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INTRODUCTION 
 

Ischemia-reperfusion (I/R) injury represents the major 

cause of acute kidney injury after transplantation  

and is characterized by a significant activation of the 

complement system [1, 2]. In this scenario, endothelial 

cells (EC) play a critical role in the maladaptive  

repair after I/R, leading to early fibrosis by endothelial  

to mesenchymal transition (EndMT) [3]. During  

the reperfusion phase, Complement orchestrates 
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ABSTRACT 
 

Pentraxins are a family of evolutionarily conserved pattern recognition molecules with pivotal roles in innate 
immunity and inflammation, such as opsonization of pathogens during bacterial and viral infections. In 
particular, the long Pentraxin 3 (PTX3) has been shown to regulate several aspects of vascular and tissue 
inflammation during solid organ transplantation. 
Our study investigated the role of PTX3 as possible modulator of Complement activation in a swine model of 
renal ischemia/reperfusion (I/R) injury. 
We demonstrated that I/R injury induced early PTX3 deposits at peritubular and glomerular capillary levels. 
Confocal laser scanning microscopy revealed PTX3 deposits co-localizing with CD31+ endothelial cells. In 
addition, PTX3 was associated with infiltrating macrophages (CD163), dendritic cells (SWC3a) and 
myofibroblasts (FSP1). In particular, we demonstrated a significant PTX3-mediated activation of classical (C1q-
mediated) and lectin (MBL-mediated) pathways of Complement. Interestingly, PTX3 deposits co-localized with 
activation of the terminal Complement complex (C5b-9) on endothelial cells, indicating that PTX3-mediated 
Complement activation occurred mainly at the renal vascular level. In conclusion, these data indicate that PTX3 
might be a potential therapeutic target to prevent Complement-induced I/R injury. 
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immunological and inflammatory processes, contributing 

to various immune and inflammatory diseases [2–5]. 

Other essential components of the humoral arm of the 

innate immune system are represented by pentraxins 

that are thought to play a pivotal role in vascular 

biology [6]. 

 

Pentraxins are a family of multimeric soluble proteins 

[6] that are classified into short and long families based 

on their structure [7]. These evolutionarily conserved 

proteins are acute-phase effectors, that serve as a 

sensors for inflammation initiation and rapidly 

increased in plasma during an infection [8]. The long 

pentraxin 3 (PTX3) is a soluble pattern recognition 

molecule that is crucial in innate immune protection and 

can activate complement system [9–11]. 

 

In particular, PTX3 induced classical and lectin 

pathway activation by binding with C1q, MBL, Ficolin-

2 and is able to affect the alternative pathway via CFH 

[10–12]. 

 

In contrast with other liver-produced pentraxins in the 

bloodstream (i.e. CRP), PTX3 can be released by 

resident cells within the site of inflammation, for 

example from mononuclear phagocytes, dendritic cells, 

fibroblasts, and EC [9] acting in a paracrine manner 

[13]. PTX3 is also stored in a ready-made form in 

neutrophils, localized in specific granules, and secreted 

in response to the recognition of microbial moieties 

[14]. In EC, the expression of PTX3 is readily induced 

by TNF-α and IL-1β, giving a transition from a 

quiescent, anti-inflammatory phenotype, to a 

procoagulant and proinflammatory state, thereby 

strongly regulating the microvascular function [7, 8]. 

For that reason, PTX3 levels has been described as an 

indicator of disease activity at sites of inflammation. In 

chronic kidney disease, the increase in protein levels of 

PTX3 has been correlated with GFR declines and 

cardiovascular complications, however, little is still 

known of the role of PTX3 in early setting as I/R-

induced acute kidney injury [15, 16]. 

 

The role of PTX3 in renal inflammatory diseases is 

bivalent, from a side the protein can activate classical 

and lectin pathways promoting initial inflammation and 

injury [10–12]. From the other side, the N-terminal 

domain of PTX3 modulated complement activation, 

attenuated leukocyte recruitment and inhibited 

interstitial fibrosis in acute renal injury promoting tissue 

repair [17–20]. 

 

Complement plays a pivotal role in the pathophysiology 
of I/R injury-induced acute kidney injury [21, 22]. In a 

swine model of renal I/R injury, we demonstrated the 

pivotal role of Complement system activation in 

inducing EndMT and early fibrosis, with the 

involvement of both classical and lectin pathways [23]. 

Moreover, we demonstrated that therapeutic inhibition 

of these complement pathways by recombinant C1-INH 

(rhC1INH) produced a significant reduction in 

complement deposition, with decreased recruitment of 

infiltrating inflammatory cells and tubulointerstitial 

damage [23]. These results were also confirmed by 

Delpech PO et al [24]; a significant modulation in C1q, 

MASP and C4d glomerular and tubular deposition was 

assessed after 30 min post-reperfusion indicating a 

central role of C1-INH to counteract classical and lectin 

pathways. 

 

In this study, we investigated the possible involvement 

of PTX3 in mediating early Complement activation in 

renal I/R injury, characterizing the different cellular 

sources of PTX3. 

 

RESULTS 
 

PTX3 is expressed by endothelial cells and immune 

infiltrating cells in a swine model of I/R injury 

 

First, we investigated the presence of PTX3 in a swine 

model of warm I/R-induced renal injury. We observed 

very limited PTX3 deposits in normal tissue (Figure 

1A). I/R injury caused a diffuse deposition of PTX3 

already at 15min following reperfusion (Figure 1B, 1C) 

in the tubulo-interstitial area (Figure 1E), at peritubular 

capillaries (Figure 1D; arrow) and at glomerular levels 

(Figure 1D). PTX3 deposits were still detectable 1 hour 

after reperfusion at the level of peritubular capillaries 

(Figure 1G). In our previous work [23] we 

demonstrated that the main features of I/R injury are 

tubular epithelial cell apoptosis and the recruitment of 

infiltrating inflammatory cells as monocytes, dendritic 

cells and lymphocytes. Nevertheless, by routine 

histological evaluation (Supplementary Figure 1), we 

demonstrated that 30 min of warm ischemia followed 

by 15 min of reperfusion induced early tubule-

interstitial damage, characterized by bigger capillary 

congestion and focal cytoplasmic vacuolation of renal 

tubule epithelium, compared to basal condition. 

 

To further characterize the cellular localization of PTX3 

deposits and evaluate its potential effect in the 

modulation of inflammatory response and injury, we 

performed double-immunostaining and confocal 

microscopy analysis. PTX3 protein expression was 

detected in most of the EC at peritubular (Figure 2A) 

and glomerular (Figure 2B) capillary levels, 15 min 

after reperfusion. 
 

It is well known that I/R injury is characterized by 

increased activation of innate and adaptive immune 
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responses, including inflammatory cell trafficking into 

the diseased organ that further exacerbates injury via 

immune cells and Complement system [25]. In our 

swine model, we also observed, already 15 min after 

reperfusion, a dense inflammatory infiltrate composed 

largely of macrophages and dendritic cells in the tubule-

interstitial area. We found that both these antigen-

presenting cells were characterized by increased PTX3 

expression when compared to T0, since we observed an 

increased number of CD163+/PTX3+ (Figure 2E, 2F, 

2K) and SWC3a+/PTX3+ (Figure 2G, 2H, 2L) cells at 

tubule interstitial levels at T15. 

 

 
 

Figure 1. Analysis of PTX3 deposits in a swine model of I/R injury. Indirect immunofluorescence for PTX3 was performed on frozen 

pig kidney sections. A limited presence of PTX3 was observed in the biopsies at T0 (A). PTX3 deposits were observed after 15 min of 
reperfusion (B, C) at interstitial (E, zoomed image), peri-tubular (F, zoomed image) and glomerular (D) capillary levels. After 60 min the PTX3 
deposits were still described at the level of peritubular capillaries (G). (I) Negative staining control for immunofluorescence was performed on 
cryosections with irrelevant primary antibodies for experimental conditions. Nuclei were highlighted with TO-PRO 3 in blue. Magnification 
630X. (H) Quantification of PTX3 demonstrated a statistically significant increase after 15 min of reperfusion compared to basal biopsies. 
Results were expressed as % ± s.d. of positive area /high power field (hpf). *p<0.05 versus T0. 
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PTX3 expression can contribute to EndMT in I/R 

injury 

 

In previous observations, we demonstrated that I/R 

injury was responsible for EndMT [26, 27], 

characterized by the acquisition of a mesenchymal 

phenotype by EC with the loss of specific endothelial 

markers and the gain of mesenchymal markers, such as 

fibroblast-specific protein 1 (FSP-1), neuronal 

cadherin (N-cadherin) and alpha-smooth muscle actin 

(alpha-SMA). Thus, we investigated whether PTX3 

expression by EC could affect this process. As 

expected, when we investigated alpha-SMA 

expression, as markers of activated myofibroblast, we 

did not find any co-localization between alpha-SMA 

and PTX3 (Figure 2C, 2D). On the contrary, we 

observed an increase in tubulo-interstitial FSP1+/ 

PTX3+myofibroblasts throughout the observation 

period (Figure 2K–2M). 

 

PTX3 deposits are associated with activation of the 

complement system 

 

Finally, we investigated whether PTX3 deposits were 

associated with Complement activation. Indeed, as other 

components of the pentraxin family, PTX3 can regulate 

the activation of classical Complement pathway [7].  

To define the relationship between PTX3 and 

Complement activation, we performed a double-label 

immunofluorescence to evaluate the expression of 

 

 
 

Figure 2. Characterization of the PTX3-associated cellular pattern in I/R injury. Frozen pig kidney sections were analyzed by indirect 
immunofluorescence to characterize the PTX3 source after 15 min of reperfusion. Co-localization between CD31 and PTX3 on renal EC was 
evident (A, B yellow staining). Activated myofibroblasts identified by alpha-smooth muscle actin (green) were negative for PTX3 (red; α-
SMA+/PTX3-, C, D). Monocytes/macrophages identified by CD163 (red) co-localized with PTX3 (green; CD163+/PTX3+ yellow, (E) particular of 
E, F). Dendritic cells identified by SWC3a (green) were intensively positive for PTX3 (red; SWC3a+/PTX3+ yellow, (G) particular of G, H). 
Myofibroblasts identified by fibroblast-specific protein 1 (FSP1, red) co-localized with PTX3 (green; FSP1+/PTX3+ yellow, I, J). Nuclei were 
highlighted with TO-PRO 3 in blue. Original magnifications were x630. Quantification of CD163+/PTX3+ (K), SWC3a+/PTX3+ (L) and FSP1+/PTX3+ 
(M) cells demonstrated a statistically significant increase after 15 min of reperfusion compared to basal biopsies. Results were expressed as 
mean ± s.d. of infiltrating cells/high power field (hpf). *p<0.05 versus T0. 



 

www.aging-us.com 10924 AGING 

PTX3 and the terminal Complement complex, C5b-9, 

using an antibody directed against a C9-neo-epitope. 

We observed a significant co-localization of PTX3 and 

C5b-9 deposits (Figure 3A, 3B). The Complement 

terminal complex was localized at the peritubular level 

as well as within the peritubular capillaries along the 

endothelial cell layer, as we previously demonstrated 

[23, 28]. Since PTX3 can activate the Complement 

system through the classic and lectin pathways, we 

evaluated the deposition of C1q and MBL in renal 

parenchyma. Interestingly, C1q (Figure 3E, 3F) and 

MBL (Figure 3C, 3D) deposits were mainly found at the 

interstitial and capillary level (Figure 3C through 3F), 

as previously described [23] and colocalized with PTX3 

deposits. 

 

C1-inhibitor interferes with PTX3 binding on 

endothelial cells 

 

In our previous work [23] we demonstrated that C1-

inhibitor administration led to significant reduction in 

complement deposition, with decreased recruitment of 

infiltrating inflammatory cells and tubulointerstitial 

damage. Therefore, we examined the level of PTX3 

expression in rhC1-INH treated animals. We found that 

the infusion of C1-inhibitor reduced PTX3 deposits at 

peritubular capillaries and interstitial level after 15 min 

post-reperfusion (Figure 4A). 

 

Moreover, to support the hypothesis that the reduction of 

PTX3 deposits in rhC1-INH treated animals was 

associated with the inhibition of endothelial damage, we 

performed in vitro experiments and we evaluated rhC1-

INH and PTX3 binding on cultured EC under normal 

conditions or in the presence of cellular stress (Figure 

4B). FACS analysis showed that EC in normal condition 

did not bind both rhC1-INH and PTX3. In accordance 

with our previous study [26] we observed an increased 

cellular binding of rhC1-INH on H2O2-stimulated EC 

compared to basal condition. Moreover, in the absence 

of rhC1-INH, PTX3 could bind activated EC. 

Interestingly, when H2O2-activated EC were incubated 

with PTX3 and rhC1-INH, we observed that C1INH was 

able to protect EC upon blocking PTX3 binding. 

 

 
 

Figure 3. PTX3-mediated Complement activation in a pig model of I/R injury. Frozen pig kidney sections were examined by indirect 
immunofluorescence to investigate the co-localization (yellow staining) of C5b9 (green) and PTX3 (red) deposits (A, B). The co-localization 
between PTX3 (green) with MBL (red, C, D) and C1q (E, F) was investigated by immunofluorescence/confocal microscopy. PTX3 co-localized 
with MBL (C, D, yellow staining) and C1q (E, F, merge) at peri-glomerular (E) and peri-tubular (D, F) capillary sites. In confocal microscopy 
images nuclei were stained with TO-PRO 3 (blue). (G) Quantification of C5b9+/PTX3+, MBL+/PTX3+and C1q+/PTX3+cells compared to basal 
biopsies. Results were expressed as % ± s.d. of positive area /high power field (hpf). *p<0.05 versus T0. 
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DISCUSSION 
 

In this study we demonstrated PTX3 deposition in the 

early phase of renal I/R injury and its possible 

contribution in the development of EndMT. Interestingly, 

we found that PTX3-mediated Complement activation 

occurs mainly at vascular level, co-localizing with C1q 

and MBL, the recognition molecules of classical and 

lectin pathways of Complement cascade. 

 

I/R injury triggers a marked inflammatory response 

characterized by Complement activation, oxygen free 

radicals and proinflammatory cytokine production, 

resulting in activation of vascular endothelium and 

peripheral leucocytes [29, 30]. During I/R injury, 

Complement activation leads to complement 

components deposition on the surface membrane of 

damaged and dysfunctional EC, with the simultaneous 

generation of anaphylatoxins and the amplification of 

inflammatory process [31]. During inflammation, PTX3 

increases rapidly and could exert a central role in 

modulating endothelial response. Indeed, PTX3 has 

been indicated as a potential biomarker of vascular 

endothelial dysfunction in several diseases, including 

chronic kidney disease, preeclampsia and several 

vascular diseases [7, 16, 17, 32]. We also demonstrated 

that PTX3 is involved in other vascular complications 

such as the failure of arteriovenous fistula in 

hemodialysis patients [33]. These observations suggest 

that PTX3 could be a bridge between inflammatory 

response and endothelial dysfunction [34]. In line with 

these studies, we observed PTX3 deposits at endothelial 

level already after 15 min following reperfusion  

(Figure 2A, 2B). Our results also demonstrated that in

 

 

Figure 4. C1-inhibitor prevents PTX-3 binding on endothelial cells. (A) Frozen pig kidney sections were analyzed by indirect 
immunofluorescence to characterize the PTX3 source after 15 min of reperfusion in control and rhC1-INH treated pigs. PTX3 deposits were 
observed at the level of peritubular capillaries in control pigs. rhC1-INH infusion prevented PTX3 deposits on ECs. (B) FACS showed that ECs in 
basal condition did not bind both rhC1-INH and PTX3. Both PTX3 and rhC1-INH presented a significant binding on H2O2-activated ECs. When 
H2O2-activated EC were co-stimulated with PTX3 and rhC1-INH, rhC1INH prevented PTX3 binding. Results are representative of three 
independent experiments. 
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the early phase of I/R injury, PTX3 colocalized with 

myofibroblast marker, FSP-1 (Figure 2I, 2J) but not 

with alpha-SMA, marker expressed by activated 

myofibroblast (Figure 2C, 2D). Taken together, these 

data could suggest that endothelial dysfunction and 

EndMT process [35], observed in I/R animals [26], 

firstly occurred in EC expressing PTX3. 

 

The link between PTX3 and inflammatory cells is 

widely recognized. In this paper, we specifically 

focused on the inherent effects of PTX3 in interstitial 

infiltration of leucocytes that are a major source of 

PTX3 [36]. In particular, we found macrophages and 

dendritic cells, after 15 min following reperfusion, 

expressing higher levels of PTX3 (Figure 2E through 

2H). These data are in agreement with the increasing 

body of evidence suggesting a relevant role for innate 

immunity in mediating early damage in I/R injury [23]. 

An early activation of Complement in renal tissue after 

I/R injury leads to the generation of several 

inflammatory mediators that increase the recruitment of 

immune cells [21, 23, 37, 38]. Recent studies have 

identified PTX3 as one of the principal components of 

the network that orchestrates the inflammatory response 

triggered by I/R injury [39]. In different experimental 

models of I/R injury, PTX3 can exert dual opposite 

roles on specific tissues [40, 41]. Early production of 

PTX3 is associated with renal damage, since it induces 

early expression of endothelial adhesion molecule and 

chemokines that accelerate local maladaptive 

inflammatory response. 

 

On the contrary, the prolonged local production of 

PTX3 prevents excessive organ inflammation and 

dysfunction [41]. 

 

PTX3 is a Complement cascade modulator [9, 42]; this 

is in agreement with pleiotropic properties of PTX3 

indicating a dual role of PTX3 as a modulator or 

amplifier of the innate immune response [39]. Initially, 

PTX3 activates Complement by binding C1q and MBL 

[43]; however, early increased inflammation needs to be 

limited to the target area. Therefore, PTX3, by 

recruiting factor H or inhibiting angiogenesis, could 

also reduce the inflammatory response and complement 

activation preserving renal parenchyma from 

inflammatory damage [43]. 

 

Although Complement activation in I/R in rodents is 

mainly localized at tubular level [44], during  

the reperfusion phase, the endothelium is the primary  

target of different pro-inflammatory agents,  

including Complement mediators [2]. We previously 
demonstrated that in swine model of I/R injury as well 

as in DGF patients, the activation of the Complement 

system occurs in the early phase, on peritubular 

capillaries, within the interstitium, and on the 

glomerular endothelium [23]. Our data showed a clear 

co-localization of C5b-9 deposits on PTX3+EC after 15 

min following reperfusion (Figure 3A, 3B). Therefore, 

renal endothelium seems to be the prevalent site of 

PTX3-mediated Complement activation in the early 

phase of I/R injury in both preclinical and clinical 

settings. 

 

The interaction of pentraxins with C1q and its role in 

the activation of the classical Complement pathway 

are well described [45–47]. In the context of the  

innate immune responses, PTX3 can bind different 

Complement components and modulate Complement 

activation [43, 48]. PTX3 activates Complement by 

C1q binding [49]. Our results in animal model  

clearly demonstrated that PTX3 might mediate 

classical pathway activation by interacting with C1q 

(Figure 3E, 3F). Moreover, PTX3 also modulates  

the lectin pathway of the Complement, as shown  

in Figure 3C, 3D. MBL binds PTX3 via its collagen-

like domain [45] and MBL/PTX3 complexes recruit 

C1q and elicit C3 and C4 deposition on target cell 

surfaces. 

 

All together, these results suggest the central role of 

PTX3 in mediating kidney damage in I/R injury, that 

could have important implications for Complement-

directed therapies in renal I/R injury. 

 

In our previous study [26], we investigated the 

involvement of complement in mediating EC activation 

by using a recombinant form of C1-INH, a potent 

inhibitor of proteases of the classical and lectin 

complement pathways (C1r, C1 s and MASP2). In the 

same animal model, we showed (Figure 4A) that 

therapeutic inhibition of both pathways by rhC1INH 

reduced PTX3 deposits at peritubular capillaries and 

interstitial level after 15 min following reperfusion. 

These data confirmed with in vitro results on EC 

(Figure 4B), led us to hypothesize that the rhC1INH 

might protect damaged EC upon blocking PTX3 

binding. In literature, there are evidence about the 

binding of C1-INH to endothelial adhesion molecules, 

expressed on activated endothelium, called selectins, in 

particular P and E-selectins [50, 51]. This binding on 

EC can interfere with endothelial-leukocyte interaction 

during inflammation and it represents another important 

anti-inflammatory mechanism [50, 51]. Therefore, we 

hypothesized that rh-C1INH can bind activated EC and 

mediates local regulation of complement activation and 

inflammatory process. In our previous studies, we have 

demonstrated the involvement of complement in I/R 
injury and other immune mediated renal disease [38, 

52–54]. The mechanisms of Complement activation in 

this animal model could have important implications for 
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the interpretation of data expected in the human setting. 

To successfully develop therapeutic interventions 

targeted towards Complement-activation [36, 54], it is 

essential to establish the validity of pig data relative to 

what occurs in clinical circumstances. Since this 

research is limited to observational studies, further 

experiments are needed to delineate the interconnected 

mechanisms between PTX3 and Complement that might 

highlight new therapeutic strategies. From the results 

above, our data support the hypothesis that PTX3 might 

regulate multiple aspects of Complement-mediated I/R 

injury thereby representing a potential therapeutic 

target. 

 

MATERIALS AND METHODS 
 

Renal I/R injury pig model 

 

The animal model of renal I/R injury was developed as 

previously described [23]. After approval by the 

ethical committee of the Ministry of Health, 4-month-

old female Large White pigs (n=8, n=4 for group, 20 

kg)underwent experimental open surgical procedure 

under general anesthesia. The animals were fasted for 

24 hours before the induction of anesthesia. The 

electrocardiogram, heart rate, hemoglobin saturation of 

oxygen, respiratory gas composition, respiratory rate, 

tidal volume, airway pressure, systolic arterial blood 

pressure, and central venous pressure were 

continuously monitored and recorded automatically 

(Ohmeda Modulus CD; DatexOhmeda, Helsinki, 

Finland). The left renal artery and vein were isolated 

and a vessel loop was positioned around the renal 

artery with a right-angle clamp. A renal biopsy was 

performed before ischemia (T0). Then, the ischemic 

phase was induced (30 min) by pulling on the vessel 

loop. Multiple biopsies were then performed at 15, 30, 

and 60 min after reperfusion; animals were sacrificed 

24 hours after the surgical procedure. A portion of 

each biopsy specimen was immediately snap frozen in 

optimal cutting temperature (Tissuetek, Pittsburgh, 

PA) medium and stored in liquid nitrogen. Another 

portion was fixed in buffered formalin (4%) for 12 

hours and embedded in paraffin using standard 

procedures. 

 

Microscopy study 

 

Paraffin-embedded renal specimens from renal biopsies 

were used for conventional histological staining (H&E, 

periodic acid-Schiff). Images were acquired by Aperio 

ScanScope CS2 device (Aperio Technologies, Vista, 

CA, USA). Tubule-interstitial and glomerular lesions 

were evaluated using a qualitative analysis by two 

observers (C.D., M.R.) who were unaware of the origin 

of the slides. 

Antibodies 

 

The primary antibodies used in this study recognized 

the following antigens: PTX3 (MNB4: direct against 

PTX3 N-terminal domain, Exira Life Sciences In., 

Larsen, Switzerland);CD163 (monocytes/macrophages, 

US biological, Swampscott, MA); SWC3a (dendritic 

cells, [55] 74-22-15A, BD Biosciences); FSP1 

(fibroblast specific protein 1, Abcam, Cambridge, 

UK);alpha-smooth muscle actin (Santa Cruz 

Biotechnology Inc.; Santa Cruz, CA, USA); C1q (R9/2, 

AbDSerotec; Kidlington, United Kingdom); MBL (3E7: 

direct against MBL carbohydrate recognition domain, 

Hycult biotechnology, Uden, the Netherlands) and C9 

neo antigen (aE11, Hycult biotechnology). The cross 

reactivity was validated by pre-incubating the specific 

antibodies, before their use, with human peptides used 

to raise them. The pre-incubation abolished specific 

staining on swine tissue. 

 

Tissue immunofluorescence and confocal laser 

scanning microscopy 

 

The characterization and localization of PTX3 signal 

were investigated on frozen tissue included in OCT 

medium (Tissuetek). The slides were incubated with 5% 

rabbit serum for 1 hour at 37° C. Slides were then 

incubated for 1 hour at room temperature with specific 

antibodies. After three washes in PBS, slides were then 

incubated with the appropriate secondary 

antibodies(Alexa Flour 488 and 555, Molecular Probes, 

Eugene, OR). All sections were counterstained with 

TO-PRO-3 (Molecular Probes). Negative controls were 

prepared with irrelevant antibodies. The sections were 

analyzed using the Leica TCS SP2 (Leica, Wetzlar, 

Germany) confocal laser-scanning microscope. The 

number of infiltrating cells was measured in at least10 

high power (x630) fields/section by two independent 

observers blinded to the origin of the slides. The final 

counts were the mean of the two measures. In no case 

interobserver variability was higher than 20%. 

 

Cell culture and flow cytometry analysis 

 

Human umbilical vein endothelial cells (HUVEC, EC) 

were purchased from American Type Culture 

Collection (ATCC-LGC Standards, Sesto San 

Giovanni, Italy). EC were grown in their 

recommended media, EndoGro (Merck Millipore, 

Darmstadt, Germany). EC were plated at a density of 

10,000cells/cm2 and were stimulated with H2O2 

treatment (3%, 1 hour). Then basal and stimulated EC 

were washed twice with PBS and were removed with 
PBS-EDTA 2mM and trypsin 0.001×. Then cells were 

resuspended in PBS and were incubated respectively 

with PTX3 (recombinant human PTX3, Sigma-
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Aldrich, Merck, Germany) (1ug/ml) or/and with rhC1-

INH (Ruconest®, Pharming) (2.5ug/ml) for 60 min. 

After washing three times with PBS 1X, cells were 

resuspended in flow cytometry (FACS) buffer 

(phosphate-buffered saline, pH 7.2, 0.2% bovine 

serum albumin, and 0.02% sodium azide) and 

incubated with FCR blocking reagent (Miltenyi 

Biotec) for 10 min at room temperature. After 

blocking, ECs were incubated with rabbit anti-human 

C1-INH (provided by Prof. M. Daha, University of 

Leiden, 1//100 dilution) or/and with rat anti-PTX3 

(MNB4, Exira Life Sciences In., 1/20 dilution) at 

room temperature for 30 min and washed with the 

FACS buffer. Then, cells were incubated with goat 

anti-rabbit IgG PE (Molecular Probes, 1/100 dilution) 

or/with anti-rat IgG FITC (Molecular Probes, 1/100 

dilution) at room temperature for 30 min and washed 

three times. Cells were analyzed with FC500 

(Beckman Coulter, Brea, CA, USA) and Kaluza 

software. The area of positivity was determined by 

using an isotype-matched mAb, and, in total, 104 

events for each sample were acquired. Three 

independent experiments were performed. 

 

Statistical analysis 

 

Data are presented as mean ± standard deviation (SD) 

and are compared using analysis of variance or paired 

Student t-test, as appropriate. Differences were 

considered statistically significant when p values were 

less than 0.05. Data were analyzed using the Statview 

software package (5.0 version)(SAS Inc. Co., Cary, NC, 

USA). Graphs were displayed using GraphPad Prism 

Software 5. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. Modulation of early tubulointerstitial damage in a swine model of I/R injury. Compared with basal 

conditions, 30 min of warm ischemia followed by 15 min of reperfusion induced capillary congestion (A, black arrows, H&E staining) and focal 
vacuolization at the tubulointerstitial level (B, dotted arrows, periodic acid-Schiff (PAS) staining). Magnification 20X. 


