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Purpose: To develop a new water–fat separation and B0 estimation algorithm to 
effectively suppress the multiple resonances of fat signal in EPI. This is especially 
relevant for DWI where fat is often a confounding factor.
Methods: Water–fat separation based on chemical-shift encoding enables robust fat 
suppression in routine MRI. However, for EPI the different chemical-shift displace-
ments of the multiple fat resonances along the phase-encoding direction can be prob-
lematic for conventional separation algorithms. This work proposes a suitable model 
approximation for EPI under B0 and fat off-resonance effects, providing a feasible 
multi-peak water–fat separation algorithm. Simulations were performed to validate 
the algorithm. In vivo validation was performed in 6 volunteers, acquiring spin-echo 
EPI images in the leg (B0 homogeneous) and head-neck (B0 inhomogeneous) re-
gions, using a TE-shifted interleaved EPI sequence with/without diffusion sensitiza-
tion. The results are numerically and statistically compared with voxel-independent 
water–fat separation and fat saturation techniques to demonstrate the performance of 
the proposed algorithm.
Results: The reference separation algorithm without the proposed spatial shift cor-
rection caused water–fat ambiguities in simulations and in vivo experiments. Some 
spectrally selective fat saturation approaches also failed to suppress fat in regions with 
severe B0 inhomogeneities. The proposed algorithm was able to achieve improved 
fat suppression for DWI data and ADC maps in the head–neck and leg regions.
Conclusion: The proposed algorithm shows improved suppression of the multi-peak 
fat components in multi-shot interleaved EPI applications compared to the conven-
tional fat saturation approaches and separation algorithms.
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1  |   INTRODUCTION

DWI, which is used to probe the thermal motion of water mol-
ecules, plays an important role in many clinical applications. 
This includes the diagnosis of tumors and stroke and the ex-
ploration of structural connectivity.1,2 Single-shot EPI (ssh-
EPI) readout is often preferred because of its high sampling 
efficiency and its ability to virtually freeze motion. However, 
ssh-EPI with its relatively small bandwidth along the phase-
encoding direction is prone to geometric distortions caused 
by strong local B0 inhomogeneities. Moreover, the long echo 
train may lead to substantial T∗

2
 blurring, ultimately limiting 

the spatial resolution and the SNR. To mitigate the above-
mentioned problems, multi-shot interleaved EPI (msh-EPI) 
has become a commonly used technique,3 which allows 
uniform k-space sampling by acquiring multiple interleaves 
for full k-space coverage. However, msh-EPI is particularly 
sensitive to subject motion when used for DWI. Motion can 
introduce significant phase inconsistencies between shots, 
thereby spoiling the overall coherence of the k-space data. 
Therefore, a low-resolution navigator can be added to probe 
and subsequently correct for physiological motion-induced 
phase alterations.4

Beyond the brain, DWI can provide valuable information 
to characterize lesions and determine appropriate treatment 
strategies in body applications. DWI was reported to be suc-
cessfully applied to diagnose and monitor the treatments of 
head and neck squamous cell carcinoma.5–7 However, resid-
ual fat signals reduce the image quality and make improve-
ments of the challenging fat suppression desirable. Although 
msh-EPI has an increased bandwidth in the phase-encoding 
direction compared to ssh-EPI, the fat signals (with the dom-
inant CH2 methylene proton peak at 1.3 ppm) still shift sig-
nificantly with respect to water. When not suppressed, fat can 
obscure tiny structures in regions with overlapping water–fat 
signals. Furthermore, because of the multi-peak nature of 
the fat spectrum,8–10 the different lipid signals correspond-
ing to the different chemical sites within the fat molecule 
are shifted to different locations. Conventional spectrally 
selective fat saturation methods such as spectral presatura-
tion with inversion recovery/spectral attenuated inversion 
recovery (SPIR/SPAIR)11,12 have been used to suppress fat 
signals before sampling. Nevertheless, such spectral selective 
techniques tend to fail in regions of high B0 inhomogeneity, 
as encountered in the head-neck region.13,14 Such failures can 
even result in an undesired suppression of the water signal, 
while leaving the fat untouched. The imperfect suppression 

will affect image quality in most EPI based applications, but 
especially in DWI,15 because remaining minor fat resonances 
can still cause substantial ghosting at higher b-values be-
cause of their neglectable attenuation by diffusion compared 
to water.16–18

As an alternative to fat saturation, water–fat separation 
approaches based on chemical-shift encoding using multi-
ple TEs19–21 gained growing popularity. Several approaches 
have been proposed to improve water–fat separation in EPI-
based DWI. Burakiewicz et al22 proposed an approach to 
acquire DW images using a chemical-shift encoded spin-
echo ssh-EPI sequence with an additional low-resolution 
navigator, assuming a single line fat spectrum and ignoring 
the ssh-EPI trajectory when disentangling water and fat. To 
deal with the multi-peak nature of the fat spectrum in DWI, 
previous works17,18 attempted to correct for artifacts from 
those multiple fat peaks by combining fat saturation and 
chemical-shift encoding approaches. Recently, Hu et al23 
presented an alternative msh-EPI approach to remove the fat 
signals in DWI by using the point-spread-function (PSF)-
EPI approach adding an additional encoding dimension to 
encode chemical-shift.

In this study, a simpler approach is proposed using a 
navigator-based DW msh-EPI approach (image reconstruc-
tion using image-space sampling function [IRIS])4 extended 
by chemical-shift encoding to suppress the fat. After recon-
struction of the chemical-shift encoded multi-shot images, 
a new regularized water–fat separation algorithm is ap-
plied, which was adapted to the EPI sampling process. This 
algorithm is working in the image domain addressing the 
chemical-shift displacements of fat in the phase-encoding 
direction. This was done using a series of shift matrices, ap-
plied to the common B0 field map, in the joint estimation 
of B0, water and all fat components. This work is mainly 
focused on improving image quality for the water images, 
to especially support diffusion applications. Therefore, 
chemical-shift encoding is applied for fat suppression, not 
risking touching the water magnetization by any magneti-
zation preparation. The algorithm was tested in simulations, 
providing a ground truth for numeric/statistic comparison, 
and on healthy volunteer data acquired with a TE-shifted 
spin-echo msh-EPI with and without diffusion encoding. 
For comparison, a voxel-independent iterative decomposi-
tion of water and fat with echo asymmetry and least-squares 
(IDEAL)21 algorithm and conventional fat saturation tech-
niques were applied. Numeric/statistical analyses were per-
formed among the 3 different techniques.

K E Y W O R D S

chemical-shift encoding, diffusion, interleaved EPI, navigator, water–fat
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2  |   METHODS

2.1  |  Sequence

To enable water–fat chemical-shift encoding, the 2D-
navigated DW msh-EPI approach4 was complemented by 
adding appropriate image echo shift functionality22 as shown 
in Figure 1. For a given b-value, a series of chemical-shift 
encoded (eg, N = 3) source data can be acquired, changing 
slightly the timing of the msh-EPI train while keeping the 
timing of the low-resolution phase navigator fixed.

To avoid phase discontinuities because of off-resonance 
effects among the individual segments of the basic msh-EPI 
acquisition, time shifting24 is applied using a shift increment τ 
(duration of 1 EPI read-out lobe divided by the segmentation 
factor). This time base is also used to facilitate chemical-shift 
encoding by shifting the msh-EPI block by integer multiples 
of τ, for simplicity reasons.

2.2  |  Signal model

Because of the low bandwidth in the phase-encoding di-
rection in EPI, the displacement of fat in this direction 
can be extremely large. For a given voxel in an EPI image 
that contains both water and fat, the fat portion is shifted 
and originates from another voxel/location than the water 

signal. Therefore, the fat signal in a voxel will also have 
experienced a different B0 inhomogeneity compared to the 
water reconstructed within the same voxel.17 The multi-
peak nature of fat poses extra challenges. Each fat peak 
has a different spatial shift and therefore, has experienced 
a different B0 inhomogeneity compared to the other fat 
signals reconstructed in the same voxel; moreover, each 
fat peak will appear with a different amplitude in the 
image.8–10,17 Therefore, the total signal model of 1 voxel 
can be written as:

where w and f  denote the complex-valued water and fat com-
ponents, ΔTEn [s] the time shift between the readout center of 
the n-th TE-shifted scan and the spin echo TESE [s], �B [Hz] the 
B0 map at the original (x, y) and shifted 

(
x, y +Δym

)
 location.

Furthermore, �m and �F,m [Hz] give the relative amplitude 
and chemical-shift for each fat peak m, whereas vn denotes 
the complex noise. Please note, this signal model is a simpli-
fication, it is addressing the fat shift effects in phase encoding 
direction, but neglects the small chemical-shift effects in the 
(odd/even) readout direction with the aim to yield a feasible 
solution for EPI in image-space.

(1)

Sn

(
w (x, y) , f (x, y) ,�B (x, y)

)
=w (x, y) ei2��B(x,y)ΔTEn

+

M∑
m= 1

�mf
(
x, y+Δym

)
ei2��B(x,y+Δym)ΔTEn ei2��F,mΔTEn +vn (x, y) ,

F I G U R E  1   Scheme of the used segmented diffusion EPI sequence allowing for water–fat chemical-shift encoding and navigator correction. 
The multi-shot interleaved (msh)-EPI sampling window can be shifted back and forth by a time interval (ΔTE) relative to the time of the spin echo 
(TE

SE
) to facilitate chemical-shift encoding. Please note that the timing of the navigator echo remains fixed to sense potential phase distortions, 

introduced because of physiological motion during the diffusion sensitizing process. The gray colored gradients, applied on all channels 
simultaneously, are used for diffusion sensitization
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2.3  |  Algorithm

In this work, a 2-step approach is chosen, as in the voxel-
independent IDEAL algorithm,21 to solve Equation (1) for 
w, f  and B0: (1) a water–fat separation step, followed by 
(2) a field map estimation step, is performed in an iterative 
process. Unless stated otherwise, the initial B0 field map is 
set to ΦB = 0 for the first iteration of (1). After the incre-
mental error ΔΦB is calculated using the Gauss-Newton ap-
proach in (2), we update ΦB = ΦB +ΔΦB and repeat steps (1) 
and (2) until the number of iterations reaches the threshold 
(often ≤ 10 iterations). Because of the low phase encoding 
bandwidth of EPI, established approaches that ignore spa-
tial shifts21,25,26 are no longer suitable to estimate individual 
water–fat contents and the B0 inhomogeneity induced phase 
in every voxel.17,18 Therefore, a joint estimation algorithm is 
implemented that considers the spatial shift both for the B0 
map and for the individual fat peaks. These spatial shifts are 
implemented via shift matrices.

2.3.1  |  Water–fat separation

Equation (1) can be discretized and written as

where S and X are vectorized representations of the N source 
images and the unknown water–fat components, respectively, 
that is,

and

where Q is the number of voxels. Equation (2) is written into the 
minimization problem

Â is the coefficient matrix

with

and �q

B
 the B0 field at voxel q, such that

For each fat peak m, a shifted version of the field map, 
ΦB,m, can be written as

where Lm is a shift matrix that spatially shifts the whole fat 
image lm voxels in the phase-encoding direction. Similar to the 
image-domain approach in Hernando et al,17 the spatial dis-
placement lm can only take integer numbers. The voxel shift lm 
for each fat peak m can be calculated from

where BW is the bandwidth in phase-encoding direction [Hz/
pixel] and [·] denotes rounding to the nearest integer.

Finally, Equation (5) is written into the linear least squares 
system

and solved with the conjugate gradient (CG) method.

2.3.2  |  Field map estimation

The field map estimation is based on a Gauss–Newton search 
method. Similar to Reeder et al,21 the error terms of each un-
known are introduced by writing w (x, y), f (x, y), and �B (x, y) 
in Equation (1) as w (x, y) + Δw (x, y), f (x, y) + Δf (x, y), 
and �B (x, y) + Δ�B (x, y) and neglecting second-order error 
terms. Using the first-order Taylor expansion of Δ�B yields:

(2)S = ÂX,

(3)S =
[
s1

1
,…, s

Q

1
,…, s1

N
,…, s

Q

N

]T

(4)X = [W, F]T =
[
w1,…, wQ, f 1,…, f Q

]T
,

(5)X = argmin
X∈ℂ2Q

‖‖‖ÂX − S
‖‖‖

2

2
.

(6)Â =

⎡
⎢⎢⎢⎣

A11 A12

⋮ ⋮

AN1 AN2

⎤
⎥⎥⎥⎦

,

(7)
An1 = diag

(
ei2��1

B
ΔTEn ,…, ei2��

Q

B
ΔTEn

)
,

(8)

An2 =

M∑
m= 1

�mdiag
(

e
i2��1

B,m
ΔTEn ei2��F,mΔTEn ,…, e

i2��
Q

B,m
ΔTEn ei2��F,mΔTEn

)
Lm

(9)ΦB =
[
�1

B
,…,�

Q

B

]T

.

(10)ΦB,m =
[
�1

B,m
,…,�

Q

B,m

]T

= LmΦB,

(11)lm =
[�F,m

BW

]
,

(12)Â
H

ÂX = Â
H

S

(13)

Sn

(
w (x, y) , f (x, y) ,�B (x, y)

)
=w (x, y) ei2��B(x,y)ΔTEn

+

M∑
m= 1

�mf
(
x, y+Δym

)
ei2��B(x,y+Δym)ΔTEn ei2��F,mΔTEn

+Δw (x, y) ei2��B(x,y)ΔTEn +

M∑
m= 1

�mΔf
(
x, y+Δym

)
ei2��B(x,y+Δym)ΔTEn ei2��F,mΔTEn

+ i2�ΔTEnΔ�B (x, y)w (x, y) ei2��B(x,y)ΔTEn

+

M∑
m= 1

i2�ΔTEnΔ�B

(
x, y+Δym

)
�mf

(
x, y+Δym

)
ei2��B(x,y+Δym)ΔTEn ei2��F,mΔTEn

+vn (x, y) .
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Equation (13) can be discretized and written into the min-
imization problem:

where

and ΔW, ΔF and ΔΦB are errors of the unknowns W, F and ΦB. 
X is the current estimation obtained from solving Equation (12). 
In each iteration, the error map ΔΦB is calculated correspond-
ing to the estimated B0 map ΦB and updated to ΦB = ΔΦB +ΦB

. TV is the well-known total variation regularization operator, 
which can be used to enforce smoothness27–29 of the updated 
field map error. Specifically,

where ∇x and ∇y are backward first derivative operators for x 
and y directions, respectively.

Furthermore, λ in Equation (14) is the regularization fac-
tor that weights the smoothness of the field map and is tuned 
empirically. The coefficient matrix B̂ can easily be built by 
using the block matrix elements directly from matrix Â, that 
is,

where

The error ΔΦB for updating the field map can be calcu-
lated by solving

with CG, using

Because the B0 values are treated as real values in the cur-
rent implementation, the complex vectors ΔW,ΔF and ΔS 
are split into real and imaginary parts according to Reeder 
et al21 as well as all the corresponding matrix elements.

2.4  |  B0 map extrapolation

Because of the large displacement of fat, estimation of the 
local B0 experienced by a fat component can be compro-
mised at locations where fat is shifted outside the boundaries 
of the subject. Therefore, an additional extrapolation step 
was implemented after a few iterations of the algorithm to 
produce a more stable B0 reinitialization for the remaining 
iterations. The extrapolation step assumes that the inner area 
of the object has been shimmed well and is free from large 
inhomogeneities.30 This is similar to the region-growing 
IDEAL approach,26 which is initialized by an automatically 
selected center-of-mass seed voxel. In the present approach, 
a thin-plate spline extrapolation method similar to Liu et al31 
is applied. An example of this approach can be found in 
Supporting Information Figure S1. Alternatively, the esti-
mated field map from other methods25,26,30,32,33 would also 
provide a reasonable initialization (although without consid-
eration of the chemical-shift effects).17

2.5  |  Experiments

2.5.1  |  Simulation study

Shepp-Logan water–fat phantom data were simulated in k-
space to generate sets of 3 chemical-shift encoded source im-
ages. One simulated B0 map and the chemical-shift of each 
fat peak were both modulated for each k-space data point 
with the actual sampling time, including time variations in 
both phase-encoding/readout directions. The sampling time 
map was generated based on the chosen phase-encoding 
bandwidth [Hz/pixel] and segmentation factors. Using a 3-
point Dixon, the encoding steps were uniformly distributed 
over the full encoding circle, matching the dephasing period 
between methylene peak and water, which corresponds to 2.3 
ms at 3T (ΔTEs = 0.24 ms, 1.00 ms, 1.76 ms). The SNR ratio 
was set to be 100, calculated as the maximal water signal 
intensities divided by the SD of the noise. Using those data, 
water–fat separation was performed with the proposed algo-
rithm using 10 iterations.

A voxel-independent multi-peak IDEAL algorithm imple-
mented based on Reeder et al and Yu et al,21,34 using a median 
filter to smooth the estimated B0 map, was applied for com-
parison. The maximum number of iterations of the IDEAL 
algorithm was set to 30. This basic voxel-independent algo-
rithm was used as one of the reference methods, because it 

(14)

{
ΔΦB,ΔW,ΔF

}
= argmin

ΔΦB ∈ℝQ

ΔW,ΔF ∈ℂQ

‖‖‖ΔS − B̂ΔY
‖‖‖

2

2
+ �TV

(
ΔΦB

)
,

(15)ΔS = S − ÂX,

(16)

ΔY =
[
ΔW,ΔF,ΔΦB

]T
=
[
Δw1,…,ΔwQ,Δf 1,…,Δf Q,Δ�1

B
,…,Δ�

Q

B

]T

,

(17)TV
(
ΔΦB

)
=
‖‖‖∇x

(
ΔΦB

)‖‖‖
2

2
+
‖‖‖∇y

(
ΔΦB

)‖‖‖
2

2

(18)B̂ =

⎡
⎢⎢⎢⎣

A11 A12

⋮ ⋮

AN1 AN2

B1

⋮

BN2

⎤
⎥⎥⎥⎦

,

(19)Bn = i2�ΔTEnAn1W+

M∑
m= 1

i2�ΔTEn

(
An2,mF

)
Lm.

(20)B̂
H
ΔS =

(
B̂

H
B̂ + �D̂

H

x
D̂x + �D̂

H

y
D̂y

)
ΔY

(21)D̂ x

y

=

⎡
⎢⎢⎢⎣

0 0 0

0 0 0

0 0 ∇ x

y

⎤
⎥⎥⎥⎦

.
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works also in image space, and represents the basic approach 
for water–fat separation.21 For simplicity, we will refer to this 
voxel-independent multi-peak IDEAL algorithm as IDEAL 
in all figures.

Numeric simulations were conducted to explore the effect 
of spatial integer shifts using varying bandwidths from 15 
to 50 Hz/pixel (step size, 0.5 Hz/pixel), at a fixed relatively 
homogeneous B0 field (2D Gaussian profile ranging from 
−110 to 110 Hz), a segmentation factor of 6, and a 7-peak 
fat model.10

Two regions of interest (ROIs) were defined, in a mixed 
region (water–fat overlap) and in a water-only pure region 
(no overlap). Overlapping and non-overlapping regions can 
be identified by taking the ground truth water–fat distribu-
tion, the given EPI bandwidth in the phase encoding direc-
tion and the chemical shift of each individual fat peak into 
account. It should be noticed that, because of the presence of 
B0-introduced geometric distortions, the ground-truth images 
were also modulated with the same B0 and time maps at each 
given bandwidth.

To reduce the potential “integer shift” discretization error, 
a simple zero-filling interpolation (ZIP) algorithm35 was im-
plemented. When the shift between water and the dominating 
fat resonance (methylene peak) corresponds to a fraction as 
half a pixel (half-pixel shift), the resulting mismatch because 
of the “integer shift” character of the image-domain algo-
rithm, can be mitigated by interpolating the source images to 
a larger matrix. The separated water images of adopting the 
ZIP approach are shown in Supporting Information Figure 
S2. In this simple validation, the half-pixel effects of all the 
minor peaks, which have relatively lower amplitude, were not 
considered.

The normalized root mean squared error (NRMSE) 
between separated water image and the known 
ground  truth  water image were calculated through 

NRMSE =

��∑Q

q= 1

�
ŵq − wq

�2
∕Q

�
∕wq, where ŵq rep-

resents the ground truth water, wq the separated water signal, 
wq its average amplitudes and Q the number of voxels in the 
water image.

2.5.2  |  In vivo volunteer study

Experiments were performed involving 8 healthy volunteers 
with informed consent obtained and approved by the local 
ethics committee. Interleaved multi-slice diffusion weighted 
EPI imaging was performed in the leg and the head/neck re-
gions on a 3T scanner (Philips, Best, The Netherlands), using 
an 8-channel knee and a 16-channel head-neck array receive 
coil, respectively. Two basic protocols were applied compris-
ing 3 b-values (0, 300, 600 s/mm2) with all 3 gradients active 
in parallel, measuring 4 slices with a gap of 10 mm at a fixed 
TR of 2s. Therefore, a single diffusion direction was used 
for DWI. For each b-value, 3 TE-shifted source images were 
acquired. Ramp sampling was used for all measurements and 
already corrected in the scanner reconstruction. Conventional 
fat saturation techniques were performed for comparison. In 
the leg experiments, 6 volunteers were measured with SPIR11 
and 2 were measured with SPAIR.12 In the head-neck experi-
ments only SPIR was applied. The main distinction between 
SPIR and SPAIR is the use of different RF pulses. By using 
an adiabatic inversion pulse, SPAIR has a better ability to 
cope with B+

1
 inhomogeneities, at the penalty of increased 

measuring time or reduced number of slices. The other se-
quence parameters are reported in Table 1.

DWI image reconstruction for the individual ΔTEs and 
b-values was performed off-line using a Python implemen-
tation of the IRIS algorithm.4 The physiological motion 

T A B L E  1   Sequence parameters for data acquisition

Anatomy
Resolution 
(mm3)

Matrix 
size

Seg. 
factora 

TE 
(ms) ΔTE (ms)

Bandwidthb  
(Hz/pixel)

Fat 
sat.

Acquisition 
time (s)

Leg 1.4 × 1.5 × 4 160 × 150 6 59 – 36.2 SPIR 51

1.2 × 1.2 × 4 168 × 162 6 64 – 29.2 SPIR 51

1.4 × 1.5 × 4 160 × 150 6 59 0.26/1.00/1.74 36.2 – 152

1.2 × 1.2 × 4 168 × 162 6 64 0.26/1.00/1.74 29.2 – 152

1.4 × 1.5 × 4 160 × 150 6 59 0.26/1.00/1.74 36.2 SPAIR 152

1.2 × 1.2 × 4 168 × 162 6 64 0.26/1.00/1.74 29.2 SPAIR 152

Head–neck 1.4 × 1.5 × 4 160 × 150 6 59 – 36.2 SPIR 51

1.4 × 1.5 × 4 160 × 150 6 59 0.26/1.00/1.74 36.2 – 152

1.4 × 1.5 × 4 160 × 152 8 53 – 47.5 SPIR 67

1.4 × 1.5 × 4 160 × 152 8 53 0.16/1.00/1.84 47.5 – 200
aseg.factor: the segmentation factor.
bbandwidth: the EPI bandwidth in phase-encoding direction.
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induced phase distortions were sensed by the low-resolution 
navigator for each individual shot and were corrected by the 
IRIS algorithm, producing complex-valued chemical-shift 
encoded source images. No further interpolation of the 3 
source images was performed (ZIP), because at the given 
EPI bandwidths the fraction of the methylene peak pixel shift 
was below ±0.15 pixels. The coil sensitivity maps were pre-
acquired using gradient echo imaging.36,37 Therefore, they 
do not match exactly the distortions as encountered in the 
EPI and navigator images because of chemical-shift and B0 
displacements. Ignoring this mismatch during SENSE recon-
struction will result in some residual unfolding and/or ghost-
ing artifacts, even under smooth conditions. In the present 
work, a simple extrapolation of the coil-sensitivity maps is 
used to get a rough sensitivity estimate in areas where the 
pre-scan has seen no signal but the EPI did (see Supporting 
Information Figure S3 for more details).

To improve convergence of the water–fat separation for 
each slice, the B0 map obtained from b = 0 s/mm2, was cho-
sen as an initialization for the water–fat separation for higher 
b-values. This helped to reduce the number of iterations. 
Therefore, for the in vivo data, the number of iterations was 
chosen to be 10 for b = 0 s/mm2 data and 5 for higher b-
values. The regularization factor λ was empirically chosen to 
be 1 for simulations, and 104 for in vivo data. The threshold 
of the normalized residual norm for convergence of CG was 
set to 0.001 both for the water–fat separation step and the 
field map estimation step. The computational time per itera-
tion was 1.5/9.9 s for a single-peak/multi-peak fat model in 
the simulation data (single slice, matrix size 144 × 144), and 
17.4/21.6 seconds for a multi-peak fat model and medium/
higher resolution in vivo data (single slice, matrix size 160 
× 150/168 × 162). All computations were performed on a 
Windows 10 computer with an Intel Core i7 CPU (3.0 GHz, 
8 cores) and 32 GB of RAM.

Because of the lack of ground truth for the in vivo data, 
numeric/statistical analyses were conducted by evaluating 
the ADC fitting. Two ROIs were manually selected as pure 
water (no water–fat overlap) and mixed (overlap) regions. A 
total of 200 pixels of each ROI were selected within the same 
muscle for each slice. Paired t tests were performed between 
the fitted ADC values of each ROI, comparing the proposed 
algorithm with IDEAL and SPIR in 6 volunteers. A P-value 
< .05 indicated statistical significance.

2.6  |  Fat spectrum self-calibration

To achieve optimal water–fat separation, a correct fat spec-
trum model is essential. However, because of T2 relaxa-
tion8,10 and potential J-coupling38,39 effects, Ren’s spectral 
fat model10 becomes inaccurate for the TE range used in 
this work. Therefore, a relative amplitude calibration was 

performed in a process like the 1 described in Yu et al,34 tak-
ing the fat resonance frequencies as known priors.10

In this approach, self-calibration for the individual fat 
peaks was done sequentially because of the limited num-
ber of TEs. It was assumed that the calibration for each 
fat peak was not affected by the other peaks. The peaks 
were sorted and calibrated in descending order according 
to their weights in Ren’s model. To do calibration for each 
peak separately, peak-specific fat masks were constructed 
in a subcutaneous fat only region of 1 volunteer’s leg. Data 
for b = 0 s/mm2 were used, neglecting the small water con-
tent in fatty tissue.34 After its definition, this fat mask was 
shifted along the phase-encoding direction by the corre-
sponding number of pixels, determined by the peak’s res-
onance frequency according to Equation (11). To avoid 
potential biases from restricting shifts to integer steps, an 
additional boundary erosion step with 1 iteration was per-
formed for each mask, assuring that all pixels inside the 
mask contain the fat signals of the calibrated peak. The 
methylene peak was set as the reference fat peak because 
it is supposed to be the most abundant component in the 
spectrum. Calibration started with the second peak, com-
bined with the main peak to form a “temporary” 2-peak 
fat model. The proposed algorithm was performed while 
minimizing the residual fat signal leaking into the water 
channel as a function of the peak’s amplitude. This process 
was repeated peak by peak until all peaks were included.

The final fat model obtained was �F,m = [−485.41, 
−434.32, −397.27, −341.07, −312.96, −246.54, 77.92] Hz 
with normalized weights �m = [0.067, 0.797, 0.000, 0.057, 
0.010, 0.009, 0.059] (original Ren’s 7-peak fat model10 
weights: [0.085, 0.625, 0.071, 0.095, 0.066, 0.016, 0.042]) 
and was used for all other in vivo reconstructions. The reduced 
relative amplitude of the fat peaks at −341.07, −312.96, and 
−246.54 Hz at a given TE may be because of their shorter 
T2 compared to the remaining peaks (−485.41, −434.32, 
and 77.92 Hz)8,10 or because of J-coupling effects.38,39 Zero 
amplitude was found for the peak at −397.27 Hz, probably 
because of the difficulty to distinguish it from the dominant 
methylene peak.8 The performance of the proposed algorithm 
with different numbers of peaks in the fat model is shown in 
Supporting Information Figure S4.

3  |   RESULTS

Figure 2 shows water–fat separation results of phantom data 
sets using IDEAL and the proposed algorithm. The proposed 
algorithm produces good water images and B0 estimations 
in the simulation. Although a benign B0 map is simulated, 
IDEAL shows artifacts in the water and the B0 channel 
mainly because of the neglection of spatial shifts of fat and 
the B0 map.
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Figure 3 shows the NRMSE plots of the simulation. The 
NRMSEs of the proposed algorithm are maintained at reason-
able values close to the noise level (~0.019) in both regions. 
However, a slight oscillation in the error train can be seen for 
both mixed and pure ROIs. The maximum error amplitude 
always appears at those bandwidths where the dominant fat 
(methylene) peak is shifted to a “half pixel.” To mitigate errors 
resulting from the half-pixel shift effects, interpolation of the 
image to a larger matrix size was proposed to ensure an “inte-
ger shift” for the methylene peak; this indeed did reduce the 
enhanced NRMSE (see Supporting Information Figure S2).

Figure 4 shows decomposed water and fat images of 1 sub-
ject’s leg and 1 subject’s head-neck for both IDEAL and the 
proposed algorithm for a non-diffusion case. Neglecting the 
spatial shifts in the signal model, IDEAL results in an inac-
curate water–fat decomposition. Moreover, in the head-neck 
slice, water–fat swap artifacts appear in regions of severe B0 

inhomogeneities. The proposed algorithm produces signifi-
cantly improved results in both cases.

Figure 5 shows 4 slices of 2 subject’s legs at b = 0 and 300 
s/mm2, comparing the proposed, voxel-independent IDEAL, 
and fat saturation method. The proposed algorithm provides 
more reliable water images in all slices for non-diffusion and 
diffusion cases in contrast to IDEAL. For SPIR (volunteer 1), 
although B0 is rather homogeneous in the leg region, the B+

1
 

inhomogeneity of the body coil transmission is another com-
promising factor,40,41 contributing to incomplete fat suppres-
sion (marked by the blue arrow) because of wave propagation 
effects, which is not the case for SPAIR (volunteer 2). The 
image quality matches well between the proposed method and 
SPAIR especially regarding the methylene peak, whereas the 
fat signal contributed from the olefinic peak (5.31 ppm) can 
be further removed through the proposed approach (marked 
by the white arrows).

F I G U R E  2   Interleaved EPI water–fat separation using simulation example data. One selected interleaved 6-shots EPI source image 
(bandwidth of 36 Hz/pixel), simulated with a B0 map (range −110 to 110 Hz) and a 7-peak fat model. Estimated water, fat, and B0 maps from the 
proposed and the iterative decomposition of water and fat with echo asymmetry and least-squares (IDEAL) algorithms are shown. For IDEAL, 
the omission of spatial shifts results in inaccurate B0 map estimation and insufficient water–fat separation (marked by red arrows), whereas the 
proposed algorithm shows no distinct artifacts in the water image and B0 map. Furthermore, the absolute difference maps (displayed with 5× 
magnified scale) show improved accuracy for the proposed algorithm especially in water image and B0 estimation compared to IDEAL. However, 
because of the simplification of the EPI signal model, for fat the errors in the fat image are larger than those for water (marked by the blue arrow)
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Figure 6 shows results of 1 subject’s head–neck DWI 
at 2 b-values comparing SPIR, IDEAL, and the proposed 
method. SPIR and IDEAL suffer from large field inho-
mogeneities in the outer image areas because of bad B0 
shimming conditions, showing remaining artifacts in the 
water-only images. The proposed algorithm can resolve the 
ambiguities from chemical-shifted fat and produce better 
water–fat separation.

Figure 7 shows 2 example ADC maps for the 3 fat sup-
pression techniques both for the leg and for the head-neck 
data. The proposed algorithm produces better ADC quanti-
fications in both anatomies, compared to IDEAL and SPIR 
with the previously described artifacts.

Figure 8 shows the natural logarithm of the water signal 
intensities varying as a function of the b-values. In the leg 
anatomies (Figure 8A), IDEAL shows inconsistent log-signal 
decays between the 2 chosen ROIs. The proposed algorithm 
and SPIR adhere more to the expected linear decrease in the 
logarithmic plots although SPIR was slightly affected by B+

1
 

inhomogeneities (marked by the blue arrow in Figure 7). In 
the head-neck regions (Figure 8B), the critical B0 inhomoge-
neities contribute to species swap in the IDEAL water images 
and incomplete fat suppression for SPIR (as shown in Figure 
6), breaking the log-linearity for both ROIs.

The improved performance of the proposed algorithm was 
also confirmed by calculating the apparent diffusion coeffi-
cients. For both anatomies and each technique, the average 
ADC values, and the P-values from the t tests between pure/
mixed ROIs of water ADC, are displayed in Table 2. The pro-
posed algorithm yields accordant ADC values for the 2 ROIs 
with no statistically significant difference between them, 

whereas IDEAL and SPIR did show significant differences 
in water ADC between the 2 ROIs for both anatomies.

4  |   DISCUSSION

In this work, we proposed an alternative water–fat separa-
tion algorithm for chemical-shift encoded EPI. This ap-
proach is using a multi-peak fat spectrum signal model and 
a novel regularized algorithm to jointly estimate water, fat 
and a single B0 map using chemical-shift encoded EPI data. 
This algorithm deals with the finite bandwidth problem in 
the phase-encoding direction of EPI. The proposed algorithm 
can remove most of the present fat signals as demonstrated 
for simulated and in vivo data. In vivo validation has been 
done for interleaved spin-echo EPI and for more challenging 
interleaved DWI applications. In all measurements the pro-
posed algorithm produced proper water images, even under 
challenging ΔB0 conditions. It should be noted that, based on 
the signal model of Equation (1), the proposed algorithm is 
also applicable to other EPI-based approaches.

There are 2 difficulties for obtaining accurate water–fat 
separation for EPI: (1) the chemical-shift displacements of 
individual fat peaks; and (2) the field map estimation in re-
gions with severe field inhomogeneities. The proposed algo-
rithm can resolve them and provides water–fat decomposition 
for both diffusion and non-diffusion cases. Nevertheless, in 
cases of severe B0 inhomogeneities, the effects of these 2 
features are hard to distinguish. This is one of the shortcom-
ings of our validation approach. However, in the relatively 
homogeneous B0 experiments (eg, in Figure 2) and in the leg 

F I G U R E  3   Normalized root mean squared errors (NRMSE) for the water images as a function of the EPI bandwidth obtained in simulations. 
NRMSE between separated water and ground truth water image shown for mixed/pure regions of interest (ROIs), respectively. The source data is 
simulated with a 7-peak fat spectrum model and varying bandwidth. NRMSE in both regions of the proposed algorithm always remains around the 
noise level, whereas a slight error increase can be seen at bandwidths where the methylene peak is almost shifted to a “half pixel” (eg, at 45.5 Hz/
pixel). In comparison, IDEAL shows larger errors, especially in the mixed ROI



      |  3043DONG et al.

measurements, the benefit of correcting the spatial spectral 
shifts can be demonstrated independent of B0 inhomogeneity 
effects.

For data acquisition, the TE-shifted DW spin-echo msh-
EPI sequence was implemented to enable chemical-shift 
encoding and reduce geometric distortions.4 It should be 
noted that, because of the intrinsic properties of EPI, both 
the acquisition and reconstruction were based on some as-
sumptions. One limitation of the present work is that alter-
nating chemical-shift displacements of fat in the odd and 
even “echoes” of the EPI train were ignored in the signal 
model. This issue results in residual ghosting artifacts in the 
fat images (see Figures 2 and 4). However, those ghosts are 

chemical-shift encoded, and hence, only appear dominantly 
in the final fat image. Therefore, such artifacts do not no-
ticeably affect the quality of the final water images and the 
associated ADC measurements.

Another limitation of the proposed image-domain-based 
algorithm is the integer shift correction of the fat signal for 
each individual chemical shifted line, applied in the sepa-
ration procedure. The small error (Figure 3), can either be 
mitigated by choosing an appropriate EPI bandwidth during 
acquisition or by image interpolation during post-processing 
to realize close-to-integer shifts for the dominant methylene 
fat peak signal in the image data (see Supporting Information 
Figure S2). Such an interpolation step can potentially also be 

F I G U R E  4   Comparison between the iterative decomposition of water and fat with echo asymmetry and least-squares (IDEAL) and the 
proposed algorithm for non-diffusion sensitized (b = 0 s/mm2) leg and head-neck data. (A) One source image of the reconstructed leg data and 
corresponding water–fat separation results from the proposed and IDEAL algorithms. IDEAL leaves rim-like artifacts (marked by red arrows) in 
the fat overlapping region in the B0 map and water image. This artifact is not present when reconstructed with the proposed approach. Furthermore, 
some residual fat ghosting can be seen in both the source and the separated fat images of both algorithms because of the neglected chemical-shift 
effects in readout direction (indicated by the blue arrow). (B) One source image from the head-neck region and the water–fat separation results 
calculated through the proposed and voxel-independent algorithms. Significant errors in B0 estimation cause artifacts in the corresponding regions 
of the water image for the IDEAL algorithm (marked by red arrows). With the help of the TV regularization and extrapolation used in the proposed 
algorithm, the B0 errors and species swaps in the water–fat images from severe B0 deviations appearing in the results of the IDEAL algorithms are 
reduced
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directly included in the shift matrices to avoid increasing the 
problem size.

An alternative option would be to solve the water–fat 
separation problem using a k-space-based approach.42–45 In 
the approach of Brodsky et al,42 the actual k-space sampling 
time for each point is used in the separation to correct for 

chemical-shift displacement effects in both the phase- and 
frequency-encoded directions. However, the B0 map is still es-
timated and demodulated in image space, assuming a smooth 
B0 field with neglectable differences between neighboring 
regions. This method and improved similar approaches show 
great ability in correcting the relatively minor chemical-shift 

F I G U R E  5   Comparison of 3 different approaches in 2 subject’s legs. Four slices of water-only images selected from 2 volunteers at 2 
b-values are shown. For the fat saturation data, spectral presaturation with inversion recovery (SPIR) and spectral attenuated inversion recovery 
(SPAIR) were applied in volunteer 1 and 2, respectively. The proposed algorithm produces good water–fat decompositions both with and without 
diffusion gradients. The fat-related artifacts as shown in Figure 4 appear in the iterative decomposition of water and fat with echo asymmetry and 
least-squares (IDEAL) images as well (marked by red arrows). For spectral presaturation with inversion recovery (SPIR) in volunteer 1, an artifact 
resulting from B+

1
 inhomogeneity can be seen (marked by the blue arrow). In volunteer 2, spectral attenuated inversion recovery (SPAIR) avoids 

this artifact. Two regions of interest (ROIs) are selected (marked by the white squares) and used for all approaches, illustrated at the bottom with 
adjusted level/window. With the help of shift matrices, the fat components from different fat peaks can be suppressed simultaneously, whereas 
other methods show residual fat signals in the water-only images (eg, olefinic peak, marked by the white arrows)



      |  3045DONG et al.

F I G U R E  6   Comparison of the 3 different approaches in 1 subject’s head-neck region. Four slices with 2 b-values are displayed. Because of 
the severe field inhomogeneities in this case, the fat signal can neither be completely suppressed by spectral presaturation with inversion recovery 
(SPIR), nor separated by iterative decomposition of water and fat with echo asymmetry and least-squares (IDEAL) (marked by the red arrows). The 
proposed algorithm produces significantly improved water–fat separation, especially in regions where IDEAL generates water–fat swaps

F I G U R E  7   ADC maps of 3 different approaches in 1 subject’s leg and 1 subject’s shoulder. Source images (non-diffusion) with the 
corresponding ADC maps are shown, comparing the proposed algorithm, iterative decomposition of water and fat with echo asymmetry and least-
squares (IDEAL), and spectral presaturation with inversion recovery (SPIR). Two regions of interest (ROIs) were manually selected in the source 
images as mixed (water–fat overlap) and pure water (no overlap) regions. In the leg data, IDEAL and SPIR show fat-related artifacts in the mixed 
region of the ADC map (marked by the blue arrow), which does not appear in the proposed approach’s results. For the head-neck region, both 
IDEAL and SPIR suffer from severe B0 inhomogeneities, contributing to artifacts in the ADC measurements (marked by blue arrows). In contrast, 
the proposed algorithm produces smooth ADC maps in the same regions
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displacements of fat in non-EPI acquisitions.42,43,45 However, 
in EPI, the increased chemical-shift displacements in the 
phase-encoding direction, may not be neglected as in other 
sequences. One weakness of the present work is that we com-
pare the proposed approach to only 1 rather basic water–fat 
separation algorithm. Further comparisons to different ap-
proaches assessing the impact of the spatial signal displace-
ment for fat in EPI can be considered as interesting future 
work. In the work of Honorato et al,44 the B0 estimation and 
demodulation, as well as water–fat separation, were per-
formed in k-space. Compared to the proposed algorithm, 
solving the whole problem in k-space would theoretically 
correct the ghosting in the fat image originating from the al-
ternating chemical-shift in the readout direction. Moreover, 
it would at the same time correct susceptibility-introduced 

F I G U R E  8   ADC fitting assessment across different volunteers. Natural logarithm plots of average water signal in mixed/pure regions for the 
leg and the head-neck regions in 6 volunteers (3 volunteers/anatomy) as a function of b-value. For each anatomy, 12 slices (4 slices/volunteer, 3 
volunteers) with data in mixed/pure regions are included in the averaging and standard deviation calculations. (A) Leg data. The logarithmic signal 
decays show reasonable linearity in both regions of interest (ROIs) for the proposed method. In contrast, iterative decomposition of water and fat 
with echo asymmetry and least-squares (IDEAL) shows larger error bars in the mixed regions and significant signal inconsistencies between the 
2 ROIs. Spectral presaturation with inversion recovery (SPIR) shows a slight difference of logarithmic signal decays between the 2 ROIs, mainly 
because of the strong B+

1
 inhomogeneity. (B) Head-neck data. The problematic B0 inhomogeneity in the head-neck region spoils the log-linearity 

of the water signal evolution for IDEAL and SPIR in both regions (mixed/pure water). In comparison, the proposed algorithm produces good 
consistency of the logarithmic signal decays and relatively small deviations in both mixed/pure regions improving ADC fitting consistency

T A B L E  2   Quantitative assessment of ADC (×10−3 mm2/s) among 
the 3 methods

Proposed IDEAL SPIR

Leg

Mixed 1.62 ± 0.26 1.93 ± 0.49 1.74 ± 0.51

Pure 1.62 ± 0.22 1.61 ± 0.23 1.58 ± 0.32

P-valuea  0.498 0.001 0.001

Head–neck

Mixed 1.59 ± 0.45 1.09 ± 1.31 1.44 ± 0.75

Pure 1.58 ± 0.38 1.32 ± 1.03 1.69 ± 0.61

P-value 0.218 0.001 0.001
aP-values are derived from group-wise comparison using a paired t test between 
ADC values of mixed and pure regions for each technique.
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geometric distortions. However, Honorato et al44 has only 
been implemented for 1D spin warp trajectories with already 
long computation times. A complete 2D solution is pending 
and would need further investigation, but is expected to be 
too slow for clinical applications.

The present work is focused on multi-shot EPI acquisi-
tions, which typically have better SNR compared to single-
shot EPI based approaches.17,18,22 Because of the increased 
bandwidth along the phase-encoding direction, msh-EPI 
shows strongly reduced geometric distortions.3,4 Unlike the 
work of Hu et al,23 in which the geometric distortions and 
chemical-shift displacements are corrected by estimating an 
appropriate k-space kernel including the PSF-dimension, 
the proposed algorithm only starts the water–fat separa-
tion after the 3 complex source images were reconstructed. 
This simplification also limits its scope to correct geometric 
distortions in advance. Nevertheless, the estimated B0 map 
could be used to further correct the geometric distortions 
by established post-processing approaches46–48 as shown in 
Supporting Information Figure S5.

Similar B0 demodulation methods in k-space46–50 can also 
be considered in combination with k-space based water–fat 
separation.42,43 The necessary B0 map can be estimated in 
the image space through the proposed algorithm in the first 
place. With the help of regularization and shift matrices, the 
main chemical-shift effects in the phase encoding direction 
have already been corrected, and the estimated smooth B0 
map is more reliable. Therefore, the geometric distortions 
and chemical-shift effects in both directions can be addressed 
well in this full-model-based hybrid approach, and is a step to 
be explored in future work.

Apart from the acquisition and reconstruction, another 
potential source of inconsistency is the variability of the fat 
spectrum, also depending on the actual sequence parame-
ters, such as the sequence type, TE, and TR. In the present 
work, spin-echo EPI was exclusively used in a small TE range 
around 60 ms, which is why invariance of the self-calibrated 
fat spectrum was assumed for all the sequences used. More 
accurate calibration of the spectrum can be used, for exam-
ple, using single-voxel stimulated echo acquisition mode 
(STEAM) spectroscopy-based pre-calibration8,10,51 or self-
calibration34 approaches using more echoes.

The DWI application shown in this work is based on the 
low-resolution navigator phase information delivered for the 
IRIS reconstruction. This navigator is not chemical-shift 
encoded and contains some fat signal and related SENSE 
unfolding errors. To mitigate the latter, an extrapolation of 
the coil sensitivity map has been applied (described in de-
tail in Supporting Information Figure S3). Please note that 
this is only a simple approximation. GRAPPA52 could also 
be a potential candidate for mitigation but needs further in-
vestigation. The navigator phase information is also slightly 

compromised by the remaining fat that is spatially shifted. 
Approaches to entirely suppress the fat signals in the navi-
gator, for example by using gradient reversal approaches,53 
should be the subject of future research.

With respect to the DWI application, this study presents a 
feasibility study for navigated water–fat separated DWI using 
interleaved EPI. For clinical application, more diffusion ori-
entations should be acquired to produce reliable trace ADC 
quantifications. Considering the large number of images ac-
quired in a clinical setting, further improvements to the com-
putational speed are necessary. To achieve higher efficiency, 
already estimated B0 maps from any b-value, diffusion orien-
tation, or neighboring slice could serve as a better initializa-
tion, which would lead to fewer iterations. Undersampling in 
the multi-shot and chemical-shift encoding space are promis-
ing approaches for future research when SNR is sufficiently 
high. Other EPI based applications like DTI or intravoxel in-
coherent motion (IVIM) imaging approaches are also consid-
ered for future investigations.

5  |   CONCLUSION

Applying chemical-shift encoding to msh-EPI can signifi-
cantly improve the fat suppression and image quality of 
DWI. The proposed algorithm provides a feasible solution 
for water–fat separation with EPI and has been validated 
using synthetic data from simulations and acquired data from 
healthy volunteers. This algorithm can also be applied to 
other EPI-based works to provide reliable fat-free images.
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FIGURE S1 The thin-plate spline extrapolation31 step during 
the field map estimation (the total number of iterations is 10). 
(A) The “current” field map estimated in the proposed water–
fat separation algorithm through 5 iterations after starting 
with 0 initialization throughout FOV. The algorithm may fall 
into local minima near the object edges (marked by the red 
arrow), contributing to inaccurate B0 values. (B) A binary 
mask created through a chosen signal threshold of source 
images and an erosion step to avoid the boundary effect of 
the object’s edge. The number of erosion iterations is em-
pirically chosen to be 22 for the image matrix size of 160 
× 150. (C) Resulting B0 map initialization for the residual 
iterations through the extrapolation of the B0 map. A function 
in MATLAB (The MathWorks, Natick, MA) called “tpaps” 
is used to perform the 2D thin-plate spline extrapolation. The 
extrapolation is applied once after the 5th iteration, based on 
the masked inner voxels, which are assumed to have correct 
B0 values. A total of 2000 random control pixels are chosen 
within the mask and the smoothing factor p is empirically set 
to be 0.0002. For the remaining iterations, the field map is 
initialized with (1) estimated B0 values of the previous itera-
tions inside the mask; and with the (2) extrapolated B0 values 
outside the mask. (D) The final B0 field map can be obtained 
after finishing the residual iterations
FIGURE S2 The extended simulation validation of the 
zero-filling interpolation (ZIP).35 The phantom source im-
ages are simulated in k-space as described in the Methods 
section, with matrix size 144 × 144, a B0 map ranging be-
tween −110 and 110 Hz and 7-peak fat spectrum model.10 
(A) Separated water images of the simulation at different 
bandwidths. The spatial shifts of the methylene peak for 
each simulation are illustrated. The images are divided into 
2 groups: (1) “no half-pixel” effect of methylene fat peak, 
with bandwidths = 36.5, 39.5, 42.5 Hz and the correspond-
ing spatial shifts of 11.90, 11.00, 10.10 pixels, and (2) 
“with half-pixel” effect of methylene fat peak, bandwidths 
= 35, 38, 45.5 Hz and the corresponding spatial shifts 
12.41, 11.43, 9.54 pixels. The water images are estimated 
from the proposed algorithm. The absolute difference maps 
are calculated between the separated water and the ground 
truth water images. For the group “with half-pixel” spatial 
shift of the methylene peak, as described in the Method 
section, the ZIP is performed to increase the matrix size of 
the 3 chemical-shift encoded source images, to ensure that 
the spatial shift of the methylene peak in phase-encoding 
direction is close to an integer. In this work, for a given 
bandwidth per pixel in the phase-encoding direction, the 
source images were retrospectively interpolated to a matrix 
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size, which ensures the methylene peak having a spatial 
shift close to the nearest integer (minimum fraction of less 
0.1 pixels accepted). The interpolated target matrix size is 
chosen to be 150 × 150, 152 × 152, 150 × 150 for the given 
bandwidths, with corresponding spatial shift of 12.93, 
12.06, 9.94 pixel of the methylene peak. To calculate the 
absolute difference maps, the ground truth water images 
are also interpolated to the corresponding matrix size. 
Compared to the “no half-pixel” group, some artifacts can 
be seen in the water images and absolute difference maps 
of the “with half-pixel” group. With the help of interpola-
tion, artifacts can be reduced to an acceptable level, pro-
ducing better water images that are consistent with ground 
truth water images. (B) Normalized root mean squared 
error (NRMSE) between separated water image and ground 
truth water image with/without ZIP. A fraction threshold of 
0.1 pixel was empirically chosen to decide whether ZIP is 
applied for each simulation (eg, ZIP is performed when the 
fraction of the total pixel shift of methylene fat is smaller 
than 0.1). A slight error increase can be seen at bandwidths 
where the methylene peak is shifted to close to a “half 
pixel” (the blue curves). After interpolating the image to a 
larger matrix size, which ensure an “integer shift” for the 
methylene peak, the errors could significantly be reduced 
to an acceptable level (the green curves)
FIGURE S3 Validation of 2 extrapolation methods for 
the sensitivity map and the associated effect on the image/
navigator quality for a subject’s leg (b = 300 s/mm2) data 
set. (A) Coil-sensitivity map of 1 selected receive element, 
(B) reconstructed source image, (C) navigator magnitude 
image, and (D) phase image are shown with no coil sensi-
tivity extrapolation applied. The next rows (E-H) and (I-L) 
show corresponding data with nearest-neighbor extrapola-
tion54 and thin-plate spline extrapolation31 applied to the 
coil sensitivities. The raw coil-sensitivity map (A) was 
acquired via gradient echo imaging36,37 where chemical-
shift displacements of fat along the phase-encoding direc-
tion are not present. Therefore, fat signals that are shifted 
outside the object in both EPI/navigator images are insuf-
ficiently unfolded because of missing sensitivity informa-
tion. Therefore, part of the fat signal outside the subject 
is missing (marked by red arrows) and fat-related artifacts 
(marked by blue arrows) are folding into the EPI/navigator 
images (C-D). As a result, the reconstructed image qual-
ity is degraded because of imperfect SENSE unfolding and 
impaired navigator phase correction (B). Coil sensitivity 
extrapolation from inside the object to the full FOV can 
help to mitigate this effect to a certain extent. This is a 
similar task compared to the extrapolation of the B0 map 
(Supporting Information Figure S1). There are many differ-
ent methods proposed to do the extrapolation for the coil-
sensitivity maps.31,36,55–57 In this work, we implemented a 

simple fix with “nearest-neighbor extrapolation” to find 
voxel values outside the subject with the value of nearby 
translated voxel values54 under the Voronoi diagram prin-
ciple,58 shown in (E-H). Moreover, the extrapolation based 
on thin-plate spline functions proposed by Liu et al31 was 
re-implemented and produced similar results illustrated in 
(I-L). Both extrapolations are helpful to mitigate most of 
the associated artifacts in EPI/navigator reconstructions, 
resulting from chemical shift and ∆B0
FIGURE S4 Investigation of the performance of the pro-
posed algorithm with different numbers of fat peaks included. 
(A) One b = 300 s/mm2 DWI source image of 1 selected sub-
ject’s leg, and the associated separated water images calcu-
lated from the proposed algorithm with a 1-peak model and 
7-peak model, respectively. A small region of interest (ROI) 
is selected and displayed in the adjusted level/window of each 
water image, to show the effect of the proposed algorithm to 
remove small peaks of fat signal. (B) The normalized root 
mean squared error (NRMSE) plot with different numbers of 
fat peaks included in the model. The fat peaks are arranged 
in descending order with their abundance in the multi-peak 
spectrum model (eg, 1-peak means a single-peak model with 
the dominating methylene fat peak at 1.3 ppm). It should be 
noticed that in the 7-peak spectrum, 1 peak at 1.59 ppm is 
detected with no composition. The water-only ROIs for each 
slice are selected by the threshold-based binary masks cre-
ated from the separated water image with multi-peak spec-
trum at b = 0 s/mm2. The NRMSE is calculated between the 
separated water images with different numbers of fat peaks 
included in the models. NRMSE in 4 slices of 1 volunteer’s 
leg data at b = 300 s/mm2 were shown. The NRMSE curves 
decay with an increasing number of fat peaks, indicating 
that the fat signals of the different fat peaks are effectively 
removed from the water-only image. In principle, for sim-
plicity and computational efficiency, a 4-peak fat spectrum 
can be considered, because the 4-peak separation yielded a 
small NRMSE around 0.01 compared to the 7-peak spectrum 
separation
FIGURE S5 Validation of the post-processing geometric 
distortion correction. Non-diffusion water images of 1 vol-
unteer’s leg and 1 volunteer’s head-neck region reconstructed 
by the proposed algorithm are shown. With the estimated B0 
map, a further distortion correction step based on Munger 
et al47 was performed for the separated water images. The 
comparisons are made among the original water images with-
out distortion correction, the water images with distortion 
correction and the reference gradient echo mDixon image. 
As shown in Figure 4, the B0 field is relatively homogeneous 
in the leg region and is severely inhomogeneous in head-
neck region. Benefiting from the multi-shot acquisition, the 
susceptibility introduced geometric distortion is relatively 
small in the leg. Compared to the reference image, a small 
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geometric mismatching can be seen in the blue arrow marked 
region, whereas the distortion correction can get rid of it. In 
the head-neck region, under certain critical B0 field condi-
tions, the geometric distortions are relatively large, causing 
signal pile-ups in the corresponding regions. With the help of 
estimated B0 map, this post-processing step allows to reduce 
the geometric distortions, producing a water image that better 
matches the reference image
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