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A T M O S P H E R I C  S C I E N C E

Predicting the severity of the grass pollen season 
and the effect of climate change in Northwest Europe
Alexander Kurganskiy1*†, Simon Creer2, Natasha de Vere3,4, Gareth W. Griffith4,  
Nicholas J. Osborne5,6, Benedict W. Wheeler5, Rachel N. McInnes7, Yolanda Clewlow7, 
Adam Barber7, Georgina L. Brennan2,8, Helen M. Hanlon7, Matthew Hegarty4, Caitlin Potter4, 
Francis Rowney5,9, Beverley Adams-Groom1, Geoff M. Petch1, Catherine H. Pashley10, 
Jack Satchwell10, Letty A. de Weger11, Karen Rasmussen12, Gilles Oliver13, Charlotte Sindt13, 
Nicolas Bruffaerts14, The PollerGEN Consortium‡, Carsten A. Skjøth1†

Allergic rhinitis is an inflammation in the nose caused by overreaction of the immune system to allergens in 
the air. Managing allergic rhinitis symptoms is challenging and requires timely intervention. The following are 
major questions often posed by those with allergic rhinitis: How should I prepare for the forthcoming season? 
How will the season’s severity develop over the years? No country yet provides clear guidance addressing these 
questions. We propose two previously unexplored approaches for forecasting the severity of the grass pollen 
season on the basis of statistical and mechanistic models. The results suggest annual severity is largely governed 
by preseasonal meteorological conditions. The mechanistic model suggests climate change will increase the 
season severity by up to 60%, in line with experimental chamber studies. These models can be used as fore-
casting tools for advising individuals with hay fever and health care professionals how to prepare for the grass 
pollen season.

INTRODUCTION
Pollen allergy, primarily causing allergic rhinitis (AR; also known as 
hay fever), affects up to 40% of the European population (1). AR is 
an inflammation in the nose caused by overreaction of the immune 
system to allergens in the air. According to the European Academy 
of Allergy and Clinical Immunology: “Allergic rhinitis represents a 
global health care problem affecting 10 to 20% of the total popula-
tion, making AR the most prevalent chronic non-communicable 
disease”. Grass (Poaceae) pollen is particularly important as the 
prevalence of sensitization is greater than other pollen types in most 
(European) countries (2). Pollen allergy can have substantial nega-
tive impacts on quality of life, for example, affecting sleep and per-
formance at work or school (3). Only a small fraction of patients 
with symptoms have been diagnosed by a specialist (3), although 
efficient treatment of patients with hay fever during the pollen sea-
son has been shown to reduce symptoms and improve quality of life 

(4). AR is also often comorbid with asthma (5–7), and hay fever 
symptoms, asthma exacerbations, and related hospital admissions 
increase with the severity of the pollen season (8). The pollen season 
severity is defined as the total amount of pollen per season in this 
study. A general increase in severity of the pollen season has also 
been observed to increase the number of sensitized patients (9). The 
severity of the pollen season is therefore important for patients with 
hay fever. Major questions posed by those with hay fever often in-
clude the following: How bad is this year’s season going to be? How 
should I prepare for the forthcoming season? How will the season’s 
severity (the amount of pollen) develop over the years? However, 
reliable methods for answering those questions have not previously 
been developed. A telephone-based screening of 7004 patients with 
self-reported allergic disease from 10 European countries revealed 
that one-third of patients were not satisfied with their treatment, 
and two-thirds experienced restrictions in daily activities (3). Fore-
casts of the pollen season severity are consequently important for 
patients and the health sector on seasonal and decadal time scales, 
respectively. In addition, longer-term forecasting is useful for health 
system planning, for example, in preparing for climate change im-
pacts. Climate change can lead to higher pollen concentrations and 
longer pollen seasons, resulting in a doubling of the population sen-
sitization to pollen (9).

The seasonal pollen integral (SPIn), the sum of pollen concen-
trations obtained at a site during the grass pollen season, is the main 
parameter used to describe the severity of the pollen season (10). 
The SPIn can be used to quantify pollen exposure, related health 
outcomes, and associated costs among the population (11), and 
comprises two main components: annual pollen production (APP) 
and atmospheric transport (AT). Studies suggest that AT contrib-
utes only 10 to 20% of the SPIn for grasses (12). The remaining 
80 to 90% is therefore dominated by variations in APP, which is a 
parameter that can potentially be forecast for both the upcoming 
season and for future decades, e.g., in relation to climate change.
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Here, we propose two novel mathematical approaches for study-
ing and forecasting the severity of the grass pollen season using 
statistical and mechanistic models. Approach 1 is a statistical ap-
proach, which is site based and designed for seasonal forecasting. 
The statistical approach is based on building a regression model 
using the SPIn, air temperature, and precipitation observation data. 
Approach 2 is a mechanistic approach, which is designed for long-
term assessments, such as the impact of climate change or mitiga-
tion scenarios. The concept of the mechanistic approach relies 
on describing the interannual variation of SPIn through variation 
in grass growth, measured primarily via net primary production 
(NPP), the net production of organic carbon by plants in an ecosys-
tem (13). The two novel approaches will have a practical usage in 
daily forecasting routines. We use the approaches in the study to 
test the following scientific hypotheses:

1) The severity of the grass pollen season is a regional-scale (i.e., 
10 to 1000 km) phenomenon.

2) The severity of the grass pollen season can be forecast using 
preseasonal meteorological conditions.

3) Long-term changes in the severity of the grass pollen season 
can be simulated by using land surface models, e.g., due to increased 
CO2 under future climate change scenarios.

Addressing these hypotheses, we provide novel methods for pre-
dicting the severity of the grass pollen season and reveal the current 
limitations of these methods both in relation to the upcoming sea-
son and in relation to scenarios by using the Northwest European 
region (Fig. 1 and Table 1) as a study area.

RESULTS
Modeling grass pollen interannual variation: 
A statistical model
We built a statistical regression model to simulate and predict the 
SPIn and pollen exposure at 28 pollen-monitoring stations located 
in Northwest Europe (Fig. 1 and Table 1; Materials and Methods). 
The correlation coefficients between the individual sites (Fig. 1) 
in relation to seasonal severity (SPIn) are typically below 0.6 to 0.7 
(Fig. 2A). Only 65 of 291 correlation coefficients are statistically sig-
nificant (P < 0.05), and the linear regression line shows a decreasing 
correlation with distance between stations (Fig. 2B). The result of 
the 2 = 3.865 at P = 0.01 is not statistically significant (P = 0.049304). 
The null hypothesis, that there is a connection between the sites, is 
therefore rejected. Each site should therefore be considered individ-
ually when building a statistical regression model.

The start of the season varies by approximately a month, from 
late April at the French sites La Roche-sur-Yon and La Rochelle 
(latitude 46.2°N) in the south, to the end of May or early June at the 
UK sites East Riding, Belfast, and Invergowrie (latitude 56.5°N) in 
the north (Fig. 1 and fig. S1). Thus, we can consider that the presea-
sonal period (March to April) chosen in the study is applicable for 
the entire region, and it can be used for building a statistical (regres-
sion) model.

The four different statistical regression models yielded coef-
ficients of determination varying from 0.63 (model 1, Fig. 3A) to 
0.75 (model 4, Fig.  3D). The number of statistically significant 
stations increases when preseasonal meteorological conditions 

Fig. 1. Geographical distribution of the pollen-monitoring stations used in the study. The marker colors correspond to the mean starting dates of grass pollen 
seasons with their SDs shown in numbers on the map. Black triangles show the stations where the mechanistic model only was applied for a relatively low number (n < 8) 
of pollen seasons.
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Table 1. Selected pollen/meteorological observation sites and temporal data coverage used for the statistical and mechanistic models. The first  
28 stations are used in both statistical and mechanistic models, whereas the last 6 stations are used in mechanistic only. NL, The Netherlands; BE, Belgium;  
DK, Denmark; FR, France; UK, United Kingdom. 

Pollen station, country Station code Latitude Longitude
Nearest 

meteorological 
station

Years, statistical 
model

Years, mechanistic 
model

Worcester, UK GBWORC 52.20°N 2.24°W Pershore 1996–2018 1996–2016

Plymouth, UK GBPLYM 50.35°N 4.12°W Plymouth, 
Mountbatten 1996–2015 1996–2015

Cardiff, UK GBCARD 51.50°N 3.21°W St. Athan 2006–2018
1996–1999, 
2001–2004, 
2006–2016

Isle of Wight, UK GBIOWT 50.71°N 1.30°W Wight: St. 
Catherines point 2005–2018 1996, 2001, 2003, 

2005–2016

Leicester, UK GBLEIC 52.62°N 1.12°W Church Lawford 1999–2018 1996–1997, 
1999–2016

Belfast, UK GBBELF 54.61°N 5.93°W Aldergrove 1996–2009 1996–2009, 
2011–2016

York, UK GBYORK 53.95°N 1.05°W Linton on Ouse 2008–2018 2008–2016

Preston, UK GBPRES 53.77°N 2.70°W Crosby 1996–2009 1996–2009

Cambridge, UK GBCAMB 52.21°N 0.13°E Bedford 1996–2014 1996–2014

Islington, UK GBLON1 51.54°N 0.10°W Heathrow 2002–2009 1996, 1998–2000, 
2002–2009

Invergowrie, UK GBINVE 56.46°N 3.07°W Leuchars 2011–2018

1998–1999, 
2001–2005, 
2007–2008, 
2011–2016

Ipswich, UK GBIPSW 52.06°N 1.20°E Wattisham 2011–2018 2011–2016

East Riding, UK GBEROY 53.84°N 0.43°W Bridlington MRSC 2011–2018 2011–2016

Derby, UK GBDERB 52.92°N 1.50°W Church Lawford 1996–2005 1996–2005

Leiden, NL NLLEID 52.17°N 4.48°E Schiphol 1996–2018 1996–2016

Brussels, BE BEBRUS 50.83°N 4.35°E Brussels airport 1996–2018 1996–2016

De Haan, BE BEDEHA 51.27°N 3.02°E Oostende 1996–2018 1996–2016

Copenhagen, DK DKCOPE 55.72°N 12.56°E Kastrup airport 1996–2018 1996–2016

Viborg, DK DKVIBO 56.45°N 9.40°E Karup airport 1996–2018 1996–2016

Lille, FR FRLILL 50.61°N 3.04°E Lesquin 2010–2018 2010–2016

Paris, FR FRPARI 48.84°N 2.31°E Le Bourget airport 2010–2018 2010–2016

Poitiers, FR FRPOIT 46.58°N 0.34°E Biard 2010–2018 2010–2016

Dinan, FR FRDINA 48.45°N 2.05°W Pleurtuit 2010–2018 2010–2016

La Roche-sur-Yon, FR FRLARO 46.67°N 1.40°W Les Ajoncs 2010–2018 2010–2016

Amiens, FR FRAMIE 49.90°N 2.30°E Abbeville 2010–2018 2010–2016

Reims, FR FRREIM 49.24°N 4.06°E Charleville Mezieres 2010–2018 2010–2016

Metz, FR FRMETZ 49.11°N 6.19°E Metz Nancy Loraine 2010–2018 2010–2016

La Rochelle, FR FRROCH 46.17°N 1.15°W Ile de Re 2010–2018 2010–2016

Kings College, UK GBLON2 51.51°N 0.12°E – – 2012–2016

Eskdalemuir, UK GBESKD 55.31°N 3.21°W – – 2011–2016

Taunton, UK GBTAUN 51.02°N 3.10°W – – 1996–2002, 2004

Bath, UK GBBATH 51.38°N 2.36°W – – 2011–2016

Chester, UK GBCHES 53.19°N 2.89°W – – 2012, 2014–2016

Exeter Uni, UK GBEXEU 50.74°N 3.53°W – – 2014–2016
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are included, from 4 (only SPIn, table S1) to 14 (SPIn + presea-
sonal air temperature, table S2), to 12 (SPIn + preseasonal precip-
itation, table S3) and 20 (SPIn + preseasonal precipitation and 
air temperature, table S4). This shows that including both 

preseasonal meteorological conditions and the measured SPIn 
provides the most robust way of forecasting the severity of the 
forthcoming grass pollen season.

The modeled SPIn values interpolated to full geographic cover-
age of the region for 2014 (Fig. 4A and fig. S2) show that forecast 
variations in seasonal severity mainly varied within ±20% of the 
mean modeled SPIn. The observation-based map (Fig. 4B) shows a 
similar picture with the majority of variation being within ±20%, 
but parts of central United Kingdom and Denmark showed areas 
above 1.2 (i.e., SPIn interannual variation is higher than 20% of the 
mean value) and most of the Netherlands below 0.8 (i.e., SPIn inter-
annual variation is lower than 20% of the mean value). This sug-
gests that extreme variations are more difficult to capture. It was 
also supported by the results from the cross correlation procedure 
using 24 pollen stations: the cross correlation yielded R2 values of 
0.02 and 0.05 and root mean square error values of 0.28 and 0.12 for 
the modeled and observed data, respectively. This sensitivity study 
demonstrates the high dependency of all data points in the mapping 
procedure; hence the local signal of the SPIn, and further supports 
the rejection of the null hypothesis. This also suggests that there is 
no connection (i.e., no spatial correlation for SPIn) between the sta-
tions within the entire region, and each site should be considered 
individually when building a statistical (regression) model.

The regression model was tested to identify the number of years 
providing the best correlation between the modeled and observed 
SPIn data. The tests were performed using the model with the high-
est coefficient of determination (model 4; fig. S3 and table S4), 
taking into account all correlation coefficients (fig. S3A) and only 
those that were significant (P < 0.05; fig. S3B). The results indicate 
that the average number of years used to obtain the maximum cor-
relation values is equal to 8 (SD = 1).

Modeling grass pollen interannual variation: 
A mechanistic model
We studied the interannual variations in grass SPIn through the 
interannual variations in NPP in grasslands with C3 grasses at 34 
pollen monitoring stations located in Northwest Europe (Fig. 1 and 
Table 1). The Joint UK Land Environmental Simulator (JULES) 
model (14) was used to simulate NPP for grasses over 407 pollen 
seasons at the selected stations for the years 1996 to 2016. Compar-
ison of NPP and SPIn interannual variations for all sites (Fig. 5) 
demonstrated positive and significant associations between NPP 
and SPIn (R = 0.2, P = 1.55 ×10−5). The correlation values (table S5) 
were positive and significant at six UK stations, with values varying 
from 0.5 at Worcester to 0.94 at Ipswich. Moreover, the SPIn varied 
within a factor of 2, whereas NPP interannual variation was lower 
and within 50% at the individual sites and when considering all sites 
together (Fig. 5). These data suggest that small variations in NPP 
can cause large variations in SPIn.

We also performed an additional set of sensitivity model runs to 
study the influence of doubled atmospheric CO2 concentration on 
NPP values (fig. S4 and data file S1) at each station and for the same 
years. Doubling the initial value of global averaged CO2 atmospheric 
concentrations (i.e., from 5.241 × 10−4 mmr to 10.482 × 10−4 mmr) 
in the JULES parameters led to an increase in the NPP values of up 
to 60% (fig. S4 and data file S1). However, it did not affect the inter-
annual variations of NPP and, hence, the correlation values between 
the simulated NPP and SPIn since the doubled value was used for all 
years in the model.

Fig. 2. Distribution of the correlation matrix values of SPIn depending on 
the distance between stations. Panel (A) shows all values and Panel (B) - only 
significant values with P < 0.05. The y axes are shown at the same scale for easier 
comparison. The correlation matrix has been calculated using the Pearson cor-
relation coefficients for all stations, except the values for two pairs of stations: 
Worcester-Cardiff and Leicester-Leiden where the Spearman correlation coefficients 
have been calculated instead.
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DISCUSSION
Our study sheds new light on the current feasibility and limitations 
of predicting the grass SPIn and thereby grass pollen exposure, us-
ing statistical and mechanistic models in the Northwest European 
region. We do this by testing three scientific hypotheses.

Hypothesis 1 tests whether grass SPIn is a regional-scale (i.e., 10 
to 1000 km) phenomenon, and the analyses indicate that this hy-
pothesis should be rejected. Analyzing the SPIn time series did not 
reveal any strong and statistically significant connection between 
the stations in the region. Similar results have also been obtained 

Fig. 3. Global scatter plots of observed (x axis) and modeled (y axis) SPIn simulated by four regression models. (A) Model 1 taking into account SPIn data only; 
(B) model 2 considering SPIn and preseasonal air temperatures; (C) model 3 including SPIn data and preseasonal precipitation; (D) model 4 based on SPIn, preseasonal air 
temperatures, and precipitation. The results are significant with P = 1.90 × 10−78 for model 1, P = 1.27 × 10−100 for model 2, P = 2.55 × 10−93 for model 3, and P = 2.96 × 10−109 
for model 4. The R2 values are based on the calculations of the Spearman correlation coefficients between the modeled and observed SPIn time series.
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studying SPIn at three UK stations: London, Derby, and Cardiff 
(15). The differences in the interannual SPIn variation were ex-
plained by the geographical variation of local meteorological condi-
tions and changes in grassland cover in the areas where the stations 
were located. The SPIn has been considered as a regional-scale phe-
nomenon for birches (Betula spp.) in the boreal region of Northern 
and Northeastern Europe (16), where a single regression model has 

been applied to describe interannual variation of the birch SPIn. In 
the context of birch, the single regression approach is feasible 
because the annual pollen productivity in birch within the boreal 
region is synchronized over large areas (17). However, the statistical 
approach showed poor performance outside the region (e.g., in 
Brussels) due to differences in climate, i.e., humid continental, 
boreal versus maritime (18). Our studies also show that the 

Fig. 4. Maps based on interpolating the simulated and observed variation in SPIn. Panel (A) corresponds to model 4 using the geospatial regression approach, and 
Panel (B)- the map based on observations for the grass pollen season 2014. The variations are calculated relative to the mean SPIn value over the years at each station and 
interpolated to the grid with 0.5° horizontal resolution.
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regional-scale synchronization found for birches is not present for 
grasses (19). We therefore accept the alternative hypothesis: There 
is no connection between SPIn for grass pollen sites beyond 20 km, 
suggesting that the season severity is a local-scale phenomenon 
for grass pollen. New methods for describing this are therefore  
needed.

Hypothesis 2 tests whether the severity of the grass pollen season 
can be forecast using preseasonal meteorological conditions. The 
analyses reveal that the hypothesis should be accepted. Including 
preseasonal meteorological conditions in the statistical model pro-
vided the best model performance with the highest statistical signif-
icance throughout the stations. The statistical regression model 
based on the SPIn, preseasonal temperature, and precipitation data 
(model 4, table S4) provided the highest number of stations (71% of 
sites) with positive and significant correlations between the mod-
eled and observed SPIn time series in comparison with models 1 to 3. 
However, it should be noted that for some sites (e.g., Worcester, 
UK), it is enough to use either preseasonal temperature (model 2) 
or precipitation alone (model 3) to ensure positive and significant 
correlation between modeled and observed SPIn. The previous 
study showed high accuracy of the regression model (R2 > 0.9) at 
three UK sites (15). However, in the latter case, the approach was 
based on building a model with individual equation and regression 
coefficients using temperature and precipitation data. The approach 
presented here is more unified: We use one equation with individu-
al regression coefficients at each site. To our knowledge, this is the 
first ever attempt at applying this approach to multiple stations lo-
cated in different parts of the Northwest European region.

We found that preseasonal air temperature and precipitation are 
the parameters driving the grass SPIn in the statistical model. How-
ever, the North Atlantic Oscillation (NAO) index has been shown 
to be an important parameter influencing the grass SPIn in recent 
studies, for example, (20). Therefore, including the NAO index in 
the regression models could potentially be used to predict the sever-
ity of the grass pollen season. The NAO is, however, a single index 
describing overall synoptical-scale weather conditions within the 
study region and is related to large-scale phenomena such as the 
strength of the jet stream that, in turn, also affects local meteorology 
such as rain, temperature, and wind. The initial hypothesis that 
grass pollen concentration was a large-scale phenomenon was re-
jected. This suggests that models with strong predictive power 
should not rely on large-scale phenomena like the NAO, which is 
supported by previous findings (20), revealing limited predictive 
power for regression models using this approach. The approach 
presented here offers spatial and temporal advances in the context 
of forecasting. First, it allows for the usage of local environmental 
data instead of a single index. Second, it may be applied before the 
pollen season commences and can therefore be a tool in a forecast-
ing environment.

Using different years for different stations could be construed 
to be a limitation of the study. However, the statistical approach 
applied in the study was developed for modeling and potentially 
forecasting of SPIn for the next year, consistent with recent statisti-
cal model development for birch (16). In contrast, the pollen data 
are not used for estimating the impact of climate change as this 
question is addressed using the JULES model, a tool commonly 
applied in the context of climate change scenarios (21).

We extended the statistical model results from point-based loca-
tions to full geographic coverage by interpolating them on a map 
using the year 2014 as an example. Maps illustrating the severity of 
the grass pollen season are an end-user product, which will help 
predict grass pollen exposure and provide advice to people with 
grass pollen allergies to help prevent/minimize the allergy symp-
toms and, consequently, reduce hospital admissions and health-
related costs. The results (Fig. 4) demonstrate that the mapping 
approach is sensitive for all of the data points for the year of 2014. 
This suggests again that the grass SPIn is not a regional-scale 
phenomenon in the Northwest European region. Introducing more 
observation points located in the region could improve the agree-
ment between the model- and observation-based maps. It also sug-
gests that an observational-based approach predicting the severity 
of the grass pollen season nationwide would require a high density 
of observation sites. For instance, one should take with caution the 
area with the big data gap between Denmark and the rest of the 
observation sites (Figs. 1 and 4) since the values are obtained by 
interpolation using stations located far away from each other. In 
contrast to the regional-scale synchronization of pollen productivi-
ty seen in birches (17), grass pollen productivity is a local-scale phe-
nomenon affected by the impact of local environmental variables 
(e.g., air temperature, precipitation, and land cover).

We identified that the number of years generating the best cor-
relation using the statistical model was between 7 and 9, depen-
dent on site. The latter suggests that time series of varying length 
may be applied, but the use of longer time series should generally be 
avoided. Similar results were obtained for the birch SPIn using a 
regression model for Northern Europe (17). It was shown that 
the model could explain up to 92% of the birch SPIn interannual 

Fig. 5. Scatter plot for comparison of the SPIn and NPP interannual variations 
at the selected pollen sites. NPP variations are calculated using sums of daily NPP 
from 1 March until the grass pollen season start. The season start is calculated as 
the day when the accumulated sum of daily grass pollen concentrations reached 
2.5% of the annual pollen sum. The results are significant with P = 2.38 × 10−5. 
The R value is based on the calculations of the Spearman correlation coefficient 
between the time series of NPP (x axis) and SPIn (y axis) interannual variation.
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fluctuations using 10 to 12 years of data, while the accuracy reduced 
to 48% when 20 years of data were used. The most likely reason for 
this is that time series of grass pollen data covering 20 years or more 
are affected by climate change, i.e., increasing air temperature and 
CO2 concentrations and changes in areas covered by grass (15). 
However, observed CO2 concentrations are not available as a pa-
rameter in existing regression modeling. Using different number of 
years for different stations could be a limitation for developing 
models focusing on climate change. Furthermore, the relationship 
between climate change and the observed pollen season is expected 
to be complex, where change in land use and land cover will have 
major impact on observed concentrations. We have therefore, con-
sistent with previous recommendations on studying climate change 
and the future dynamics of pollen production (22), applied a dy-
namic vegetation model and here isolated the question concerning 
enhanced CO2 concentrations.

Hypothesis 3 stating that “long-term changes in severity of the 
grass pollen season can be simulated by using land surface models, 
e.g., due to increased CO2 under future climate change scenarios” is 
accepted in this study. The mechanistic model showed a good 
performance and relationship between NPP and SPIn at several 
stations in the region. Similar relationships between NPP and SPIn 
have been shown studying common ragweed (Ambrosia artemisiifolia) 
growth and pollen production at rural and urban sites (23). Dou-
bling CO2 concentration in the model showed a large increase in 
NPP, which enhanced the SPIn and pollen exposure. A similar in-
crease in NPP is supported by a study showing that ragweed pollen 
production increased by up to 55% associated with high CO2 levels 
(24). An increase in timothy grass (Phleum pratense) pollen produc-
tion (about 50% per flower) caused by enhanced atmospheric CO2 
levels has also been found in an experimental chamber study (25). 
However, the responses of grasses to elevated CO2 concentrations 
are species specific and vary heterogeneously according to other 
environmental variables, such as soil nutrients (e.g., nitrogen) 
(25–27). Overall, there are complex relationships between grass 
species, ecosystems, and environmental variables (28), with large 
variations in both growth and flowering of different species (29) in 
response to CO2 and nitrogen. Grass pollen productivity is there-
fore likely to vary according to species and soil nutrient conditions. 
Current vegetation models cannot replicate chamber and field stud-
ies, for grasses in general. However, our study has shown the ro-
bustness of vegetation models to simulate grass pollen production 
by applying the mechanistic approach. To our knowledge, it is the 
first ever mechanistic modeling attempt made for grasses using 
multiple stations located in different parts of the Northwest Euro-
pean region. Nevertheless, further work is needed to cover the most 
important grass species and their response to the combined effects 
of climate change and nutrient availability in order to capture the 
large variations between species.

The results presented here show the applicability of the mecha-
nistic approach at some stations, but not across broader geographi-
cally and environmentally heterogeneous sites. Improvements are, 
therefore, needed to increase the utility of the mechanistic approach 
for the entire Northwest European region. As an extension of the 
current approach, local variations of meteorological and environ-
mental variables (e.g., CO2) should be taken into account for both 
NPP and the SPIn. Moreover, footprint modeling (30) can be 
performed to estimate local AT and the distribution of local grass 
pollen sources for more detailed investigation of spatial attributes of 

the SPIn variations. The mechanistic model thus has the potential 
practical application of being used for the estimation of local varia-
tion in grass pollen productivity, hence pollen exposure, through-
out the Northwest European region.

This study has been carried out using data for grass pollen iden-
tified at the family level, i.e., including all grass species. Different 
grass species flower at different times and cause a range of allergic 
reactions (19). Currently, there is no dataset for grass pollen con-
centrations at the species level covering a long-term period (N = 20 
to 30 years). The models presented here will be applicable for pre-
dicting the SPIn at species level, when the observational data with a 
sufficient number of years are available in the future. However, 
performing the season severity forecast at the family level is useful 
since the main allergen groups (groups 1 and 13) are present in 
most allergenic grasses and up to 90% of grass-sensitized people 
react to them (31).

The pollen measurement may have large uncertainty on daily 
observed concentrations (32), but the large number of daily obser-
vations can reduce the uncertainty of the SPIn to less than 10% for 
a whole season of observations, where the exact value depends on 
the number of daily observations and counting method (33). Each 
instrument is affected by a systematic instrumental bias between 5 
and 72% (34), potentially increasing the observed uncertainty of the 
measured SPIn. Nevertheless, the relative annual variation in SPIn 
will not be affected by this systematic bias. Both the statistical and 
mechanistic models explain the relative variation between years, 
and their performance will therefore only be affected by the random 
uncertainty of the annual SPIn, which is assessed to be less than 10%.

We found that the grass SPIn varies from year to year and from 
station to station by a factor of 2 to 4. The SPIn has been used in 
atmospheric models to take into account the seasonal magnitude of 
pollen emission and its spatial and interannual variation for differ-
ent pollen types (35, 36). Therefore, our findings have the potential 
to be used in atmospheric dispersion models for Northwest Europe 
or larger regions throughout the world where sufficient robust pol-
len data are available. Our findings will improve forecasting of the 
grass SPIn and grass pollen exposure, with concomitant socioeco-
nomic benefits to global society and health care systems.

MATERIALS AND METHODS
Pollen and meteorological data
Thirty-four pollen observation stations located in Northwest Europe 
were selected for the study (Fig. 1). The region covers stations locat-
ed in the United Kingdom, Denmark, The Netherlands, Belgium, 
and Northern France. The period of the study corresponds to the 
grass pollen seasons 1996–2018 mostly covering May to September. 
The observational data contain daily mean grass pollen concentra-
tions obtained using 7-day volumetric samplers of the Hirst type 
(37) and were analyzed according to standard methods in aerobiology 
(10). The UK grass pollen data were quality controlled by excluding 
the seasons with substantial numbers of gaps (i.e., >7 days) in the 
observed time series within the main pollen season (38). The main 
grass pollen season was identified using the dates when accumulat-
ed grass pollen concentrations reached 2.5 and 97.5% of the annual 
pollen integral, thus delimiting the start and the end of the season. 
Several approaches such as the accumulated catch of 50, 75 pollen 
grains as well as a fraction of the catch are possible definitions of the 
start of the pollen season (39). The percentage approach chosen 

D
ow

nloaded from
 https://w

w
w

.science.org at L
eiden U

niversity on July 14, 2022



Kurganskiy et al., Sci. Adv. 2021; 7 : eabd7658     26 March 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

9 of 11

here has the advantage, in contrast to the accumulated catch, that 
the known bias associated with each observing instrument (34) will, 
by using the fractional approach, not affect the calculated relative 
variation in SPIn, thereby keeping uncertainty low in the regression 
modeling. Extraction of SPIn and the dates of the grass pollen sea-
son start/end were performed using a predefined extraction routine 
on the European Aeroallergen Network webpage (https://ean.
polleninfo.eu/Ean/) for the rest stations and suitable pollen seasons 
(i.e., no gaps >7 days).

Meteorological data were obtained from the Global Surface 
Summary of the Day (GSOD) dataset provided by National Oceanic 
and Atmospheric Administration. The dataset has global geographic 
coverage and provides meteorological data worldwide. The selected 
meteorological stations met two main requirements: (i) They 
provided meteorological data corresponding to preseason con-
ditions and (ii) were located close to the selected pollen sites. 
Thus, precipitation and the maximum daily air temperature data 
were extracted and matched with the pollen stations for the select-
ed years.

SPIn sensitivity within the region: Connection between 
the stations
A correlation matrix was calculated to investigate whether a con-
nection existed between interannual variations of the SPIn at the 
stations within the region studied. Since the stations covered differ-
ent numbers of years (Table 1), the matrix includes only sites with 
eight or more overlapping years (38). The correlation coefficients 
were also analyzed depending on the distance between the stations 
(Fig. 2). The correlation coefficients were separated into two groups 
defined by the distance between stations and two classifications 
used in mesoscale meteorology and air pollution studies: meso-beta 
(20 to 200 km) and meso-alpha (200 to 2000 km) defined by (40). 
The number of significant (P < 0.05) and nonsignificant coefficients 
was calculated within each group. A 2 test was performed using the 
calculated numbers to determine the degree of significance (differ-
ence of significance) between each scale.

Modeling grass pollen interannual variation: 
A regression model
The statistical approach used in this study was devoted to building 
a geostatistical regression model that goes beyond traditional ap-
proaches. The grass pollen SPIn, preseason air temperature, and 
precipitation observations were used as input data for the 28 pollen 
observation sites covering Northwest Europe, totaling 386 pollen 
seasons (Table 1). The selected pollen sites contained a minimum of 
8 years of pollen data according to the requirements of the aerobio-
logical studies (38). The regression model followed the approach 
proposed by (41) and later applied by (42) for grasses in Cordoba, 
Spain. The model used here to simulate SPIn was

	​​ SPIn​(​​t​)​​ =  exp​(​​​
​ln​(​​SPIn​(​​t − 1​)​​​)​​ − ​r​ m​​​

​  ​+ exp​(​​a * ln​(​​SPIn​(​​t − 1​)​​​)​​ + b + c * ln​(​​ ​T​ max​​​)​​ + d * ln​(​​ ​N​ prec​​​)​​​)​​​​​)​​​	​(1)

where SPIn(t) and SPIn(t − 1) are the SPIn referring to the current 
(t) and previous (t − 1) pollen seasons; rm is a constant representing 
the maximum productive rate observed; a, b, c, and d are regression 
coefficients; Tmax is maximum daily air temperature averaged for 
the period 1 March to 30 April for each considered year; and Nprec is 
the number of precipitation days during the same period as Tmax. 

The number of precipitation days (Nprec) was selected instead of the 
amount of precipitation (in millimeter scale) since days with rain 
events were considered a better predictor for water availability used 
for grass growth and pollen production. There are some days with 
high precipitation volumes (in millimeter scale), but because of sur-
face water runoff in flood events, the water available to plants is the 
same as that in much lower days, biasing the result.

While the equation is general, both constants and input data are 
specific for each site. Four versions of the model (Eq. 1) were ap-
plied in this study: (i) model 1, a model including SPIn only; (ii) 
model 2, a model taking into account SPIn and Tmax; (iii) model 3, 
a model with SPIn and Nprec; and (iv) model 4, a model including 
SPIn, Tmax, and Nprec (as shown above). The models were built using 
the nonlinear least square function in R software version 3.6 
(https://r-project.org). The choice of the period for Tmax and Nprec 
applied for each region is justified by analyzing the starting dates of 
grass pollen season (Fig. 1). The modeled SPIn values were com-
pared with observations by means of statistical (correlation) analy-
sis for each individual station as well as globally, i.e., including all 
stations. The global scatter plots with corresponding R2 values are 
shown in Results, whereas the statistical summaries with mod-
eled and observed SPIn time series are available in the Supple-
mentary Materials. The optimal number of years for building the 
regression model was identified using the stations with 20 years 
of pollen data for the period 1999–2018: Worcester (UK), Leicester 
(UK), Leiden (The Netherlands), Brussels (Belgium), De Haan (Bel-
gium), Copenhagen (Denmark), and Viborg (Denmark). Model 4 
was used to determine the optimal number of years. The model was 
run for various numbers of years starting with the eight most recent 
years then increasing the number by 1 until it reached 20 years for 
each of the seven selected pollen stations. Thus, the number of 
years providing the maximum correlation between the modeled 
and observed SPIn was identified for individual stations and aver-
aged over the stations with corresponding SD (fig. S3).

The modeled and observed SPIn interannual variation was ex-
tended from the point-based locations to full geographic coverage 
within the study region using interpolation with the inverse dis-
tance method. The sensitivity to individual points was assessed 
using cross correlations, using similar approaches that have been 
implemented in related pollen studies on ragweed [see, e.g., (43) 
and references therein] developed by using standard recommenda-
tions by the U.S. Environmental Protection Agency.

Modeling grass pollen interannual variation: 
A mechanistic model
The mechanistic approach used in this study describes the interan-
nual variation of SPIn through variation in grass growth, measured 
primarily via NPP. NPP is defined as the net production of organic 
carbon by plants in an ecosystem (13). The main assumption used 
in the approach suggests that SPIn varies as APP from year to year. 
APP interannual variation, in turn, can be described through varia-
tion of NPP. This can be written as

	​ APP(x, y ) = veg(x, y ) * ​NPP​ var​​(x, y ) * ​N​ total​​​	 (2)

where APP is the annual pollen production at the given location 
with geographical coordinates x and y representing longitude and 
latitude, veg is the fraction of the grid cell covered by grass vegeta-
tion with coordinates x and y, NPPvar is the interannual variation 
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of NPP for the given year, and Ntotal is the total amount of grass 
pollen emitted per season represented by a constant value equal to 
1012 pollen/(m2*year).

The JULES model has been used to simulate NPP. JULES is a 
process-based model simulating land-atmosphere interactions 
represented by fluxes of carbon, water, momentum, and energy be-
tween the surface and the atmosphere (14). The model is globally 
applicable, and it can be used to perform simulations for different 
plant functional types: broadleaf trees, needle-leaf trees, C3 and C4 
grasses, shrubs, and crops (44). JULES (v5.1) has been configured to 
simulate NPP for 34 points located near the pollen stations (Fig. 1 
and Table 1). The JULES simulations were configured for the select-
ed points covering C3 grass only with a vegetation fraction equal to 1. 
The model was driven by the WATCH-Forcing-Data-ERA-Interim 
(WFDEI) meteorological dataset (45), and the dataset has global 
coverage with 0.5° horizontal resolution and 3-hourly intervals. The 
following meteorological variables were extracted from WFDEI: air 
temperature, downward short- and long-wave radiation fluxes, spe-
cific humidity, surface pressure, wind speed, accumulated snowfall, 
and rainfall rates. These variables were required to run the model. 
The data were available for the 1979–2016 period, and the model 
was run for years 1996–2016, with 30-min time steps. Daily NPP 
values were extracted from the model output and summed up from 
March first until the grass pollen season start date for each station 
and year where the SPIn data were present (Table 1). The starting 
date for summing NPP (1 March) was considered as the day when 
grass population growth had been initiated in the majority of the 
study region. The NPP and SPIn values were transformed into 
interannual variation relative to mean values. This variation was 
analyzed by searching for correlations between the transformed 
NPP and SPIn at individual stations, as well as considering all of the 
stations simultaneously (Fig. 5 and data file S1). An additional set of 
sensitivity model runs was also performed to study the influence of 
doubled atmospheric CO2 concentration on NPP values (fig. S4 and 
data file S1).

Statistical analysis
The statistical analysis was performed by calculating either the 
Spearman or Pearson correlation coefficients (R) after first testing 
the hypothesis that the annual SPIn could be non-normally distrib-
uted using the Shapiro-Wilk test (with the level of significance 
 = 0.01) using the “R Stats package” in R software. The correlation 
coefficients (R) and coefficients of determination − R2 (the statistical 
model) were calculated as described in the corresponding subsections 
of Material and Methods. The observed SPIn time series covering all 
available years and stations was also analyzed by calculating the mean, 
median, SD values, and the Shapiro-Wilk normality test. The results 
are shown in table S6. P and N values are reported in the main text, 
figures, and tables in the Supplementary Materials where applicable.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/13/eabd7658/DC1

View/request a protocol for this paper from Bio-protocol.
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