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A B S T R A C T   

Where people live and work together it is not always possible to modify the ambient temperature; ways must 
therefore be found that allow individuals to feel thermally comfortable in such settings. The Embr Wave® is a 
wrist-worn device marketed as a ‘personal thermostat’ that can apply a local cooling stimulus to the skin. The 
aim of the present study was to determine the effect of an intermittent mild cold stimulus of 25 ◦C for 15–20 s 
every 5 min over 3.5 days under free-living conditions on 1) skin temperature, 2) perception of skin temperature, 
3) sleep quality and 4) resting energy expenditure (REE) in young, healthy adults. Ten subjects wore the device 
for 3.5 consecutive days. This intervention reduced distal skin temperature after correcting for personal ambient 
temperature (P < 0.05), but did not affect the subjects’ the perception of skin temperature, sleep quality or REE 
(all P ≥ 0.051). Thus, this intermittent mild cold regime can reduce distal skin temperature, and wearing it under 
free-living conditions for 3.5 days does not seem to impair the perception of skin temperature and sleep quality 
or modify REE.   

1. Introduction 

The perception of the ambient temperature (‘Standard 55 – Thermal 
Environmental Conditions for Human Occupancy’, n.d.) is different in 
men and women (Karjalainen, 2012) and a link may exist between 
thermal comfort and health (Kilbourne, 1997; Lugo-Amador et al., 2004; 
Semenza et al., 1999). Some studies report that the perception of an 
uncomfortable ambient temperature may lead to sleep disturbances 
(Schellen et al., 2012), and may even be connected to sick building 
syndrome (Fisk and Rosenfeld, 1997). However, where people live, 

study and work together, the ambient temperature cannot often be 
‘individualized’, which, given the above, might lead to health problems 
in some persons (Sheen et al., 2018). 

Embr Labs Inc. markets a device designed to help one achieve per
sonal thermal comfort under different ambient temperatures. This de
vice, the Embr Wave® (https://embrlabs.com/), which has the form of 
an adjustable bracelet no bigger than a smart watch, has an aluminum 
plate that can be warmed/cooled to 25-42 ◦C at rates between 0.1-1 ◦C/ 
sec as customizable intensities, frequencies, and durations. The con
sumer product was developed to allow individuals to leverage localized 
thermal stimulation on the wrist to change the wearer’s perception of 
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the ambient temperature and thus achieve greater thermal comfort 
(Wang and Luo, 2017). The consumer product has been shown to 
improve perceived temperature by over 3 ◦C (Wang et al., 2020) and has 
been found to offer sleep benefits to women experiencing disruptive 
night time hot flashes (Composto et al., 2019). 

Over the last decade, it has been reported that short-term cold in
terventions (~10 days) might enhance the immune system and improve 
insulin sensitivity, among other factors (Stocks et al., 2001) in over
weight individuals via the activation of different thermogenic tissues 
(Hanssen et al., 2015; Van Der Lans et al., 2015). Based on these find
ings, it has been suggested that the ambient temperature of buildings 
might be reduced to afford similar beneficial effects (Blauw et al., 2017; 
Martinez-Tellez et al., 2018). This however, is not really feasible; not 
everyone in a building feels comfortable at the same temperature. It has 
also been reported that, since sleep usually starts as core body temper
ature falls due to an increase in peripheral skin temperature in healthy 
subjects, manipulation of the skin temperature might modify sleep-onset 
latency (Kräuchi et al., 1999) and sleep quality (Acosta et al., 2019). 
Knowing what effect a local mild cold stimulus intervention under 
free-living conditions has on human health and sleep quality is not 
without clinical and public health interest. The overarching goal of the 
study was to evaluate the effects of intermittent and localized cold 
exposure (15–20 s every 5 min, applied only to 6.25 cm2 of one wrist), 
on human physiology. This cold exposure is significantly more inter
mittent than the thermal stimulation used in previous studies with Embr 
Wave® (and is not currently available in the consumer product). 

The aim of the present study was to determine the effect of an 
intermittent mild cold stimulus of 25 ◦C for 15–20 s every 5 min over 3.5 
days under free-living conditions on 1) skin temperature, 2) the 
perception of skin temperature, 3) sleep quality, 4) resting energy 

expenditure (REE), and 5) the nutrient oxidation rate, in young healthy 
adults. This study represents a first investigation at the potential benefits 
of exposure to intermittent, localized cold sensations over prolonged 
periods of time. 

2. Material & Methods 

2.1. Study subjects and ethics statement 

The study subjects were 10 adults (5 women, 5 men; 25.8 ± 3.4 
years; Table 1); all were healthy, non-smokers, who took no medication 
that might affect their thermoregulatory response to cold exposure and 
included from March to April 2019. The study protocol was designed in 
accordance with the latest version of the Declaration of Helsinki and 
approved by the Ethics Committee on Human Research of the University 
of Granada (no. 793/CEIH/2019). Informed consent was obtained from 
all subjects. 

2.2. Embr Wave® device 

Commercially available Embr Wave® devices were programmed to 
provide an intermittent cold stimulus, a ramp down to 25 ◦C for 15–20 s 
every 5 min (Fig. 1). This functionality was developed to deliberately 
test the potential benefits of intermittent mild cold stimulation beyond 
commercially available operating modes. Subjects were instructed to 
remove the device, which was worn on the right wrist, only for hand- 
washing and bathing. Testing was performed on two subjects (one 
male, one female) per week. 

Abbreviations 

ANOVA Analysis of variance 
BAT Brown adipose tissue 
BMI Body mass index 
CV Coefficients of variance 
ExpCo Experimental condition 
IS Interdaily stability 
IV Intradaily variability 
L10 mean wrist skin temperature for the 10 consecutive hours 

with the minimum values 
M5 mean wrist skin temperature for the 5 consecutive hours 

with maximum wrist skin temperature values 
Outdoor-AT outdoor ambient temperature 

Personal-AT personal ambient temperature 
RA Relative amplitude 
REE Resting energy expenditure 
RQ Respiratory quotient 
TL10 Time when L10 occurred 
TM5 Time when M5 occurred 
TRPM8 Transient receptor potential cation channel subfamily 

melastatin member 8 
VAS Visual analogue scale 
VCO2 Volume of carbon dioxide 
VO2 Volume of oxygen 
WASO Number and duration of periods spent awake after sleep 

onset  

Table 1 
Characteristics of study subjects.   

All (n = 10) Women (n = 5) Men (n = 5) 

Age (years) 25.8 ± 3.2 27.4 ± 2.9 24.2 ± 2.8 
Body mass index 

(kg/m2) 
23.0 ± 3.2 21.3 ± 2.1 24.7 ± 3.4 

Fat Mass (kg) 21.0 ± 8.2 24.2 ± 9.6 17.8 ± 5.8 
Fat Mass (%) 32.2 ± 9.5 33.2 ± 10.7 31.1 ± 9.3 
Fat Mass Index 

(kg/m2) 
7.3 ± 2.5 8.1 ± 3.01 6.5 ± 1.9 

Total Lean Mass 
(kg) 

41.9 ± 11.3 45.6 ± 11.2 38.3 ± 11.2 

Lean Mass Index 
(kg/m2) 

14.5 ± 2.5 15.2 ± 2.2 13.8 ± 2.8 

Fat Free Mass 
(kg) 

44.1 ± 11.7 48.1 ± 11.7 40.2 ± 11.5 

Data are presented as means and standard deviations. 

Fig. 1. EMBR wave ® device placed on a wrist of a participant.  

H. Xu et al.                                                                                                                                                                                                                                       



Journal of Thermal Biology 97 (2021) 102875

3

2.3. Experimental procedure 

The subjects worn the Embr Wave® device over a period of 3.5 days 
under free-living conditions. 

2.4. Skin temperature measurements using iButtons 

Skin temperature measurements were taken every 10 min using DS- 
1922 L Thermochron iButtons (resolution: 0.0625 ◦C) (Maxim, Dallas, 
USA) (Martinez-Tellez et al., 2019a), the validity and reliability of which 
have been established for the assessment of skin temperature in humans 
(Smith et al., 2010; van Marken Lichtenbelt et al., 2006). These were 
placed on the back of the hand, the inner part of the wrist, the forearm, 
in the supraclavicular area, and on the instep of both the right and left 
sides of the body. To measure the personal ambient temperature to 
which each subject was exposed (personal-AT), the subjects carried an 
iButton attached to a plastic fob on their person, though never in direct 
contact with their body or under clothing (Martinez-Tellez et al., 2018) 
(e.g., attached to a backpack or bag). Subjects were told to remove the 
iButtons only when bathing or washing their hands, and once finished, 
to put the iButtons on again by themselves; non-wear periods were 
recorded in a diary. All iButtons were programmed to start recording 
data every 10 min for 3.5 days, starting at 06:00 h on day 1. 24-hour 
means were determined, and overall 3.5-day means then determined 
using the Temperatus® software (http://profith.ugr.es/temperatus? 
lang=en) (Martinez-Tellez et al., 2019b). The control group was 
composed of the same subjects who received no intermittent mild cold 
stimulation for 3.5 days before the activation of the device. 

2.5. Outdoor ambient temperature 

To adjust for the effect of the mean outdoor ambient temperature 
(outdoor-AT), temperatures for the city of Granada, Spain (where this 
work was performed) were downloaded every day of the study period 
from the Spanish National Meteorological Agency (www.aemet.es/e 
s/portada). The test and control period outdoor-AT and the personal- 
AT for each subject were then calculated. 

2.6. Perception of skin temperature 

The perception of skin temperature was assessed using a 100-long 
mm visual analogue scale (VAS), where 0 mm represented “not cold at 
all” and 100 mm the “maximum tolerable cold”. Subjects reported the 
perception of skin temperature over the different body sites (body, 
hands and feet) every day before they went to sleep (Lundgren et al., 
2014). 

2.7. Sleep quality 

Sleep quality variables were determined as previously described 
(Ortiz-Tudela et al., 2010a; Witting et al., 1990) (a number of studies 
have shown that the wrist skin temperature provides a reliable proxy of 
sleep quality (Blazquez et al., 2012)). The interdaily stability (IS) of the 
wrist skin temperature (i.e., the constancy of the 24 h rhythmic pattern 
over the days of data collection), the intradaily variability (IV; i.e., the 
fragmentation of the rhythm), and the relative amplitude (RA) were 
determined as described elsewhere (Ortiz-Tudela et al., 2010b; Witting 
et al., 1990). The RA was determined as the difference between the mean 
wrist skin temperature for the 5 consecutive hours with the maximum 
wrist skin temperature values (M5), and the mean wrist skin tempera
ture for the 10 consecutive hours with the minimum values (L10), 
divided by their sum (Martinez-Nicolas et al., 2011). Finally, the times at 
which L10 and M5 occurred (TL10 and TM5, respectively) were calcu
lated as previously described (Martinez-Nicolas et al., 2011). The mean 
daily pattern for wrist skin temperature was calculated per individual, 
and then the mean determined for all subjects. The mean daily 

determined for the test and control groups. 
The subjects also wore an ActiGraph GT3X + accelerometer (Acti

Graph, Pensacola, FL, US) on their left wrist for the entire experimental 
period (except for water-based activities). The following sleep-related 
variables were determined using this device: (1) night onset (time at 
which the subject fell asleep); (2) wake-up time; (3) in-bed time (time 
between going to bed and waking up); (4) sleep duration (time between 
falling asleep and waking up); (5) sleep efficiency (ratio of sleep dura
tion to in-bed time); (6) number and duration of periods spent awake 
after sleep onset (WASO). Daytime naps were not taken into account, 
and participants used a diary log for selecting sleeping periods. Before 
analysis, atypical data were eliminated and all non-wear time periods 
excluded. At least four valid days of data (i.e., each with >75% of the 
100% possible data for a 24 h period) were required for a subject’s re
sults to be included in analyses. 

2.8. Resting energy expenditure and nutrient oxidation 

REE and nutrient oxidation rates were measured on three occasions 
following procedures described elsewhere, and the latest recommen
dations (Alcantara et al., 2020; Fullmer et al., 2015a; Sanchez-Delgado 
et al., 2019). Briefly, REE was measured at 08.30 h every day (i.e., after 
the overnight fast) in a quiet room with dim lighting under controlled 
environmental conditions (22-24 ◦C; humidity 35–45%) (Fullmer et al., 
2015b). The REE was assessed over 30 min using the Omnical metabolic 
cart equipped with a ventilated plastic-canopy for subject gases collec
tion (Maastricht Instruments, Maastricht, Netherlands) previous a 
resting period (20 min). This cart has been previously validated for REE 
and nutrient oxidation rate determinations (Kaviani et al., 2018; 
Schoffelen et al., 2019). The calibration of the flow and gases analyzers 
was performed automatically before each measurement. The gas data 
returned were averaged for every minute using an Excel spreadsheet 
(the first 5-min of measurement were discarded) (Fullmer et al., 2015b). 
The coefficients of variance (CV) of VO2, VCO2 and RQ were then 
calculated. A 5-min period that met the steady state criteria of CV<10% 
for VO2 and VCO2, and CV<5% for RQ was then selected for data 
analysis (Alcantara et al, 2018, 2020; Sanchez-Delgado et al., 2018). 
Lastly, using the same selected data period, and assuming zero urinary 
nitrogen excretion, the REE was estimated using Weir’s equation (WEIR, 
1949), carbohydrate and fat oxidation rates were estimated using 
Frayn’s equation (Frayn, 1983), and the respiratory quotient (RQ; 
VCO2/VO2) calculated. 

2.9. Body composition 

Subject weight and height (barefoot and wearing standardized light 
clothes) were determined using a model 799 SECA scale and stadiometer 
(SECA, Hamburg, Germany). Body mass index (BMI) was calculated as 
weight/height squared (kg/m2). Body composition was measured by 
dual energy X-ray absorptiometry using a Wi Discovery device (Hologic, 
Inc., Bedford, MA, USA). Lean and fat mass indices were calculated as 
lean mass/height squared and fat mass/height squared (kg/m2). 

2.9.1. Statistical analysis 
Results are presented as means ± standard deviation, unless other

wise stated. General mixed model ANOVA was used to examine whether 
skin temperature and the perception of skin temperature differed under 
the test and control conditions. ‘Time’ (days 1, 2 and 3) was deemed to 
be a ‘within-subjects’ factors, whereas control and experimental condi
tions were regarded as ‘between-subject’ factors. Means were calculated 
for all iButtons daily temperatures, VAS perceptions of skin temperature, 
sleep quality variables, REE and the nutrient oxidation rate for the 3.5 
days, and one-way ANOVA performed to examine the differences be
tween the test and control conditions. To take into account possible 
confounders, REE/lean body mass ratio, and skin temperature 
outcomes/personal-AT ratios were determined and compared between 
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Fig. 2. Effect of the 3.5-day intermittent mild cold stimulus on skin temperature (as measured by iButtons). Two-way ANOVA was used to detect differences between 
the experimental (blue lines) and control (grey lines) conditions. One-way ANOVA was used to determine whether the mean skin temperature in the experimental 
conditions (blue boxes) and control conditions (grey boxes) differed. Data used in two-way ANOVA are presented as means and 95% confidence intervals, whereas 
those for one-way ANOVA are presented as means and minimum to maximum ranges. All data are adjusted for personal ambient temperature (personal-AT). Skin 
temperature was quantified on the left and right hands (A and B), left and right wrists (C and D), left and right forearms (E and F), left and right supraclavicular (G 
and H), and left and right insteps (I and J). ExpCo = experimental condition. 
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the control and test conditions using one-way ANOVA with post hoc 
Bonferroni correction. All calculations were made using the Statistical 
Package for the Social Sciences v.21.0 (IBM Corporation, Chicago IL, 
USA). Significance was set at P < 0.05. All figures were created using 
GraphPad Prism v.7.00 software (GraphPad Software, La Jolla, CA, 
USA). 

3. Results 

3.1. Effect of an intermittent cold regime on skin temperature 

Fig. S1 shows that outdoor-AT varied slightly over the study period, 
whereas the personal-AT was constant. Thus, when outdoor-AT 
decreased, personal-AT remained stable. Moreover, the outdoor-AT 
data show the temperature of the first day of the intervention to be 
different compared to the remaining days (Fig. S1). The main analyses 
were performed performing a ratio with personal-AT only (Fig. 2). 

During the 3.5-day test condition period, the distal skin temperatures 
tended to be lower during the first 10 h, although not significantly so 
(data not shown), nor was it maintained. The 3.5-day means for the skin 
temperatures of the right hand, wrist and instep were lower than under 
control condition (Fig. 2B, D and J; P = 0.027, P = 0.031 and P = 0.043 
respectively). The skin temperature of the left instep was also lower 
(Fig. 2I; P = 0.040). No significant differences were seen for the left 
supraclavicular area (Fig. 2A, C, E, F, G and H; all P ≥ 0.059). When 
analyses were not adjusted for personal-AT, none of the above effects 
were apparent (see Fig. S2; all P ≥ 0.112). 

3.2. Effect of an intermittent cold regime on perception of skin 
temperature 

Fig. 3 shows that the 3.5-day intermittent mild cold stimulus did not 
modify the perception of skin temperature anywhere before sleeping 
(Fig. 3A, B and C; all P ≥ 0.297). 

3.3. Effect of an intermittent cold regime on sleep quality 

The M5 for the left and right wrists was significantly higher during 
the time of the intermittent mild cold stimulus regimen (Figs. S3E and F; 
both P ≤ 0.005), although these differences disappeared after adjusting 
for personal-AT (Fig. 4E and F; both P ≥ 0.124). This suggests that 
ambient temperature is an important confounder of any quantification 
of the change in sleep quality that might be thought due to the stimulus 
provided by the device. The results returned by the accelerometers also 
suggested the stimulus had no significant effect on total sleep, sleep- 
onset times (Table S1; both P ≥ 0.483) or sleep efficiency (Table S1; 
P = 0.61). 

3.4. Effect of an intermittent cold regime on REE and nutrient oxidation 
rate 

The stimulus had no effect on REE, REE/lean body mass ratio, or the 
nutrient oxidation (carbohydrate and fat oxidation) rate (Fig. 5A, B, C 
and D; all P ≥ 0.485). This lack of effect was observed even when using 
gas exchange data selection criteria different (i.e., Time Interval instead 
of steady state method) to those explained in Methods (data not shown). 

4. Discussion 

The present results show that an intermittent mild cold stimulus 
regimen - 25 ◦C for 15–20 s every 5 min over 3.5 days reduces the distal 
skin temperature, but it does not impair the perception of skin temper
ature and sleep quality, or modify REE and the nutrient oxidation rate. 

The reduction in distal skin temperature - on both the left and right 
sides - caused by the 3.5 days stimulus regimen suggests the device 
might stimulate TRPM8 (transient receptor potential cation channel 
subfamily melastatin member 8) in the wrist area. Information would 
then be sent to the hypothalamus that the hand was being cooled down, 
leading to peripheral vasoconstriction (Dhaka et al., 2007; Flor
ez-Duquet and Mcdonald, 1998) in an attempt to preserve the core body 
temperature. Different studies suggest that thermoregulatory responses 
occurring simultaneously on both sides of the body when only one side 
has been stimulated, might be a reflection of better cardiovascular 

Fig. 3. Effect of the 3.5-day intermittent mild cold stimulus on the perception 
of skin temperature, measured using a visual analogue scale (VAS), where 0 mm 
represented “not cold at all” and 100 mm the “maximum tolerable cold”. Two- 
way ANOVA was used to detect differences between the experimental (blue 
lines) and control (grey lines) conditions. One-way ANOVA was used to 
determine whether the mean skin temperature in the experimental conditions 
(blue boxes) and control conditions (grey boxes) differed. Data used in two-way 
ANOVA are presented as means and 95% confidence intervals, whereas those 
for one-way ANOVA are presented as means and standard deviations. ExpCo =
experimental condition. 
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health (Alba et al., 2019; Kim et al., 2019; Maeda, 2017). 
Additionally, the fall seen in the distal skin temperature over the 

initial 10 h of monitoring was not maintained, suggesting a physiolog
ical or behavioral adaptation to the intermittent mild-cold stimulus took 
place. This might also explain the lack of any change in the perception of 
skin temperature, REE or the nutrient oxidation rate. Future work might 
investigate whether different cold stimulus regimens are also induce 
such adaptation (Castellani and Young, 2016). Moreover, skin temper
ature values were shown as a ratio to the Personal-AT due to the huge 
intraindividual variability observed (Fig. S1B). Surprisingly, we found 
that right distal skin temperatures (where the device was placed), were 
lower in comparison to left distal skin temperatures. This finding sug
gests that the effect of the device on distal skin temperature was inde
pendent of the Personal-AT, however, further and better studies are 
needed to confirm this hypothesis. 

It was initially thought that the 3.5-day intermittent mild cold 
stimulus might impair sleep quality. However, no such effect was seen, 
perhaps again due the above-suggested physiological adaptation to the 
stimulus. Moreover, none of the present subjects had sleep or thermo
regulatory problems; it remains to be seen whether an intermittent cold 

regime modifies sleep patterns in those with poorer sleep and thermo
regulatory health (Słomko et al., 2018). 

Brown adipose tissue (BAT) is one of the thermogenic tissues acti
vated by cold (Ruiz et al., 2018). In the present study, the supra
clavicular skin temperature was measured by thermal imaging as a 
proxy of BAT activity, which validity has not been proven yet (Jime
nez-Pavon et al., 2019). However, current evidence suggests that the 
supraclavicular skin temperature should be interpreted as the outcome 
of the combined responses of the blood vessels, skeletal muscles and BAT 
(Jimenez-Pavon et al., 2019). In any event, the supraclavicular skin 
temperature remained unaltered, suggesting that 3.5 days intermittent 
mild cold regimen to be insufficient to activate thermogenic responses. 
Further research to determine whether the intermittent mild cold 
exposure activates human BAT when applied to different locations on 
the body or with different frequencies, intensities or durations is 
warranted. 

4.1. Limitations 

The present results should be interpreted with caution since the 

Fig. 4. Effect of the 3.5-day intermittent mild cold 
stimulus on sleep quality. One-way ANOVA was used 
to study identify differences in sleep quality variables 
between the control (grey boxes) and experimental 
conditions (blue boxes). Data used in one-way 
ANOVA are presented as means and minimum to 
maximum ranges. All data are adjusted for personal 
ambient temperature (Personal-AT). Intradaily vari
ability was quantified for the left and right wrist (A 
and B), as was relative amplitude (RA) (C and D), and 
M5 (E and F). Two-way ANOVA was used to detect 
differences between the experimental (blue lines) and 
control (grey lines) conditions.   
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sample was small, although it was homogeneous in terms of age and 
health and body weight adequacy; but the extrapolation of these results 
to other populations would be unwise. The intermittent and localized 
cooling stimulation regime was designed as an initial test of extremely 
mild cold exposure, and not developed for targeted physiological re
sponses. Further, the cold stimulus was not individualized with respect 
to thermal sensitivity, meaning it felt differently to different subjects. 
The thermoneutral zone and whether the participants were exposed to 
indoor or outdoor during the study days were not recorded in the current 
study. The duration of the intervention was a continuous 3.5 days of 
stimulation every 5 min - apparently long enough for physiological or 
behavioral adaptation to occur, although longer, colder, or less contin
uous interventions might return different results. Finally, the personal- 
AT of the subjects tended to change at the moment the Embr Wave® 
device was switched on. This might indicate that wearing the device led 
the subjects to seek out warmer environments. Future work should 
determine whether a causal relationship exists. 

5. Conclusion 

This study shows that an intermittent and localized mild cold stim
ulus provided over 3.5 days reduces distal skin temperature but does not 
induce a measurable modification of the perception of skin temperature, 
sleep quality, REE, or the nutrient oxidation rate in this cohort. 
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Fig. 5. Effect of the 3.5-day intermittent mild cold stimulus on resting energy expenditure (REE) and nutrient oxidation as measured by indirect calorimetry. Two- 
way ANOVA was used to detect differences between the experimental (1 day, blue boxes blue lines) and control (2 days, grey and black boxes) conditions. REE was 
expressed as kilocalories per day (A) and as a ratio (REE/lean body mass; B). Nutrient oxidation was estimated for carbohydrates (C) and fats (D). 
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