioannidis (2019). Looking back to the beginning,
we find that Ronald Fisher wrote in 1926 Fisher (1992):

“Personally, the writer prefers to set a low standard of significance at the 5 per cent
point, and ignore entirely all results which fail to reach this level.”

In other words, Fisher considered the familiar 5% level to be quite liberal and recommended
that results that fail to reach even that level can be safely ignored. Now, more than 90 years
later, Fisher’s advice to apply the “significance filter” is widely followed. Recently, Barnett
and Wren (2019) collected over 968,000 confidence intervals extracted from abstracts and over
350,000 intervals extracted from the full-text of papers published in Medline (PubMed) from
1976 to 2019. We converted these to z-values and their distribution is shown in Figure 1. The
under-representation of z-values between −2 and 2 is striking.

As time and resources are always limited, it certainly makes sense to focus on significant
results to avoid chasing noise. However, there is a problematic side-effect; considering only
results that have reached statistical significance leads to overestimation Ioannidis (2008). This is
sometimes called the “winner’s curse.” See Hedges (1984), Hedges and Vevea (2005), Lane and
Dunlap (1978), Sterling (1959), Sterling, Rosenbaum, and Weinkam (1995) and in particular the
monograph Rothstein, Sutton, and Borenstein (2005) for the many issues related to publication
bias. Moreover, it has been demonstrated informally, that is, by simulation, that the winner’s curse
is especially severe when the power is low (Gelman & Carlin, 2014; Ioannidis, 2008). Here, we
provide the first formal proof of this important fact.

As it turns out, low power is very common in the biomedical sciences (Button et al., 2013;
Dumas-Mallet, Button, Boraud, Gonon, & Munafò, 2017). In particular, so-called pilot studies
often have extremely low power. When such a study yields a significant result, the effect is likely
grossly overestimated. Unfortunately, effect estimates from significant pilot studies are often used
to inform the sample size calculation of a larger trial (Gelman & Carlin, 2014; Leon, Davis,
& Kraemer, 2011). Low power also occurs when some correction is used to adjust for multi-
ple comparisons. Such corrections are especially severe in genomics research, and the resulting
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F I G U R E 2 The bias as a function
of 𝛽 when se= 1, conditional on
significance at the 5% level
(i.e., |b|> 1.96)
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overestimation of effects is well known (Göring, Terwilliger, & Blangero, 2001). The recent sugges-
tion to lower the significance level to improve reproducibility (Benjamin et al., 2018) also reduces
power, and therefore may backfire by aggravating the winner’s curse (McShane et al., 2019).

While the winner’s curse is a relatively well-known phenomenon, mathematical results are
largely lacking. In the first part of this paper, we study the winner’s curse from the frequentist
point of view. We prove that the relative bias in the magnitude is a decreasing function of the
power. We also examine the effect of the significance filter on the coverage of confidence intervals
and find it results in undercoverage when the power is less than 50%.

In the second part of the paper, we study the significance filter from the Bayesian perspective.
We conclude that it is necessary to apply shrinkage. We end the paper with a short discussion.

2 THE FREQUENTIST PERSPECTIVE

Suppose that b is a normally distributed, unbiased estimator of 𝛽 with se> 0. We have in mind
that 𝛽 is some regression coefficient such as a difference of means, a slope, a log odds ratio or log
hazard ratio, and we shall sometimes refer to 𝛽 as the “effect”.

Of course, b is no longer unbiased if we condition on |b| exceeding some threshold, for example
|b|> 1.96 se. This “significance filter” happens when journals preferentially accept results that are
statistically significant but also when authors or readers choose to focus on such promising results
as per Fisher’s advice. In Figure 2, we show the conditional bias E(b − 𝛽|se, 𝛽, |b| > 1.96 se) as a
function of 𝛽 (for se= 1).

We will now proceed to study the relative conditional bias of |b| as an estimator of |𝛽|, which
is also known as the exaggeration ratio or type M error (Gelman & Carlin, 2014).

2.1 Bias of the magnitude

By Jensen’s inequality, |b| is positively biased for |𝛽|. Indeed, given 𝛽, |b| has the folded normal
distribution with mean

E(|b||se, 𝛽) = |𝛽| +√
2
𝜋

se e−𝛽2∕2se2 − 2|𝛽|Φ(
− |𝛽|

se

)
. (1)

Proposition 1. The bias E(|b||se, 𝛽) − |𝛽| is positive for all se and 𝛽. Moreover, it is decreasing in|𝛽| and increasing in se.
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F I G U R E 3 The exaggeration
factor as a function of the signal-to-noise
ratio and the power, when conditioning
on significance at the 5% level (c= 1.96)

The proposition asserts that in low powered studies (small effects and large standard errors),
the magnitude of the effect tends to be overestimated. For fixed se, the bias E(|b||se, 𝛽) − |𝛽| is
maximal at 𝛽 = 0 where it is equal to

√
2∕𝜋 se ≈ 0.8 se.

Importantly, the bias in the magnitude becomes even larger if we condition on |b| exceeding
some a threshold. We have the following extension of Proposition 1.

Theorem 1. The conditional bias E(|b||se, 𝛽, |b|∕se > c) − |𝛽| is positive for all se and 𝛽. Moreover,
it is decreasing in |𝛽| and increasing in se and c.

We define the relative conditional bias as

E(|b||se, 𝛽, |b|∕se > c) − |𝛽||𝛽| ,

and the exaggeration ratio or type M error (Gelman & Carlin 2014) as E(|b||se, 𝛽, |b| > c)∕|𝛽|.
Corollary 1. The relative conditional bias is positive and the exaggeration factor is greater than 1.
Both depend on 𝛽 and se only through the signal-to-noise ratio (SNR) |𝛽|∕se. Both quantities are
decreasing in the SNR and increasing in c.

We illustrate this result in Figure 3. Now the power for two-sided testing of H0 ∶ 𝛽 = 0 at level
5% is

P(|b| > 1.96 se|𝛽, se) = Φ(SNR − 1.96) + 1 − Φ(SNR + 1.96),

which is a strictly increasing function of the SNR. Hence, the relative conditional bias and the
exaggeration factor are decreasing functions of the power, as was already noted on the basis of
simulation in Ioannidis (2008) and Gelman and Carlin (2014).

2.2 Coverage

The significance filter also has consequences for the coverage of confidence intervals. We start by
recalling their definition. Suppose a random variable X is distributed according to some distri-
bution f𝜃 . A (1 − 𝛼) × 100% confidence set S(X) is a random subset of the parameter space such
that

P(𝜃 ∈ S(X)|𝜃) = 1 − 𝛼,
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for all 𝜃 (Lehmann & Romano, 2006). A negatively biased semi-relevant (or recognizable) set R is
a subset of the sample space such that

P(𝜃 ∈ S(X)|𝜃,X ∈ R) < 1 − 𝛼,

for all 𝜃 . It is quite problematic if such a set R exists, for is it still reasonable to report S(X) with
(1 − 𝛼) × 100% confidence, after the event X ∈R has been observed?

Semi-relevant sets have been constructed in various situations, most notably in case of the
standard one-sample t-interval (Lehmann & Romano, 2006). Lehmann and Romano (2006) called
the existence of certain relevant sets “an embarrassment to confidence theory”. Now suppose b is
normally distributed with mean 𝛽 and known standard deviation se. If we define

S(b) = {𝛽 ∶ |b − 𝛽|∕se < z1−𝛼∕2}

where z1−𝛼∕2 is the 1 − 𝛼∕2 quantile of the standard normal distribution, then we have the
following confidence statement

P(𝛽 ∈ S(b)|𝛽, se) = P(|b − 𝛽|∕se < z1−𝛼∕2|𝛽, se) = 1 − 𝛼,

for all 0 < 𝛼 < 1, 𝛽 and se> 0. Lehmann and Romano (2006) show that in this particular setting,
there do not exist any negatively biased semi-relevant sets. This is certainly reassuring. However,
if c> 0, then the conditional coverage

P(|b − 𝛽|∕se < z1−𝛼∕2|𝛽, se, |b|∕se > c),

depends on 𝛽 and se. This dependence is not simple. For instance, it is not monotone in 𝛽. We do
have the following theorem.

Theorem 2. Suppose b is normally distributed with mean 𝛽 and standard deviation se. If the SNR|𝛽|∕se is less than z = z1−𝛼∕2 then

P(|b − 𝛽|∕se < z|𝛽, se, |b|∕se > z) < P(|b − 𝛽|∕se < z|𝛽, se) = 1 − 𝛼. (2)

Note that if the SNR is equal to z1−𝛼∕2, then the power for testing H0 ∶ 𝛽 = 0 at level 𝛼 is slightly
more than 50%. So the theorem implies that if we have a significant result while the power is 50%
or less, then the confidence interval will not reach its nominal coverage.

The result is quite sharp. By inspecting the proof, we can see that if the SNR is slightly larger
than z1−𝛼∕2 then the conditional coverage exceeds the nominal (unconditional) coverage.

3 THE BAYESIAN PERSPECTIVE

Bayesian inference is valid conditionally on the data, and so the significance filter should not pose
any difficulties. On the other hand, Bayesian estimators are naturally biased. In this section we
compare the performance of the unbiased estimator b and the Bayes estimator.

Let us assume that 𝛽 has a normal prior distribution with mean 0 and known standard
deviation 𝜏 > 0. This is a rather simple model, but it serves to highlight the main issues.
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Moreover, the normal prior is the standard choice in mixed models (in particular, random effects
meta-analysis). The conditional distribution of 𝛽 given b is normal with mean b∗ = 𝜏2b∕(se2 + 𝜏2)
and variance v = se2𝜏2∕(se2 + 𝜏2). We will write s =

√
v. Note that b* is the Bayes estimator (under

squared error loss) of 𝛽. Clearly, |b*|< |b| and for that reason b* is called a shrinkage estimator.
We can evaluate b and b* as estimators of 𝛽 conditionally on the parameter and averaged over

the distribution of the data, which is the frequentist point of view. Alternatively, we can condition
on the data and average over the distribution of the parameter, which is the Bayesian point of
view. We have the following nicely symmetric situation, where we consider se and 𝜏 to be fixed
and known.

E(b − 𝛽|𝛽) = 0 and E(b∗ − 𝛽|𝛽) = − se2

se2 + 𝜏2 𝛽, (3)

E(b − 𝛽|b) = se2

se2 + 𝜏2 b and E(b∗ − 𝛽|b) = 0, (4)

So, from the frequentist point of view, b is unbiased for 𝛽 and b* is biased. However, from the
Bayesian point of view, it is the other way around!

3.1 Bias of the magnitude

Now, if we are interested in the magnitude of 𝛽, then we could take the posterior mean of |𝛽| as
an estimator. However, it is still relevant to evaluate the performance of |b*| as an estimator of |𝛽|
from the Bayesian point of view. Conditionally on s and b*, 𝛽 has the normal distribution with
mean b* and standard deviation s and hence |𝛽| has the folded normal distribution. Similarly to
Proposition 1, we have the following.

Proposition 2. The difference E(|𝛽||s, b∗) − |b∗| is positive. It is decreasing in |b*| and increasing
in s. Moreover, the difference vanishes as |b*| tends to infinity.

So, conditionally on the data, |b*| underestimates |𝛽| on average, but the difference disappears
if we focus on large or significant effects. So now the significance filter actually reduces the bias
in the magnitude! In other words, shrinkage lifts the winner’s curse.

So far, we have conditioned either on the parameter or the data, and averaged over the other.
However, in practice we do not keep the parameter fixed and repeat the experiment many times.
We also do not keep the data fixed and vary the parameter. So, it is also relevant to consider
the performance of b and b* on average over the distribution of both the parameter and the
data. If the distribution of the parameter represents some field of research, then this averaging
will provide insight into how our statistical procedures perform when used repeatedly in that
field.

Under our simple model, the marginal distribution of b is normal with mean zero and
variance se2 + 𝜏2 and the marginal distribution of b* is normal with mean zero and variance
𝜏4∕(se2 + 𝜏2). So, trivially, E(b) = E(b∗) = E(𝛽) = 0. Moreover, it is easy to see that the variance of
b* is less than the variance of b. Marginally, |𝛽|, |b| and |b*| have half-normal distributions with
means

E |b∗| = 𝜏2√
se2 + 𝜏2

√
2
𝜋
, E|𝛽| = 𝜏

√
2
𝜋
, E|b| = √

se2 + 𝜏2

√
2
𝜋
. (5)
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It is easy to see that

E |b∗| < E|𝛽| < E|b|. (6)

The negative bias of |b*| may be preferable to the positive bias of |b| in situations where it is
important not to overstate the magnitude of an effect. This will depend on the application and
indeed different stakeholders for a given application may have different opinions. It is interest-
ing to note that the factor by which |b| overestimates |𝛽| is the same as the factor by which |b*|
underestimates it. That is,

E|b|
E|𝛽| = E|𝛽|

E|b∗| =
√

se2 + 𝜏2

𝜏
. (7)

Moreover, the following proposition says that the bias of |b*| is smaller (on average) than the
bias of |b|.

Proposition 3. Suppose 𝛽 has a normal prior distribution with mean 0 and standard deviation
𝜏 > 0. Suppose that conditionally on 𝛽, b is normally distributed with mean 𝛽 and standard deviation
se> 0. Let b∗ = E(𝛽|b), then

E(|b| − |𝛽|) > E(|𝛽| − |b∗|). (8)

Most importantly, however, while the bias of |b| increases as we condition on |b| exceeding
some threshold, the bias of |b*| vanishes!

Theorem 3. As c goes to infinity, E(|b∗| − |𝛽|||b| > c) vanishes.

This result formalizes a blog post by Andrew Gelman (2016).

3.2 Coverage

We now return to the coverage issue we discussed in Section 2.2. It might seem that Theorem 2 is
not much of a problem in practice because conditional on a significant result, the power is unlikely
to be small. But such an argument would depend on the (prior) distribution of the signal-to-noise
ratio |𝛽|∕se. We have the following result.

Theorem 4. Suppose 𝛽 and se are distributed such that the SNR |𝛽|∕se has a decreasing density and|𝛽|∕se and se are independent. Also suppose that conditionally on 𝛽 and se, b is normally distributed
with mean 𝛽 and standard deviation se. For every 0 < 𝛼 < 1

P(|b − 𝛽| < z1−𝛼∕2se||b|∕se > c) < 1 − 𝛼. (9)

This result suggests that across research fields where the SNR has a decreasing density, confi-
dence interval undercover on average. But how realistic is it to assume such a decreasing density?
Clearly, it would imply a decreasing density of the absolute z-value, and this is certainly not the
case in Figure 1. However we believe that this is due to selective reporting.

We have made an effort to collect an unselected sample of z-values as follows. It is a fairly
common practice in the life sciences to build multivariate regression models by “univariable
screening.” First, the researchers run a number of univariable regressions for all predictors that
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they believe could have an important effect. Next, those predictors with a p-value below some
threshold are selected for the multivariate model. While this approach is statistically unsound,
we believe that the univariable regressions should be largely unaffected by selection on sig-
nificance, simply because that selection is still to be done. For further details, we refer to van
Zwet (2019). We do note that in that article, we discarded p-values below .001, but these are
included here.

We have collected 732 absolute z-values from 51 recent articles from Medline. We show the
distribution in Figure 4 which suggest a decreasing distribution of the absolute z-values, which
implies that the distribution of the SNR is decreasing as well.

4 DISCUSSION

In this paper we have considered the generic situation where we have an unbiased, normally
distributed estimator b of a parameter 𝛽, with known standard error se. Frequentist properties,
such as the unbiasedness of b and the coverage of the confidence interval, are only meaningful
before the data have been observed. Once the data are in, they become meaningless since b is just
some fixed number and the confidence interval either covers 𝛽 or it does not. Nothing more can
be said without specifying a (prior) distribution for 𝛽.

However, suppose we condition not on (b, se) but only on the event |b|> 1.96 se. That is, we
condition on statistical significance at the 5% level. Now b is still random and we can talk about
bias and coverage. Conditionally on significance, b is biased away from zero. This tendency to
overestimate the magnitude of significant effects is sometimes called the “winner’s curse.” It is
especially severe when the SNR |𝛽|∕se is low. Also, if the SNR is low, then conditionally on signif-
icance the confidence interval will undercover. By providing mathematical proofs of these facts,
we hope to contribute to the awareness of these very serious problems.

The goal of hypothesis testing is to try to avoid chasing noise, which is perfectly reasonable.
However, the consequence of focusing on significant results is that all the nice frequentist prop-
erties no longer hold. Many proposals have been made to address this issue. From a frequentist
point of view, one could condition throughout on statistical significance. See, for example, Ghosh,
Zou, and Wright (2008) and references therein. Alternatively, one can take a Bayesian approach,
such as proposed by Xu, Craiu, and Sun (2011) and ourselves (van Zwet, 2019). Of course, the
Bayesian approach relies on correct specification of the prior.

Shrinkage is often viewed as a method to achieve a lower mean squared error by reduc-
ing the variance at the expense of increasing the bias. Our most important point is that it is
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necessary to apply shrinkage to reduce the bias that results from focusing on interesting results.
We explore how this may be achieved in van Zwet and Gelman (2020) and van Zwet, Schwab, and
Senn (2020).

ORCID
Erik W. van Zwet https://orcid.org/0000-0001-5537-3179

REFERENCES
Amrhein, V., & Greenland, S. (2018). Remove, rather than redefine, statistical significance. Nature Human

Behaviour, 2(1), 4.
Barnett, A. G., & Wren, J. D. (2019). Examination of CIs in health and medical journals from 1976 to 2019: An

observational study. BMJ Open, 9(11), 1–4.
Benjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B. A., Wagenmakers, E. J., Berk, R., … Cesarini, D. (2018).

Redefine statistical significance. Nature Human Behaviour, 2(1), 6.
Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafò, M. R. (2013). Power

failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5),
365.

Dumas-Mallet, E., Button, K. S., Boraud, T., Gonon, F., & Munafò, M. R. (2017). Low statistical power in biomedical
science: A review of three human research domains. Royal Society open science, 4(2), 160254.

Fisher, R. A. (1992). The arrangement of field experiments. In Breakthroughs in statistics (pp. 82–91). New York, NY:
Springer.

Gelman, A. (2016). Bayesian inference completely solves the multiple comparisons problem. Statistical modeling,
causal inference, and social science. Retrieved from https://statmodeling.stat.columbia.edu/

Gelman, A., & Carlin, J. (2014). Beyond power calculations: Assessing type S (sign) and type M (magnitude) errors.
Perspectives on Psychological Science, 9(6), 641–651.

Ghosh, A., Zou, F., & Wright, F. A. (2008). Estimating odds ratios in genome scans: An approximate conditional
likelihood approach. The American Journal of Human Genetics, 82(5), 1064–1074.

Göring, H. H., Terwilliger, J. D., & Blangero, J. (2001). Large upward bias in estimation of locus-specific effects
from genomewide scans. The American Journal of Human Genetics, 69(6), 1357–1369.

Hedges, L. V. (1984). Estimation of effect size under nonrandom sampling: The effects of censoring studies yielding
statistically insignificant mean differences. Journal of Educational Statistics, 9(1), 61–85.

Hedges, L. V., & Vevea, J. L. (2005). Selection method approaches. In Publication bias in meta-analysis: Prevention,
assessment, and adjustments (pp. 145–174). Hoboken, New Jersey: John Wiley & Sons, Ltd.

Ioannidis, J. P. (2008). Why most discovered true associations are inflated. Epidemiology, 19(5), 640–648.
Ioannidis, J. P. (2019). The importance of predefined rules and prespecified statistical analyses: Do not abandon

significance. JAMA, 321(21), 2067–2068.
Lane, D. M., & Dunlap, W. P. (1978). Estimating effect size: Bias resulting from the significance criterion in editorial

decisions. British Journal of Mathematical and Statistical Psychology, 31(2), 107–112.
Lehmann, E. L., & Romano, J. P. (2006). Testing statistical hypotheses. Berlin, Germany: Springer Science & Business

Media.
Leon, A. C., Davis, L. L., & Kraemer, H. C. (2011). The role and interpretation of pilot studies in clinical research.

Journal of Psychiatric Research, 45(5), 626–629.
McShane, B. B., Gal, D., Gelman, A., Robert, C., & Tackett, J. L. (2019). Abandon statistical significance. The

American Statistician, 73(Suppl 1), 235–245.
Meehl, P. E. (1978). Theoretical risks and tabular asterisks: Sir Karl, Sir Ronald, and the slow progress of soft

psychology. Journal of Consulting and Clinical Psychology, 46, 806–834.
Rosenbaum, S. (1961). Moments of a truncated bivariate normal distribution. Journal of the Royal Statistical Society

Series B (Methodological), 23, 405–408.
Rothstein, H. R., Sutton, A. J., & Borenstein, M. (2005). Publication bias in meta-analysis. In Publication bias in

meta-analysis: Prevention, assessment, and adjustments (pp. 1–7). Hoboken, New Jersey: John Wiley & Sons,
Ltd.

Rozeboom, W. W. (1960). The fallacy of the null-hypothesis significance test. Psychological Bulletin, 57(5), 416.

https://orcid.org/0000-0001-5537-3179
https://orcid.org/0000-0001-5537-3179
https://statmodeling.stat.columbia.edu/


446 VAN ZWET and CATOR

Sterling, T. D. (1959). Publication decisions and their possible effects on inferences drawn from tests of significance
or vice versa. Journal of the American Statistical Association, 54(285), 30–34.

Sterling, T. D., Rosenbaum, W. L., & Weinkam, J. J. (1995). Publication decisions revisited: The effect of the outcome
of statistical tests on the decision to publish and vice versa. The American Statistician, 49(1), 108–112.

van Zwet, E. W. (2019). A default prior for regression coefficients. Statistical Methods in Medical Research, 28(12),
3799–3807.

van Zwet, E. W., & Gelman, A. (2020). A proposal for informative default priors scaled by the standard error of
estimates. Retrieved from http://arxiv.org/abs/2011.15037/

van Zwet, E. W., Schwab, S., & Senn, S. J. (2020). The statistical properties of RCTs and a proposal for shrinkage.
Retrieved from http://arxiv.org/abs/2011.15004

Wasserstein, R. L., & Lazar, N. A. (2016). The ASA’s statement on p-values: Context, process, and purpose. New York,
NY: Taylor & Francis.

Wasserstein, R. L., Schirm, A. L., & Lazar, N. A. (2019). Moving to a world beyond p < 0.05. New York, NY: Taylor
& Francis.

Xu, L., Craiu, R. V., & Sun, L. (2011). Bayesian methods to overcome the winner’s curse in genetic studies. The
Annals of Applied Statistics, 5, 201–231.

How to cite this article: van Zwet EW, Cator EA. The significance filter, the winner’s
curse and the need to shrink. Statistica Neerlandica. 2021;75:437–452. https://doi.org/10.
1111/stan.12241

APPENDIX.

Proposition 1. The bias E(|b||se, 𝛽) − |𝛽| is positive for all se and 𝛽. Moreover, it is decreasing in|𝛽| and increasing in se.

Proof. This is a special case of Theorem 1. ▪

Theorem 1. The conditional bias E(|b||se, 𝛽, |b|∕se > c) − |𝛽| is positive for all se and 𝛽. Moreover,
it is decreasing in |𝛽| and increasing in se and c.

Proof. Let Z be a standard normal random variable and define

g(𝜃, c) = E (|𝜃 + Z| − 𝜃||𝜃 + Z| ≥ c) . (A1)

Since

E(|b||se, 𝛽, |b|∕se > c) − |𝛽| = seg(|𝛽|∕se, c) (A2)

it is clear that it is enough to prove that g(𝜃, c) is decreasing in 𝜃 > 0 and increasing in c> 0.
Suppose c1 < c2. For any random variable X we have that

E(X|X ≥ c2) ≥ E(X),

http://arxiv.org/abs/2011.15037/
http://arxiv.org/abs/2011.15004
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since E(X|X < c2) ≤ c2 ≤ E(X|X ≥ c2) and E(X) is a convex combination of the two conditional
expectations. Now we can replace X by X̃ = E(X|X ≥ c1), and we conclude that g is increasing in
c> 0.

To prove that g(𝜃, c) is decreasing in 𝜃 > 0, note that the density of |Z + 𝜃| is given by

f (y) =

{
𝜙(y − 𝜃) + 𝜙(y + 𝜃), y ≥ 0
0, y < 0.

Here 𝜙 is the standard normal density. Using that z𝜙(z) = −𝜙′(z),

g(𝜃, c) =
∫ ∞

c (y − 𝜃)(𝜙(y − 𝜃) + 𝜙(y + 𝜃)) dy
P(|Z + 𝜃| ≥ c)

=
∫ ∞

c −𝜙′(y − 𝜃) − 𝜙′(y + 𝜃) − 2𝜃𝜙(y + 𝜃) dy
P(|Z + 𝜃| ≥ c)

= 𝜙(c − 𝜃) + 𝜙(c + 𝜃) − 2𝜃(1 − Φ(c + 𝜃))
2 − Φ(c − 𝜃) − Φ(c + 𝜃)

. (A3)

We split g(𝜃, c) into the numerator and the denominator:

N = 𝜙(c − 𝜃) + 𝜙(c + 𝜃) − 2𝜃 (1 − Φ(c + 𝜃)) ,

and

D = 2 − Φ(c − 𝜃) − Φ(c + 𝜃).

Now it is enough to check that

D ⋅
𝜕N
𝜕𝜃

≤ N ⋅
𝜕D
𝜕𝜃

.

So

𝜕N
𝜕𝜃

= −𝜙′(c − 𝜃) + 𝜙′(c + 𝜃) − 2(1 − Φ(c + 𝜃)) + 2𝜃𝜙(c + 𝜃)

= (c − 𝜃)(𝜙(c − 𝜃) − 𝜙(c + 𝜃)) − 2(1 − Φ(c + 𝜃)),

and

𝜕D
𝜕𝜃

= 𝜙(c − 𝜃) − 𝜙(c + 𝜃).

Introduce

z− = c − 𝜃 and z+ = c + 𝜃.

Then

D ⋅
𝜕N
𝜕𝜃

≤ N ⋅
𝜕D
𝜕𝜃

⇔
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D ⋅ z− (𝜙 (z−) − 𝜙 (z+)) − 2D ⋅ (1 − Φ (z+)) ≤ N ⋅ (𝜙 (z−) − 𝜙 (z+)) ⇔

(𝜙 (z−) − 𝜙 (z+)) (D ⋅ z− − N) ≤ 2D ⋅ (1 − Φ (z+)) . (A4)

The right-hand side of (A4) is clearly positive, and it is not hard to see that the first factor of
the left-hand side is also positive: for |z−|≤ z+ we have

𝜙 (z−) − 𝜙 (z+) ≥ 0.

Therefore, we can show that (A4) is true, if we can show that

D ⋅ z− − N ≤ 0. (A5)

We can see that

D ⋅ z− − N = z− (1 − Φ(z−)) + z− (1 − Φ(z+)) − 𝜙(z−) − 𝜙(z+) + 2𝜃(1 − Φ(z+))
= z− (1 − Φ(z−)) − 𝜙(z−) + z+ (1 − Φ(z+)) − 𝜙(z+). (A6)

We now use the fact that for all z ∈ R,

z(1 − Φ(z)) − 𝜙(z) ≤ 0,

which follows from the fact that the derivative of this function (i.e., 1 − Φ(z)) is positive, and the
limit for z→∞ equals 0. So (A6) is indeed negative, which proves (A4), and therefore the fact that
g(𝜃, c) is decreasing in 𝜃 ≥ 0. ▪

Corollary 1. The relative conditional bias is positive and the exaggeration factor is greater than 1.
Both depend on depend on 𝛽 and se only through the SNR |𝛽|∕se. Both are decreasing in |𝛽|∕se and
increasing in c.

Proof. Recall the definition of the function g(𝜃, c) from (A1). The relative bias is equal to
seg(|𝛽|∕se, c)∕|𝛽| and the exaggeration factor is seg(|𝛽|∕se, c)∕|𝛽| + 1. We refer to the proof of
Theorem 1 where we show that g(𝜃, c) is decreasing in 𝜃 ≥ 0 and increasing in c≥ 0. This also
establishes the present claim. ▪

Proposition 2. The difference E(|𝛽||s, b∗) − |b∗| is positive. It is decreasing in |b*| and increasing
in s. Moreover, the difference vanishes as |b*| tends to infinity.

Proof. Comparing to Proposition 1, we see that this is also a special case of Theorem 1. ▪

Theorem 2. Suppose b is normally distributed with mean 𝛽 and standard deviation se. If |𝛽|∕se ≤
z = z1−𝛼∕2 then

P(|b − 𝛽|∕se < z|𝛽, se, |b|∕se > z) < P(|b − 𝛽|∕se < z|𝛽, se) = 1 − 𝛼. (A7)

Proof. There is no loss of generality if we assume 𝛽 > 0 and se= 1. In this proof, we will drop
conditioning on 𝛽 and se from our notation. In fact, without loss of generality we will prove
the corresponding statement for X ∼ N(𝜇, 1). Also, it is more convenient to work with the
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complementary event |X − 𝜇| > z. Since

P(|X − 𝜇| > z||X| > z) = P(|X| > z|||X − 𝜇| > z)P(|X − 𝜇| > z)
P(|X| > z)

,

is suffices to prove that

P(|X| > z|||X − 𝜇| > z) − P(|X| > z) > 0,

for all 0 < 𝜇 ≤ z. Now,

P(|X| > z|||X − 𝜇| > z) − P(|X| > z)
= P(|X| > z||X − 𝜇 > z)∕2 + P(|X| > z|X − 𝜇 < −z)∕2 − P(|X| > z)

= 1
2
+ P(X > z|X − 𝜇 < −z)∕2 + P(X < −z|X − 𝜇 < −z)∕2 − P(X > z) − P(X < −z)

= 1
2
+ Φ(−z − 𝜇)

2Φ(−z)
− 1 + Φ(z − 𝜇) − Φ(−z − 𝜇).

Taking the derivative with respect to 𝜇, it is easy to see that this expression is decreasing in
𝜇 > 0. Moreover, if we take𝜇 = z, then we getΦ(−2z)∕2Φ(−z) − Φ(−2z), which is positive because
Φ(−z) < 1∕2. ▪

Proposition 3. Suppose 𝛽 has a normal prior distribution with mean 0 and standard deviation
𝜏 > 0. Suppose that conditionally on 𝛽, b is a normally distributed with mean 𝛽 and standard
deviation se> 0. Let b∗ = E(𝛽|b), then

E(|b| − |𝛽|) > E(|𝛽| − |b∗|). (A8)

Proof. We have to show that √
se2 + 𝜏2 − 𝜏 ≥ 𝜏 − 𝜏2√

se2 + 𝜏2
.

Multiplying by
√

se2 + 𝜏2 and rearranging we obtain

se2 + 𝜏2 − 2𝜏
√

se2 + 𝜏2 + 𝜏2 ≥ 0.

The left-hand side of this equality is equal to (
√

se2 + 𝜏2 − 𝜏)2 which is clearly positive unless se
is zero. ▪

Theorem 3. As c goes to infinity, E(|b∗| − |𝛽|||b| > c) vanishes.

Proof. Since the marginal distribution of b is symmetric around zero, we have for positive c

E(|b∗|||b| > c) = 𝜏2

se2 + 𝜏2 E(|b|||b| > c) = 𝜏2

se2 + 𝜏2 E(b|b > c). (A9)
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Conditionally on b> c, b has the truncated normal distribution. Hence

𝜏2

se2 + 𝜏2 E(b|b > c) = 𝜏2

se2 + 𝜏2

√
se2 + 𝜏2

𝜑

(
c∕
√

se2 + 𝜏2
)

1 − Φ
(

c∕
√

se2 + 𝜏2
)

=
𝜏2𝜑

(
c∕
√

se2 + 𝜏2
)

√
se2 + 𝜏2(1 − Φ(c∕

√
se2 + 𝜏2))

(A10)

Turning to |𝛽|, we have by symmetry,

E(|𝛽|||b| > c) = E(|𝛽||b > c). (A11)

Moreover,

E(|𝛽||b > c) = E(𝛽|b > c) + E(|𝛽| − 𝛽|b > c). (A12)

By a result due to Rosenbaum (1961) concerning the mean of a truncated bivariate normal
distribution, we have

E(𝛽|b > c) =
𝜏2𝜑

(
c∕
√

se2 + 𝜏2
)

√
se2 + 𝜏2(1 − Φ(c∕

√
se2 + 𝜏2))

. (A13)

Since this expression is equal to (A10), we only need to show that

lim
c→∞

E(|𝛽| − 𝛽|b > c) = 0.

Since P(𝛽 < 0|b > c) → 0 as c→∞, this is clearly true. ▪

To prove Theorem 4, we use the following Lemma.

Lemma 1. Let X be a random variable and g an increasing function that is not constant on the
support of X. Then for every x such that P(X > x)> 0

E(g(X)|X < x) < E(g(X)).

Proof. E(g(X)) is a convex combination of E(g(X)|X < x) and E(g(X)|X ≥ x). Since g is increasing

E(g(X)|X < x) ≤ E(g(X)|X ≥ x).

If g is not constant on the support of X , then the inequality is strict and the claim follows. ▪

To prove Theorem 4, we first prove the following Proposition.

Proposition 4. Suppose 𝜇 is distributed such that |𝜇| has a decreasing density f. Also suppose Z
is independent of 𝜇 and has a distribution which is symmetric around zero and supported on the
whole real line. Let X = Z + 𝜇. For every positive c and z

P(|X − 𝜇| < z||X| > c) < P(|X − 𝜇| < z). (A14)
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Proof. Since Z = X − 𝜇, we can rewrite the claim as

P(|Z| < z||Z + 𝜇| > c) < P(|Z| < z).

Because,

P(|Z| < z||Z + 𝜇| > c) = P(|Z + 𝜇| > c||Z| < z)P(|Z| < z)
P(|Z + 𝜇| > c)

,

the claim is equivalent to

P(|Z + 𝜇| > c||Z| < z) < P(|Z + 𝜇| > c), (A15)

for all positive z and c. If we define

g(z) = P(|Z + 𝜇| > c||Z| = z),

then

P(|Z + 𝜇| > c||Z| < z) = E(g(|Z|)||Z| < z).

Now we can use Lemma 1 to prove our claim by showing that g is increasing and not constant.
Since the distribution of Z is symmetric around zero, its sign and magnitude are independent.
Therefore,

g(z) = P(|Z + |𝜇|| > c||Z| = z). (A16)

Using the independence of Z and 𝜇, we have

g(z) = P(|z + |𝜇|| > c)∕2 + P(| − z + |𝜇|| > c)∕2

= P(z + |𝜇| > c)∕2 + P(z + |𝜇| < −c)∕2 + P(−z + |𝜇| > c)∕2 + P(−z + |𝜇| < −c)∕2

=

{
P(|𝜇| > c − z)∕2 + P(|𝜇| > c + z)∕2, if z ≤ c
1
2
+ P(|𝜇| > c + z)∕2 + P(|𝜇| < −c + z)∕2, if z > c.

Taking the derivative, we have

g′(z) =

{
f (c − z) − f (c + z), if z ≤ c
−f (c + z) + f (−c + z), if z > c

= f (|z − c|) − f (z + c) ≥ 0.

f is not constant since it is a (proper) density. It follows that g′ cannot be identically zero and
hence g is not constant either. ▪

Theorem 4. Suppose 𝛽 and se are distributed such that |𝛽|∕se has a decreasing density and |𝛽|∕se
and se are independent. Also suppose that conditionally on 𝛽 and se, b is normally distributed with
mean 𝛽 and standard deviation se. For every 0 < 𝛼 < 1

P(|b − 𝛽| < z1−𝛼∕2se||b|∕se > c) < 1 − 𝛼. (A17)
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Proof. For every se> 0, it follows from Proposition 1 that

P(|X − 𝜇| < z1−𝛼∕2se|se, |X|∕se > c) < P(|X − 𝜇| < z1−𝛼∕2se|se) = 1 − 𝛼.

Averaging over se, the claim follows. ▪


