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Highlights
Applying trait-based approaches to eco-
logical research on mycorrhizal symbio-
ses broadens ecological inferences, but
there is no single unified framework to
unite disparate language, terminology,
and methods across the many multidis-
ciplinary scientists studying mycorrhizas.

We propose an inclusive framework for
trait-based mycorrhizal ecology aimed
to stimulate scientists around the world
to collect and use more mycorrhizal trait
Traits are inherent properties of organisms, but how are they defined for organis-
mal networks such as mycorrhizal symbioses? Mycorrhizal symbioses are com-
plex and diverse belowground symbioses between plants and fungi that have
proved challenging to fit into a unified and coherent trait framework. We propose
an inclusive mycorrhizal trait framework that classifies traits as morphological,
physiological, and phenological features that have functional implications for
the symbiosis. We further classify mycorrhizal traits by location – plant, fungus,
or the symbiosis – which highlights new questions in trait-based mycorrhizal
ecology designed to charge and challenge the scientific community. This new
framework is an opportunity for researchers to interrogate their data to identify
novel insights and gaps in our understanding of mycorrhizal symbioses.
data, particularly in understudied areas.
This would widen our understanding re-
garding the ecological role of mycorrhizal
symbioses at individual, species, com-
munity, and ecosystem scales.

Analyzing how mycorrhizal symbioses fit
within existing trait definitions highlights
significant theoretical and empirical
knowledge gaps, novel questions, and
new research directions to improve our
understanding of trait-based mycorrhizal
ecology.
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Fitting mycorrhizal symbioses into existing trait-based ecological frameworks
A trait (see Glossary) is defined as a measurable characteristic (morphological, physiological,
phenological, behavioral, or cultural) of an individual organism that is measured at either the
individual level or another relevant level of organization [1,2]. Plants and animals typically
have many distinguishable morphological traits, and, after decades and/or centuries of
research, their life histories are generally well described. As a result, conceptual frameworks
for trait-based ecology were developed for and are primarily applied to plants [3,4] and animals
[5,6], with a proportionate number of plant and animal trait databases emerging to support
these efforts [7].

Trait-based approaches are increasingly applied broadly across disciplines within ecology and
evolution. Advantages include the ability to make ecological inferences across temporal, spatial,
and organizational scales and a predictive understanding of communities and ecosystem pro-
cesses [8,9]. Commonly usedmethods employ species traits in order to understandmechanisms
behind responses of species to variation in environmental conditions (i.e., response traits) and
traits that link species to patterns in ecosystem processes and functioning (i.e., effect traits)
[10]. For microbes, a trait-based approach to ecological studies is particularly crucial as many in-
dividuals and species are not easily identifiable or culturable for in-depth laboratory studies [11].
Trait-based approaches provide a key to solving ‘big picture’ problems in ecology, such as com-
munity responses to anthropogenic global change [5,12] that depend on complex interactions
between species and environments, both above and below ground [13,14].

Mycorrhizal symbioses (mycorrhizas) are close associations between roots and certain fungi
[15] and, in terrestrial ecosystems, the dominant belowground structures responsible for shuttling
the resources (e.g., nutrients, water) that drive primary productivity [16]. In mycorrhizal symbioses,
plants provide photosynthetically derived carbon to fungal partners in exchange for increased
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Box 1. Wider applications of the framework

Our framework for mycorrhizal traits can be applied to easily incorporate trait-basedmethods into empirical and theoretical
ecological research. Adopting a trait-based framework for mycorrhizal symbioses benefits ecologists from a variety of
disciplinary backgrounds.

Plant ecologist

Plant ecologists use existing frameworks for measuring traits and incorporating trait-based methods into ecological studies
[32,52,82]. Plant ecologists already measure many plant mycorrhizal traits such as root architecture, photosynthetic path-
way, and phenology (see Table 2 in main text). By also including symbiotic mycorrhizal traits such as colonization intensity,
plant mycorrhizal response, or resource exchange rates, plant ecologists could further increase their understanding of plant
functioning. For instance, examining mycorrhizal colonization intensity in plant roots would facilitate inferences about carbon
and nutrient transfer between plant and fungal symbionts, with links to functioning such as plant productivity or pathogen re-
sistance [54,83].

Fungal ecologist

Fungal ecologists have long used traits to categorize fungi according to guilds, and continue to use trait-based perspectives
to research the numerous functional roles that fungi play in ecosystems [24]. As methodologies to assess fungi in situ
continue to improve, we can better measure many fungal mycorrhizal traits such as mycelial traits and enzyme activity
(see Table 2 in main text) [11]. Many fungal mycorrhizal traits can be measured using standard laboratory equipment
(e.g., centrifuge, filters, microscope) that researchers already have access to. For example, spore size is an indicator
of AM fungal aerial dispersal ability, and thus could improve predictions of landscape management impacts on local
AM fungal diversity and composition [69]. Just as leaf traits have expanded knowledge of plant life-history strategies
[84], the incorporation of important fungal mycorrhizal traits such as spore morphology will expand our understanding
of life-history strategies of mycorrhizal fungi.

Data synthesizer

Large-team science to compile and analyze global ecological datasets will increase our understanding of biodiversity and
ecosystem functioning. Ecologists examining ecological phenomena across spatial and temporal scales can incorporate
mycorrhizal traits to improve our understanding of global trends in mycorrhizal symbioses. For example, merging data on
symbiotic mycorrhizal traits such as mycorrhizal type or plant mycorrhizal response from FungalRoot [31] or MycoDB [29]
into other ecological synthesis efforts could reveal novel ways to predict global ecological biodiversity and ecosystem
function. Furthermore, because many ecological data comprise repeated sampling (e.g., LTER, NEON), they represent
an opportunity to monitor understudied phenological mycorrhizal traits, such as shifts in mycorrhizal type, or mycorrhizal
influences on plant reproductive phenology.
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access to soil resources such as nitrogen, phosphorus, and water, although the degree of mutual
benefit is context dependent [17]. Mycorrhizal symbioses are most well known for their role in nu-
trient exchange, but are also recognized for their key roles in ecosystems across a range of orga-
nizational scales such as promoting plant establishment, plant pathogen protection, plant
resistance to heavy metals, drought tolerance, interspecific community interactions, soil aggrega-
tion, and global carbon cycling [18]. Mycorrhizal symbioses represent the interface between two
different types of modular lifeforms; in nature, most plant roots are associated with more than
one mycorrhizal fungus. Furthermore, one mycorrhizal fungus can be associated with multiple
plants to form nonrandom assemblages of physical networks of hyphae that are connected
below ground [19,20]. As such, mycorrhizal symbioses are root–mycelial networks of modular
lifeforms with varying degrees of complexity ranging from one plant–one fungus to multiple
plant–fungal connections.

Applying concepts from, and drawing parallels with, trait-based ecological theory developed for
individual organisms with more definable traits can be challenging for symbioses that are inherently
defined as associations between multiple organisms. Traits are often defined for the purpose of a
specific study, and so terminology, semantics, and interpretations vary across datasets [7,21],
even for well-studied and easily identifiable organisms. For organisms with high species-level diver-
sity but few distinguishable morphological traits, such as fungi [22], trait-based ecology often takes
a more mechanistic approach, particularly for species that are cryptic or microscopic [23,24]. For
symbioses that are not discrete species units but in fact emergent properties of complex root–
574 Trends in Ecology & Evolution, July 2022, Vol. 37, No. 7
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Glossary
Arbuscular mycorrhiza (AM): a
mycorrhizal association where plant
roots display intracellular colonization by
fungi of the subphylum
Glomeromycotina.
Arbuscule: a specialized mycorrhizal
structure present inside plant cells, and
the common site of nutrient exchange in
arbuscular mycorrhizas (AMs). Other
nutrient exchange sites in arbuscular
mycorrhizas include hyphal coils.
Dual colonization: colonization of
plant roots by two different mycorrhizal
types (i.e., AM and EcM), generally
demonstrating ontological shifts in
particular plant species (e.g., Quercus
sp., Salix sp., Populus sp.).
Ectomycorrhiza (EcM): a mycorrhizal
association between plant roots and
fungi characterized by an intercellular
interface consisting of a branched
hyphal lattice and mantle.
Ericoid mycorrhiza (ErM): a
mycorrhizal association between plants
in the family Ericaceae and certain fungi,
characterized by intracellular coils.
Functional markers: traits that do not
measure a function directly but instead
are indicators of functions (e.g., hyphal
production by mycorrhizal fungi that
influences soil aggregate formation).
Hyphae: the branching filaments of
mycorrhizal fungi that make up the
mycelium and conjoin to plant roots
either intracellularly or extracellularly.
Hyphae differ with respect to
morphology, environmental persistence,
and function (e.g., nutrient absorption
vs. transport).
Mantle: sheath of fungal hyphae
enveloping plant roots in EcM
associations.
Mycorrhizal fungus: the fungal
symbiotic partner in a mycorrhizal
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mycelial networks, such asmycorrhizal symbioses (but see also [25]), trait-based ecology poses an
even greater challenge.

Prior morpho–physio–phenological trait definitions for mycorrhizas
Mycorrhizal ecologists, whether invoking the word ‘trait’ or not, have long studied various
mycorrhizal traits to gain insight into predictors or proxies of mycorrhizal performance [26].
Table 1 lists examples of previously used definitions of morphological, physiological, or phenological
traits that have led to considerable advances in our understanding of mycorrhizal ecology.
Mycorrhizal type is an emergent property of the plant and fungal taxa involved in the symbiosis,
and is likely the most commonly studied mycorrhizal trait. The major types of mycorrhizas –

arbuscular mycorrhiza (AM), ectomycorrhiza (EcM), ericoid mycorrhiza (ErM), and orchid
mycorrhiza (OrM) – are similar in that they are all symbiotic root–mycelial networks of fungi and
plants with varying degrees of complexity. However, mycorrhizal types vary substantially with
respect to plant and fungal taxa involved in the association, morphological form, ecophysiological
function, and their comparative roles in biogeochemical cycling [16,27]. Research on mycorrhizal
type, among other mycorrhizal traits, is increasingly being conducted with large global databases
(e.g., MycoDB, FungalRoot, FUNFUN, FungalTraits) aimed at making broad inferences about the
biogeography and functioning of mycorrhizas [24,28–31].

The application of existing ecological conceptual frameworks has also led to advances in trait-
based mycorrhizal ecology, in particular the application of Grime’s C–S–R (competitor–stress
tolerator–ruderal) framework [32,33]. A fungal-centric perspective characterizes variation in
AM fungal traits such as hyphal growth rate, hyphal turnover rate, spore phenology, and
dispersal ability as alternative competitive strategies for different AM fungal species [34]. Efforts
have also been made to classify AM fungi into edaphophilic or rhizophilic guilds related to
differential allocation to soil hyphae or root colonization, respectively, and how that relates to
mycorrhizal function [35,36]. In EcM fungi, previous work has defined mycorrhizal traits as
differences in morphology and physiology of mycelial [37] and reproductive structures [38]
that produce differences in species’ capacity for carbon storage, enzymatic activity, nutrient
uptake and translocation, dispersal, and habitat colonization [27,39–42]. Alternatively, plant-
centric perspectives have shown how mycorrhizal symbioses explain significant variation in
plant life history strategies [43] and multivariate root trait space [44], accounting for different
C–S–R and resource utilization strategies of plants across the globe.

Methodological limitations (e.g., culturing bias) certainly impair empirically derived knowledge of
mycorrhizal traits [45], but disparate definitions across a diversity of trait-based mycorrhizal
association.
Mycorrhizal symbioses: symbiotic
associations between plant roots and
certain fungi. Synonym: mycorrhiza.
Mycorrhizal traits: morphological,
physiological, or phenological charac-
teristics of mycorrhizal fungi, plants, and
mycorrhizal associations that have
functional implications for the symbiosis.
Orchid mycorrhiza (OrM):
mycorrhizal association between plants
in the family Orchidaceae and certain
fungi characterized by intracellular coils
called pelotons.
Paris/Arum: alternative root
colonization strategies in arbuscular
mycorrhizas. The Paris type is

Table 1. Examples of previously published and highly varied definitions of ‘mycorrhizal traits’

Definitions of mycorrhizal traits Refs

Traits as the type of mycorrhizal symbiosis (e.g., AM, EcM, ErM) or frequency of occurrence (e.
g., obligate, facultative) of mycorrhizal symbiosis in a plant species

[31,44,60–64]

Traits as the context-dependent benefits that plants derive from mycorrhizal symbioses [17,65]

Traits as spore morphology (e.g., size, shape, color) of mycorrhizal fungi [66–69]

Traits as root and/or soil colonization strategies of mycorrhizal fungi, including fungal biomass
allocation and hyphal production

[36,70–73]

Traits as soil aggregation and stabilization capabilities of mycorrhizal symbioses [74,75]

Traits as C–S–R characteristics of mycorrhizal fungi [34,76]

Traits as mycorrhizal fungal behaviors such as movement, communication, and decision-making [77,78]

Traits as mycorrhizal symbiosis properties related to nutrient flux and ecosystem functioning [79–81]
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characterized by coiled hyphae that
spread intracellularly from plant cortical
cell to cell, while the Arum type spreads
in the plant root cortex via intercellular
hyphae.
Spore: fungal cells specialized for
asexual or sexual reproduction and
dispersal. They can be borne on
specialized fungal fruiting bodies or
directly from mycelial networks.
Symbiosis: an association between
organisms that live in close physical
contact.
Trait: any measurable characteristic
(morphological, physiological,
phenological, behavioral, or cultural) of
an individual organism that is measured
at either the individual or other relevant
level of organization.

Trends in Ecology & Evolution
research efforts also hinder productive scientific discourse. Often, different definitions of mycor-
rhizal traits are specific to mycorrhizal type, focused on either a plant-centric or a fungal-centric
perspective, or are borrowed from existing ecological theories based on distinct unitary
organisms, causing confusion for network-based symbioses between modular organisms. A
unified language for mycorrhizal traits that spans mycorrhizal types and morpho–physio–
phenological characteristics is sorely needed.

Controversy and disagreement in what constitutes a mycorrhizal trait
Thus far, the body of research on trait-based mycorrhizal ecology has used different definitions
of traits, with organismal divides stemming from different morphological metrics that are a proxy
for functions, direct measures of functions, or measures of mycorrhizal plant and/or mycorrhizal
fungal growth that may also approximate function. In many ways, these organismal divides are a
result of researchers coming from different disciplinary backgrounds and perspectives [46,47]. A
plant-centric perspective can result in studying different types of traits and the use of varied vocab-
ularies that do not easily translate to those using a fungal-centric perspective (and vice versa). Many
microbes have relatively few measurable or easily observable features, and thus functional mea-
sures are translated into traits. For example, the presence or abundance of saprotrophic fungi
may be correlated with litter decomposition rates. Plant traits, on the contrary, are observable,
but their relevance for the functioning of the ecosystem may be ambiguous. For example, specific
leaf area can be an indication of plant longevity and hence biomass turnover and photosynthetic
rates [10]. Geographic region of study can also drive miscommunication as certain regions of the
world (particularly the tropics) are comparatively understudied [48], resulting in a greater need to
incorporate local terminologies into globally accepted paradigms. Indeed, inconsistencies in
terminology surrounding traits are as diverse as trait ecologists, suggesting the need to keep trait
definitions broad, malleable, and identified independently from the environment [2].

Divides also exist between researchers who work primarily in EcM-dominated systems and those
working in AM- or ErM-dominated systems. Furthermore, certain systems have been studied for
longer, as EcM symbioses were identified in the 1880s [15], but the functional significance of the
AM symbioses was not discovered until the 1950s [49]. Less is known about AM symbioses
compared with other mycorrhizal groups [50], resulting in a lack of the basic biological and taxo-
nomic framework to integrate ecological research with general mycology. This affects the study of
mycorrhizal symbioses as there are significant differences in the focus of AM versus EcM studies,
hampering the generation of a unified language to describe them [11,47]. Applying trait-based
methods to highly context-dependent mycorrhizal symbioses without a standardized vocabulary
is challenging and can result in ‘locked-in debates’ among researchers that hinder scientific
advances [51].

An inclusive and unified framework for mycorrhizal traits
It is the opinion of the authors that a common framework and standardized vocabulary will help to
further our understanding of the trait-based ecology of mycorrhizal symbioses. As traits are
characteristics of organisms, mycorrhizal traits must be inclusive of all organismal components
that make up mycorrhizal symbioses, recognizing that the mycorrhizal functions we observe in
nature are the imprint of all mycorrhizal traits working together. Therefore, mycorrhizal traits are
morphological, physiological, or phenological characteristics of mycorrhizal fungi, plants, and
mycorrhizal associations that have functional implications for the mycorrhizal symbiosis. Because
this definition is based on symbiotic function and the inherent root–mycelial network nature of all
mycorrhizas, it is applicable across all mycorrhizal types. Our definition emphasizes traits that
have functional implications for the mycorrhizal symbiosis to further a mechanistic understanding
of mycorrhizal performance and fitness. We aim to link trait-based mycorrhizal ecology to the
576 Trends in Ecology & Evolution, July 2022, Vol. 37, No. 7
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work of defining mycorrhizal niches and understanding the mechanisms of community assembly
[9]. Some mycorrhizal traits are functions (e.g., plant productivity response to mycorrhizal
symbiosis), but some are functional markers, traits that do not measure a function directly
but instead are indicators of mycorrhizal functions (e.g., hyphal production by mycorrhizal fungi
that influences soil aggregate formation) [11,52].

Although there are benefits to using inclusive terminology, an overly broad definition of mycorrhizal
traits can also cause confusion during scientific discourse when researchers universally refer to
‘mycorrhizal traits’ but mean different things. We propose to further qualify mycorrhizal traits
using language that references their physical location within mycorrhizal networks (Table 2).
Therefore, mycorrhizal traits fall into one of three categories: plant mycorrhizal traits, fungal mycor-
rhizal traits, and symbiotic mycorrhizal traits.

Plant mycorrhizal traits are mycorrhizal traits that are driven largely by the morphological, physio-
logical, or phenological characteristics of the plant partner. Many root traits, for example, repre-
sent important plant mycorrhizal traits as they have functional implications for the symbiosis
[44]. Fungal mycorrhizal traits are mycorrhizal traits that are dependent on the morphological,
physiological, or phenological characteristics of the mycorrhizal fungal partners. Both fungal
response and fungal effect traits [23] – particularly physiological traits relating to fungal ecosystem
functions – are components of fungal mycorrhizal traits. Finally, symbiotic mycorrhizal traits are
morphological, physiological, or phenological characteristics that lie at the intersection of both
partners and are dependent on both the plant and fungal partners present. Figure 1 in main
Table 2. An inclusive and unified framework for mycorrhizal traits. Examples given are categorized as morphological, physiological, or phenological
traits; the framework is intended to stimulate thought and discussion, so dynamic classifications are encouraged

Plant mycorrhizal traits Fungal mycorrhizal traits Symbiotic mycorrhizal traits

Definition Mycorrhizal traits dependent on the
morphological, physiological, or
phenological characteristics of plant
partners

Mycorrhizal traits dependent on the
morphological, physiological, or
phenological characteristics of the fungal
partners

Traits that lie at the organismal intersection of
mycorrhizal symbioses and are dependent on
both plant and fungal partners

Morphological
traits (form)

Root characteristics ( e.g., diameter,
architecture, surface area:volume, root
hair density)
Root:shoot ratio
Growth form (e.g., tree, grass)
Resource allocation (e.g., root:shoot)
Seed size
Phylogenetic history

Fruiting body (e.g., size, shape, color)
Spores (e.g., size, color, shape,
ornamentation, wall thickness)
Mantle (e.g., color, cell morphology)
Hyphae (e.g., specific length, architecture)
Biomass allocation strategy (e.g., rhizophilic,
edaphilic)
Culturability

Mycorrhizal type (AM, EcM, ErM, OrM,
non-mycorrhizal, dual colonization)
Colonization intensity (e.g., abundance of
intercellular and intracellular structures)
Structures induced by colonization (e.g., Hartig
net, arbuscules, vesicles, Paris/Arum form)
Species specificity between plant and fungal
symbionts
Network indices (e.g., nestedness, modularity,
connectivity)

Physiological
traits (function)

Plant mycorrhizal status (obligate vs.
facultative)
Photosynthetic pathway
Immune responses (e.g.,
herbivore-induced responses)
Growth and transpiration rates
Quantity and quality of root exudates
Plant nutrient requirements

Hyphal/spore productivity and turnover
Nutrient acquisition strategy (e.g., inorganic
vs. organic sources, extracellular enzyme
production, acid exudation)
Melanin content
Carbohydrate metabolism and conversion
Facilitative/antagonistic interactions with
microorganisms

Plant mycorrhizal response (e.g., increased
productivity or nutrient status)
Exchange rates for resources (e.g., N, P, C, H2O)
Gene expression changes induced by symbiosis
Plant–fungal influences on metabolic products
Functional specificity between plant and fungal
symbionts

Phenological
traits

Life history (e.g., annual, perennial)
Flowering time and seed production
Changes in root exudate quality and quantity

Temporal dynamics in production of fruiting
bodes, spores, and hyphae
Hyphal/spore persistence and longevity
Temporal dynamics in fungal community
structure

Shifts in mycorrhiza type over plant lifespan
Temporal shifts in colonization structures
and/or symbiotic exchange

Trends in Ecology & Evolution, July 2022, Vol. 37, No. 7 577
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Figure 1. Schematic diagram of plant mycorrhizal traits, fungal mycorrhizal traits, and symbiotic mycorrhizal
traits, with graphic depictions of example morphological, physiological, and phenological traits for each.

Trends in Ecology & Evolution
text shows examples of plant, fungal, and symbiotic mycorrhizal traits across morphological,
physiological, and phenological traits.

This framework both accommodates existing trait-based research and identifies gaps in our
knowledge due to data limitations. For example, considerably more research has been con-
ducted on morphological mycorrhizal traits than on physiological mycorrhizal traits, and pheno-
logical traits are by far the least studied. More research into how plant, fungal, and symbiotic
mycorrhizal traits shift with seasons or ontogeny will give greater insight into the range of variation
in traits. This trait-based framework also highlights how little we understand about interspecific
and intraspecific variation, as well as plasticity in many mycorrhizal traits, particularly at the
physiological level. Computational methods linking genes to traits [53] could be employed to
explore relationships between plant, fungal, and/or symbiotic mycorrhizal traits and either plant
or mycorrhizal fungal gene frequencies (Box 1). Further exploration of relationships between
578 Trends in Ecology & Evolution, July 2022, Vol. 37, No. 7
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Outstanding questions
Where are the research gaps in trait-
based mycorrhizal ecology? What new
ecological knowledge about mycorrhi-
zal symbioses can be generated by
examining multiple mycorrhizal traits
across multiple categories, plant, fun-
gal, and symbiotic mycorrhizal traits?
Future theoretical and empirical work
must consider traits inclusive of all com-
ponents of mycorrhizal root–mycelial
networks that are relevant to the eco-
logical question at hand.

Can a trait-based framework drive novel
approaches to linking plant and fungal
measurements that are meaningful for
the biology of mycorrhizal symbioses?
What new experimental systems can be
imagined to better measure mycorrhizal
traits and understand mycorrhizal
ecology in situ? What accessible
(and affordable) methods can be broadly
used across systems to fill knowledge
gaps, particularly in understudied regions
of the world?

What is the relationship between form
and function in mycorrhizal symbioses?
Do morphological traits of mycorrhizal
plants, mycorrhizal fungi, or the
symbiosis predict mycorrhizal functions
or behaviors?

Are mycorrhizal traits positively or
negatively related to each other? Are
tradeoffs more likely to exist between
traits belonging to the same mycorrhizal
trait category? A trait framework helps
to differentiate the origins of trade re-
sources, which can reveal tradeoffs that
may exist between traits with shared
resource allocation strategies.

Temporal changes in plant traits are
well studied, but how do fungal and
symbiotic mycorrhizal traits interact
with plant mycorrhizal trait phenology?
How do relationships between
mycorrhizal traits vary temporally?
Certain mycorrhizal traits shift
phenologically, but temporal patterns
are underexplored for most mycorrhizal
traits, particularly in long-lived plants,

Trends in Ecology & Evolution
traits – particularly those that illuminate symbiotic partner resource sharing and connections
between mycorrhizal form and function – is warranted, as mycorrhizas are models for studying
resource exchange and stability in symbioses [54].

Concluding remarks
There is already consensus among scientists using traits in ecology that standardized definitions
and data structures are required to make the most of trait data and to address challenges at
the community and ecosystem levels [7,21]. Microorganisms influence almost all ecosystem
processes, and a common framework for research into how microbial processes affect
ecosystem-level function is crucial for advancing our understanding [55]. Mycorrhizal symbioses
occupy a unique and complex position in ecological communities, with a pivotal role in the
maintenance of ecosystem function [56], and will be fundamental to meeting United Nations
Sustainable Development Goals in the medium to long term [57].

The cha-cha-cha theory suggests that scientific discoveries can be classified as charge, challenge,
or chance [58]. Charge problems are obvious to the observer, but require a new way of thinking to
devise a solution. Challenge problems require us to devise a new theory to bring unexplained and
diverse anomalies together. Chance discoveries require a ‘prepared mind’ to recognize the impor-
tance of something that happens by chance. Our framework for mycorrhizal traits raises numerous
outstanding questions as charges and challenges to the ecological community in order to be better
prepared to recognize future chance discoveries (see Outstanding questions). By acknowledging
how our position of observation flavors our analyses and understanding of mycorrhizal traits
through the very language we use to pose research questions [59], we can, as a community of
scientists, be better prepared to recognize serendipitous discoveries. A common framework for
mycorrhizal traits may engage scientists around the world to collect more trait-based data, espe-
cially in understudied areas, generating chance discoveries. It is the authors’ opinion that a
common framework for mycorrhizal trait-based ecology will facilitate the next generation of
discoveries in this field. This paper describes only a small portion of the exciting work tackling
charges at the present time. Shared terminology allows us to better identify synergy between
studies approaching similar questions from different angles, and to take on the challenges.
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