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W) Check for updates

SAUN: Stack attention U-Net for left ventricle segmentation from cardiac cine
magnetic resonance imaging

1. INTRODUCTION

Due to the excellent image resolution and soft-tissue contrast,
cardiac cine magnetic resonance imaging (MRI) is consid-
ered the reference standard for quantitative assessment of

1750

Xiaowu Sun

Division of Image Processing, Department of Radiology, Leiden University Medical Center, PO Box 9600, Leiden 2300 RC, The

Netherlands

Pankaj Garg
Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK

Sven Plein

Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds, Leeds,

UK

Rob J. van der Geest®

Division of Image Processing, Department of Radiology, Leiden University Medical Center, PO Box 9600, Leiden 2300 RC, The

Netherlands

(Received 7 September 2020; revised 17 January 2021; accepted for publication 19 January 2021;
published 4 March 2021)

Purpose: Quantification of left ventricular (LV) volume, ejection fraction and myocardial mass from
multi-slice multi-phase cine MRI requires accurate segmentation of the LV in many images. We pro-
pose a stack attention-based convolutional neural network (CNN) approach for fully automatic seg-
mentation from short-axis cine MR images.

Methods: To extract the relevant spatiotemporal image features, we introduce two kinds of stack
methods, spatial stack model and temporal stack model, combining the target image with its neigh-
boring images as the input of a CNN. A stack attention mechanism is proposed to weigh neighboring
image slices in order to extract the relevant features using the target image as a guide. Based on stack
attention and standard U-Net, a novel Stack Attention U-Net (SAUN) is proposed and trained to per-
form the semantic segmentation task. A loss function combining cross-entropy and Dice is used to
train SAUN. The performance of the proposed method was evaluated on an internal and a public
dataset using technical metrics including Dice, Hausdorff distance (HD), and mean contour distance
(MCD), as well as clinical parameters, including left ventricular ejection fraction (LVEF) and
myocardial mass (LVM). In addition, the results of SAUN were compared to previously presented
CNN methods, including U-Net and SegNet.

Results: The spatial stack attention model resulted in better segmentation results than the temporal
stack model. On the internal dataset comprising of 167 post-myocardial infarction patients and 57
healthy volunteers, our method achieved a mean Dice of 0.91, HD of 3.37 mm, and MCD of
1.08 mm. Evaluation on the publicly available ACDC dataset demonstrated good generalization per-
formance, yielding a Dice of 0.92, HD of 9.4 mm, and MCD of 0.74 mm on end-diastolic images,
and a Dice of 0.89, HD of 7.1 mm and MCD of 1.03 mm on end-systolic images. The Pearson corre-
lation coefficient of LVEF and LVM between automatically and manually derived results were higher
than 0.98 in both datasets.

Conclusion: We developed a CNN with a stack attention mechanism to automatically segment the
LV chamber and myocardium from the multi-slice short-axis cine MRI. The experimental results
demonstrate that the proposed approach exceeds existing state-of-the-art segmentation methods and
verify its potential clinical applicability. © 2021 The Authors. Medical Physics published by Wiley
Periodicals LLC on behalf of American Association of Physicists in Medicine. [https://doi.org/
10.1002/mp.14752]
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cardiac size and function."> Typically, imaging is performed

in short-axis orientation, and multiple slices and multiple

© 2021 The Authors. Medical Physics published by Wiley Periodicals LLC

on behalf of American Association of Physicists in Medicine. This is an

- open access article under the terms of the Creative Commons Attribution-

Med. Phys. 48 (4), April 2021  0094-2405/2021/48(4)/1750/14 NonCommercial-NoDerivs License, which permits use and distribution in
any medium, provided the original work is properly cited, the use is non-

commercial and no modifications or adaptations are made.

phases are acquired to image the complete left ventricle (LV)
over the cardiac cycle. Quantification requires segmentation
of many images. Traditional manual segmentation is labour-
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intensive and relies on experienced experts. In recent years,
the convolution neural network (CNN)-based approaches
have achieved immense success in LV segmentation, and
many fully automatic segmentation algorithms based on
CNN have been proposed. U-Net® and fully convolution net-
work (FCN)* are the typical CNN models used in medical
image analysis due to their capability of multi-scale feature
extraction and fusion. Bai et al.” used a training set of 4875
subjects (93500 annotated image slices) to build a basic FCN
for segmentation of the LV in short-axis MRI and used a
fine-tuning approach to enable segmentation in other data-
sets. This approach required a massive set of images and also
labour-intensive manual annotation effort. Isensee et al.® inte-
grated the segmentation and classification task into an
ensemble U-Net in which geometrical features extracted from
the segmentation results were used for pathology classifica-
tion. Recently, several unsupervised and self-learning strate-
gies have been proposed, most of these methods use multiple
branches to explore additional information and then add these
branches to the segmentation backbone.” Qin et al.” proposed
a joint model with two branches: one branch introduced an
unsupervised Siamese style spatial transformer network to
extract motion features, and the other branch was based on
the fully convolutional network for segmentation.

A limitation of previous work is that most of the proposed
deep learning methods extract image features from a single
2D image only, which implies that potentially relevant spa-
tiotemporal information that can be derived from neighboring
slices and phases is not being exploited.® In recent literature,
the classical optical flow (OF) method®!! has been intro-
duced to extract temporal coherence among neighboring
phases. For example, Zhao et al.'” coupled the OF from the
specified resolution scale to explore the motion features. Yan
et al.'"' computed the OF features between two neighboring
phases and integrated those features into a U-Net. However,
the OF adopts an iterative method, which is time-consuming.
Recently some other deep learning methods have been pro-
posed to detect motion features. Zhang et al.'> applied an
LSTM model to incorporate local motion information by
regarding several neighboring frames as input. Desai et al."”
constructed a multi-channel architecture by stacking several
neighboring frames to detect the spatiotemporal features.
However, which architecture and input depth are optimal for
LV segmentation performance in cine MRI is not fully
explored. Hence, we proposed two image stack models to
build a multi-channel architecture. One method is called the
spatial stack model, combining the target image which is
introduced for the segmentation and its neighboring slices
from the same cardiac phase. The other method is called a
temporal stack, containing the target image and its neighbor-
ing phases at the same slice level. Then a stack attention
model is proposed to obtain weighted potential cardiac infor-
mation from the stack. Traditional local image feature extrac-
tion, visual saliency detection, and sliding window methods
can all be considered as an attention mechanism. However, in
a CNN, the attention module is usually an additional brief
neural network that can recognize the important parts from
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the images or assign different weights to different parts of the
input. With the development of deep learning, building a neu-
ral network with an attention mechanism has been an active
topic of research in computer vision.'*'® Because a neural
network can learn the attention mechanism autonomously,
the inclusion of an attention mechanism can help the network
to understand the image better. Due to its excellent perfor-
mance, attention mechanism is currently widely used in many
fields such as machine translation, speech recognition, image
caption, and computer vision.

To improve the accuracy of LV segmentation, our work
mainly focuses on the following aspects:

1. We introduce two stack models (spatial stack and tem-
poral stack) as a quasi-volumetric architecture to extend
the depth of the input.

2. We propose a stack attention mechanism in which the
target image serves as a guide to weigh the features
from multiple channels and select the spatiotemporal
information.

3. A novel Stack Attention U-Net (SAUN) based on the
stack attention and basic U-Net is proposed for auto-
matic LV segmentation.

2. MATERIALS AND METHODS

Different from natural images, MR images only have a
single channel (grayscale) and have more complex texture
features. Meanwhile, the shape, size and position of the LV
only varies slightly between neighboring slices both in the
spatial and temporal domain. To address those deformations
and contextual information, we will first illustrate how to
construct a volumetric architecture using the spatial stack
model and temporal stack model, respectively, and then inte-
grate the features from the stack model with a novel stack
attention mechanism. Finally, we propose the SAUN model
based on stack attention and basic U-Net for segmentation.

2.A. Stack model

Figure 1 illustrates the construction of a stack in a case
having 30 cardiac phases and 12 slices. Spatial stack
SSM ={S154,**,8157,-*S1510} ~and  temporal  stack
TSM ={S127,-*,S157,---S137} can be used to generate an
example image stack of dimension N =7 as the input which
produces the segmentation result for the central slice S5 ;.

2.A.1. Spatial stack model (SSM)

We propose a novel method named spatial stack model to
combine the target image with its neighboring spatial slices.
The stack model for the central slice S,; can be described as
the following, where S;;(i=1,2,---,Tj=1,2,---,F) repre-
sents the image from the ith phase jth slice, T and F is the
number of phases and slices in the dataset, respectively, and
N is the number of the images in the stack.
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Fic. 1. Example of the construction of a spatial and temporal stack of dimension 7. Slice Sjs7 is the target slice; spatial stack model uses slices
{S15_4,S15,5, -~-,315,9,Sl5,10} from the same phase to build the stack model, while temporal stack model introduces slices {S1277,S|3y7, ---S17,7,Slsy7} from the same
slice level to construct another kind of stack model. S;; is the image from the ith phase jth slice. [Color figure can be viewed at wileyonlinelibrary.com]

SSM(Sp,N)={Sijli=p.j=t—(N—1)/2,---,t+(N—1)/2}
if j<l, j=1
if j>F, j=F

and

2.A.2. Temporal stack model (TSM)

Similar to the spatial stack, the temporal stack model can
be defined as follows.

TSM(S,;,N) = {Sijli=p—(N—1)/2,-,p+(N—1)/2,j =1}
if i<l, i=i+T
if i>T,

and
i=i—T

The original MR image is a grayscale image with one
channel. The image represented by the stack model can be
regarded as a multi-channel image with abundant semantic
features. It is important to note that, to our intuition, features

feature maps from central slice

feature maps from stack

derived from images closer (in space or time) to the target
image contribute more in segmenting the object in the target
slice. Hence, in order to filter out the background noise and
extract relevant image information, we further propose the
stack attention model.

2.B. Stack attention model

In this part, we introduce the target image as a guide to
provide the channel information to fuse the neighboring
images into the stack.

In detail, as shown in Fig. 2, we first perform a 3 X 3 con-
volution with ReLu non-linearity function on the feature
maps from the central slice to ensure the number of the fea-
ture maps generated from central slice and stack is the same.
Then the global spatial information is extracted and squeezed
to a vector P=(py,ps,-+,pc) through the global average
pooling, which can be described as the following

» Conv3x3 _, Global Pooling - %

! weighted feature maps

Convlxl

v

Convlxl1

FiG. 2. Fig.Stack attention module structure.
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equation where W x L is the size of the feature map,f, is the
feature map of the cth channel and C is the number of chan-
nels which is equal to the number of kernels in the convolu-

tion 1ayer. 1
1, 1,2,---,C).
Pc= W x [lzljz fc J) ( )

Two different 1 X 1 convolutions K| and K, are applied
to further compute the weights of each channel as follows:

s' =o(c(P*K1)*K,)-s.

where * is the convolution operation, ¢ is ReLu activation
function and s is the feature map generated from the stack
model. The first convolution K; reduces the dimension of
vector P from C to C/2, and then convolution K, resizes the
length of vector P into C again. However, the dot production
with the weights which range from 0 to 1 repeatedly will
degrade the feature values in deep layers, which may lead to
negative results. To avoid this problem, finally the weighted
stack feature maps are added with the original stack feature
maps, which means

attS,(i,j) = (1 + P.)f.(i,j) (c=1,2,---C)

where attS, is the cth channel of the attention stack. When P,
approaches to 0, attS.(i,j) will approximate to the original
features.

2.C. SAUN network architecture

Based on the mentioned stack attention and traditional U-
Net, we propose the SAUN for the segmentation task. As
shown in Fig. 3, there are two inputs in SAUN, one is the
central slice which is the target, and the other one is called
the initial stack (either spatial or temporal stack) which is
constructed according to Stack(S,N) proposed above. To
ensure that the central slice and the stack are at the same fea-
ture level, the convolution operation is applied to both of
them at the same time.

HH HE
HH
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During training SAUN, we aim to optimize the follow-
ing loss function, which contains the generalized Dice loss
and cross-entropy loss. The loss function can be formu-

lated as.
Zl 1 Z_]—]gljplj
Zz 1Wl2] lgt]+py

loss=1— - 25:127:1&']‘108(171‘,')
where the second term is the weighted Dice loss for multiple
cardiac structure segmentation, and the third term is cross-en-
tropy loss based on pixel-wise classification. Parameters g,p
stand for ground truth and prediction results, respectively, [
denotes three labels (background, chamber, and myocar-
dium), n is the number of the pixels and w; is the weight of
each label, which were set to w=[0.1,0.2,0.7].

2.D. Datasets
2.D.1. Leeds university dataset (LUD)

One of the datasets in this work is from the University of
Leeds, UK. This dataset contains 168 post-myocardial infarction
patients and 57 healthy volunteers. All subjects were scanned on
a Philips Ingenia 1.5T MRI system using a slice thickness of
5.0 mm (or sometimes 8.0 mm) and slice gap of 2 mm. The
number of slices ranged from 10 to 20, and 30 phases were
reconstructed to cover a complete cardiac cycle. The in-plane
image resolution varied from 0.78 x 0.78 mm® to
1.18 x 1.18 mm? and the range of field of view (FOV) from
280 x 280 mm?” to 470 X 470 mm®. Expert annotations were
derived semi-automatically in all cardiac phases and slices by
one observer (RG) with 20 yr of experience in cardiac MRI
using Mass software (Version V2017-EXP; Leiden University
Medical Center, Leiden, the Netherlands), resulting in 6703
annotated images. The subjects’ exams were randomly split into
three parts with 141, 15, and 69 for training, validation and test,
respectively.

central slice

SSM or TSM

HA
11

TR

— conv 3x3, ReLu
——» max pooling
— up-conv
crop and copy
conv 1x1, ReLu

stack attention

Fic. 3. Segmentation model structure based on Stack Attention and U-Net (SAUN). [Color figure can be viewed at wileyonlinelibrary.com]
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2.D.2. MICCAI 2017 Automated cardiac diagnosis
challenge (ACDC 2017)

The MICCAI 2017 Automated Cardiac Diagnosis Chal-
lenge (ACDC 2017) was organized by the University Hospital
of Dijon and the data used in this challenge has become pub-
licly available."” The dataset contains short-axis cine-MRI
exams of 100 subjects of five patient categories (post-myocar-
dial infarction, dilated cardiomyopathy, hypertrophic car-
diomyopathy, abnormal right ventricle, and healthy subjects).
The subjects were scanned on two different scanners (1.5T
Siemens Area and 3.0T Siemens Trio Tim) using a typical
slice thickness of 5.0 mm (range 5-8 mm), an interslice gap
of 5 mm (range 5-10 mm) and pixel spacing ranging from
1.37 to 1.68 mm. For all exams, the manual ground truth
annotation was generated by a single clinical expert including
contours of the LV cavity and myocardium and the right ven-
tricular cavity in the end-diastolic (ED) and end-systolic (ES)
images. In this work, the annotation of the right ventricular
cavity was ignored and considered as background in the
ground truth. The 100 subjects were randomly divided into
five folders, each folder containing five patient categories
and each category containing four subjects. We randomly
selected three folders to train the network, and the other two
folders were chosen for validation and test, respectively.

2.E. Data preprocessing and augmentation

Within the available dataset, the images vary in intensity
range, FOV and pixel spacing. The field of view in the LUD
data varies from 280 to 470 mm, while the heart as the object of
interest typically measures 60 mm, occupying only a small pro-
portion of the whole image. For example, in our LUD dataset,
the average proportion occupied by the object relative to the full
image is around 2.2%. Hence, several image preprocessing
methods were performed to standardize those parameters.

We firstly resample the original images into a common
pixel spacing of 1.5 mm, and then the image intensities were
normalized according to the following formula where P,
and P, is the minimum and maximum value of 5% and
95% percentile of image P.

P i P min
P max —-P min
To solve the label imbalance problem, the YOLO mode

is applied to localize the region-of-interest (ROI). As illus-
trated in Fig. 4 each 2D original image is considered as an

p:

118
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input, and then YOLO extracts the features from the input to
generate the bounding boxes. Lastly, the images are cropped
or zero-padded to a uniform matrix size of 128 x 128, cen-
tered at each bounding box. Additionally, in order to train a
well generalizing network with limited data, data augmenta-
tion was employed, including horizontal and vertical clip,
image transpose and elastic deformation.

2.F. Evaluation metrics

For quantitative assessment, two aspects, including seg-
mentation and clinical parameter estimation, are proposed to
compare the performance among different segmentation
methods. All metrics are evaluated on a per-patient basis.

2.F.1. Segmentation accuracy assessment metrics

Dice is introduced to evaluate the overlap between the
automatic and manual segmentation mask. In addition, the
distance metrics, including Mean Contour Distance (MCD)
and Hausdorff Distance (HD) are employed as the segmenta-
tion metrics.

MCD and HD are defined as:
1 1
MCD = d(p,Cp)+—— d(q,Cx
2|CA|[JEZCA (p ) 2|CB|CI€ZCB ( )

HD = max (max d(p,Cg), max d(gq,Cy)).
peCy q€ECp
where C, and Cg are the automatic contour and manual con-
tour, respectively, d(p,C) = igd(p,q) denotes the minimum
qe

distance from point p to contour C.

2.F.2. Clinical metrics

Clinical parameters such as LV volume, LV ejection frac-
tion (LVEF), and myocardial mass (LVM) are another essen-
tial aspect of assessing the quality of automatic segmentation.
The volume is computed by summation of the number of pix-
els corresponding to the LV or myocardium binary mask,
multiplied by the pixel dimension. Myocardial mass is calcu-
lated by the following formula:

LVM = Myo — Volume x 1.05(gram/cm?).
and LVEEF is defined as:

EDV — ESV
——————x 100%

LVEF =

Original

S el ; ¢ g X
Bounding Box

Localization Result

FiG. 4. An example of localization preprocess. In the image, at the left, the red box is at the center of the image initially, but it didn’t detect the heart accurately,
but after applying the YOLO model, the position of the object can be extracted precisely. Lastly, it is cropped into a fixed size, centered at the red bounding box.

[Color figure can be viewed at wileyonlinelibrary.com]
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where EDV and ESV are the LV volumes at the end-diastolic
and end-systolic phases, respectively.

2.F.3. Statistical analysis

Pearson correlation coefficient (PCC), mean of differences
(Bias) and limits of agreement (LOA, 1.96 X standard devia-
tion) are assessed to describe the differences and the agreement
between automatically and manually derived segmentation. In
addition, Bland-Altman is used to further describe the results.

To investigate the statistical significance of the differences
between different segmentation models, the Wilcoxon
signed-rank test is used to compare the difference between
paired Dice, HD and MCD without assuming the underlying
distribution, P < 0.05 indicates a significant difference.

3. EXPERIMENTS AND RESULTS

We trained and evaluated our method on both LUD and
ACDC datasets. The network is firstly trained on LUD from
scratch, and then we performed transfer learning to train the
network on ACDC. All the experiments were executed on a
machine equipped with an NVIDIA Quadro RTX 6000 GPU
with 24 GB internal memory. The networks were imple-
mented using Keras with the following parameters: Adam
optimizer, batch size as 50, learning rate as 107>, 150 epochs,
as well as early stopping, to avoid overtraining the network.

First, we explored and determined the optimal value of
parameter N in the spatial and temporal stack. Second, we com-
pared the results of three classical segmentation networks,

TasLE I. Dice of segmentation results generated from different multi-channel
architectures with various values of parameter n at lud using saun method. N
is the dimension parameter.

Chamber Myocardium
Parameters SSM TSM SSM TSM
N=3 0.95 (0.05) 0.93 (0.07) 0.86 (0.07) 0.84 (0.11)
N=5 0.93 (0.11) 0.92 (0.01) 0.84 (0.14) 0.83 (0.13)
N=7 0.93 (0.12) 0.92 (0.10) 0.84 (0.13) 0.81 (0.14)
N=9 0.92 (0.13) 0.92 (0.11) 0.82 (0.13) 0.82 (0.12)
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U-Net, SegNet,”” and 3D U-Net, with SAUN based on Dice,
MCD, HD, LVEF and LVM on both LUD and ACDC datasets.
Meanwhile, to further explore the impact of using YOLO for
localization and spatial stack for extracting potential features on
the segmentation performance, another two networks named
YOLO + U-Net (YUN) and SSM + U-Net (SUN) were
employed. The cropped images with a uniform matrix size of
128 x 128, centered to the original image, were used as the
input of U-Net and SegNet. The input of YUN is presented after
localization, and input of SUN and SAUN are preprocessed
with localization and SSM. For the input of 3D U-Net, for both
datasets, all the 2D slices in the ED or ES phase together are
stacked to construct a 3D image. Then, all 3D images were
resampled into the same resolution of 2.5 X 2.5 x 5 mm’ and
the signal intensity normalized to (0,1). Lastly, all 3D images
were cropped or padded to a size of 112 X 112 X 24 as the
input of the 3D U-Net. For the post-processing, the predictions
were resampled to their original resolution. All of the networks
are assessed using the defined evaluation metrics for different
levels of the LV, including apex (25% slices in the apical region
and beyond), middle (50% mid slices) and base (25% slices in
the basal region and beyond). All of the best performance in the
tables are shown in bold case.

3.A. Multi-Channel Architecture

To analyze the impact of the two multi-channel architec-
tures (SSM and TSM) of different dimensions on the seg-
mentation results, we trained SAUN using SSM and TSM
with different dimension parameter N as input. The results
presented in Table I illustrate the segmentation performance
for LV chamber and myocardium.

Results of multi-channel architecture showed four TSM ver-
sions (N = 3,5,79) achieved stable segmentation performance
for LV chamber and myocardium with the best Dice of 0.93
and 0.84, respectively. SSM, however, did work significantly
better than TSM with best performance Dice of 0.95 and 0.86
for chamber and myocardium with N set to 3. Hence, SSM with
dimension N = 3 is regarded as the optimal input of SAUN.

3.B. Results on LUD

The performance of the SAUN method was evaluated in
the LUD testing dataset (69 subjects, 1611 2D images). We

TasLE II. Comparison of the mean and standard deviation (in parenthesis) of Dice metric on LUD for LV chamber and LV myocardium predicted by different
networks. (1)U-Net:basic U-Net without localization, (2)YUN: combine YOLO for localization and basic U-Net, (3)SUN: SSM with N = 3 as the input of basic
U-Net, (4)SegNet: basic SegNet without localization, (5) SAUN: SSM with N = 3 as the input of proposed SAUN network.

Apex Middle Base Average
Networks chamber myocardium chamber myocardium chamber myocardium chamber myocardium
U-Net 0.821 (0.210) 0.692 (0.220) 0.939 (0.040) 0.817 (0.086) 0.924 (0.067) 0.800 (0.105) 0.922 (0.120) 0.799 (0.140)
YUN 0.897 (0.100) 0.794 (0.110) 0.945 (0.036) 0.840 (0.069) 0.909 (0.066) 0.793 (0.110) 0.932 (0.066) 0.825 (0.096)
SUN 0.849 (0.180) 0.752 (0.170) 0.949 (0.035) 0.867 (0.058) 0.938 (0.056) 0.839 (0.096) 0.935 (0.100) 0.848 (0.110)
SegNet 0.794 (0.200) 0.654 (0.200) 0.924 (0.039) 0.812 (0.073) 0.919 (0.062) 0.786 (0.107) 0.908 (0.110) 0.788 (0.130)
SAUN 0.911 (0.080) 0.823 (0.080) 0.952 (0.034) 0.876 (0.042) 0.941 (0.046) 0.847 (0.069) 0.945 (0.053) 0.864 (0.066)
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& o § l@ g @ E TaBLE IV. Results of clinical evaluation metrics from all networks against the
s .2 8 S S 3S S s reference. (1) U-Net:basic U-Net without localization, (2) YUN: combine
§ E S5 F% YOLO for localization and basic U-Net, (3) SUN: SSM with N = 3 as the
% g S I B input of basic U-Net, (4) SegNet: basic SegNet without localization, (5)
2 g g SAUN: SSM with N = 3 as the input of proposed SAUN network.
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EZ N ! eters.
=5 2 TR AR
2 g 3 Tables II and III, respectively, show the Dice and distance
3 ; = SN} metrics (HD and MCD) comparing manual with automatic
% E Blecsesee segmentation. It can be observed that the networks with
g0 - = 5 5 & E g localization perform better than those without localization,
8 = é -t which confirms that localization can filter out the data noise
g‘g EE;‘ P effectively for the label unbalanced data. Moreover, the
v . .

a g o o 2 E f E SAUN method achieved the best segmentation results com-
S g T|looazxgs pared to the other networks on Dice, HD, and MCD. The
23 S329%5 results for the individual LV levels further indicate that the
= SAUN model provides much more precise feature maps, lead-
59 235433 ing to the best evaluation metric scores for both LV chamber
29 Bl=Seee and myocardium at all LV levels.
2] . . . . .
28y g| = § § § E E The PCC, bias and LOA of the clinical evaluation metrics

S 2 AR L S . . .
%’g % —‘g - ~ comparing automated segmentation results with results from
= ; E 3 _ o~ = = manual segmentation are reported in Table IV and Fig. 5. For
~ — 0 ®
g S 2 = o § E AR both LVEF and LVM assessment, the proposed SAUN network
§ ]9 T 5 § u{ g = achieves the highest PCC, the smallest bias and LOA. Table V
§ g 2 RN R summarizes the significance test results between SAUN and
= .9 & =
< g % ;ct the other state-of-the-art methods on LUD, all the P-values are
.§§ 5 22028 smaller than 0.05, which confirms the significantly better
ERel? Bl2ede results of SAUN compared to the other methods.

2 .8 . . .
E20e = % 2 § g § Figure 6 illustrates examples of segmentation results
L =2 = o) [ R . .
EE o é < obtained by automated SAUN method and conventional man-
° o
b Z (ﬁ %’ —~ o~ ual method from randomly selected cases from the test data.
==z 2F =23 It shows that the automated results are highly similar to the
522 glecdcd
£ 22 T|os ~ x© = manual reference at both ED and ES phases.
252 £ %253

Z i o0 N < N
o T wn

wn

= > " 3.C. Results on ACDC
E<S = o
=g % z 23 Z z %D Z We also compared our method with other approaches on
£330 2125285 the public ACDC 2017 dataset, which includes short-axis
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FiG. 5. Correlation and Bland-Altman plots comparing left ventricular (LV) ejection fraction [Figs. 5(a) and 5(b)] and LV mass [Figs. 5(c) and 5(d)] derived
from either the SAUN method and manual segmentation on LUD. [Color figure can be viewed at wileyonlinelibrary.com]

TaBLE V. Wilcoxon signed-rank test-based significance test results on LUD dataset. (1)W(SAUN,U-Net): Wilcoxon signed-rank test’s P-value between SAUN
and U-Net, (2)W(SAUN,YUN): Wilcoxon signed-rank test’s P-value between SAUN and YUN(YOLO + U-Net), (3)W(SAUN,SUN): Wilcoxon signed-rank
test’s P-value between SAUN and SUN(SSM stack + U-Net ), (4)W(SAUN, SegNet):Wilcoxon signed-rank test’s P-value between SAUN and SegNet.

Chamber Myocardium
Dice HD MCD Dice HD MCD
W(SAUN,U-Net) 1.36E-05 7.09E-12 0.0129 2.86E-09 1.55E-12 6.22E-04
W(SAUN,YUN) 5.21E-10 5.27E-09 1.37E-08 2.09E-12 1.45E-11 3.00E-10
W(SAUN,SUN) 1.81E-10 6.70E-03 4.87E-07 4.10E-09 2.56E-04 3.24E-07
W(SAUN, SegNet) 1.07E-08 1.36E-12 6.56E-07 1.29E-11 7.99E-13 1.19E-06

1.36E-05 means 1.36 x 107,

Cine MR exams of 100 patients with manual contours. As in
this dataset, manual contours are only defined in the ED and
ES phases, all results are based on those two phases only.
Table VI summarizes the segmentation results for the
ACDC dataset. The best segmentation results on both ED
and ES phases are obtained using the SAUN method. In Table

Medical Physics, 48 (4), April 2021

VII and Fig. 7, the PCC, bias and LOA are presented and
illustrated for the comparison of the clinical parameters. It
shows that the prediction results are highly correlated to the
reference with a PCC of 0.985 for LVEF and 0.981 for LVM.
The Bland-Altman analysis illustrated in Fig. 7 reveals a bias
for LVEF and LVM, which is close to zero, while the LOA is
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Fi. 6. Examples of the segmentation results from the SAUN method. The left two columns show end-diastolic images, and the right two columns show images
of end-systolic phase. For each phase, images at the apex, middle and base levels are shown. [Color figure can be viewed at wileyonlinelibrary.com]

less than 5% for LVEF and less than 6 g for LVM. Table VIII
reports almost all the P-values between SAUN and U-Net,
SegNet and 3D U-Net on ACDC dataset are smaller than
0.05, which confirms there is a significant improvement of
SAUN compared to the other state-of-the-art methods. Fig-
ure 8 shows the example segmentation results of two ran-
domly selected cases from the test set.

4. DISCUSSION

To explore more spatiotemporal information for automatic
cine MRI segmentation, we proposed two stack models to
construct a multi-channel architecture, then introduced a seg-
mentation network based on a stack attention mechanism to
weight the feature maps from different channels. The method
was evaluated on an internal and a public dataset demonstrat-
ing competitive results compared other typical CNN net-
works.

4.A. Multi-channel architecture comparison

Our results demonstrate that, when the spatial stack was
used to combine the target slice and its neighboring slices
from the same phase together as the input of the network, the
performance improved in the test data. The segmentation
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results were found to be sensitive to the dimension of the spa-
tial stack model. For both spatial and temporal stack the opti-
mal value for the dimension parameter N was found to be 3.
However, the use of temporal stack had a negligible impact
on the cardiac segmentation results. It also can be observed
that all of the evaluation metrics from the spatial stack and
SAUN are much better than those predicted from basic U-Net
and SegNet whose input is a single 2D image, which illus-
trates the spatial stack model can provide more useful infor-
mation than a single MRI slice and temporal stack. The
images in the temporal stack are similar to each other and
provided comparable features for the network. Whereas, the
images from the spatial stack vary obviously with the heart
region, and when combining the target slice and its neighbor-
ing spatial slices together as the input of the network, the spa-
tial stack contains more information about position, size and
shape of the heart. However, including more slices in the
stack does not necessarily result in better segmentation
results. This was clearly demonstrated by the multi-channel
architecture comparison experiment, which showed that when
the parameter N was set to a value higher than 3, which
implies introducing more spatiotemporal information, the
performance degraded. In addition, the limited difference
between the stack network and 2D network is only at the first
convolution layer. The stack network regards a (W x L x N)
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2 3 f~ g @ £ o @ TaBLE VII. Results of clinical evaluation metrics from all networks against

Z Z [a) 5 S S S g S the reference. (1) U-Net:basic U-Net without localization, (2) YUN: combine

2 Z % 2L sz YOLO for localization and basic U-Net, (3) SUN: SSM with N = 3 as the

£ RERS SR I input of basic U-Net, (4) SegNet: basic SegNet without localization, (5)3D

8z U-Net: basic 3D U-Net without localization (6) SAUN: SSM with N = 3 as

= f S o~ a e the input of proposed SAUN network.
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FiG. 7. Correlation and Bland-Altman plots comparing left ventricular (LV) ejection fraction [Figs. 7(a) and 7(b)] and LV mass [Figs. 7(c) and 7(d)] derived
from either the SAUN method and manual segmentation ACDC dataset. [Color figure can be viewed at wileyonlinelibrary.com]

and the others from the neighboring slices should be con-
sidered as the additional information. In the stack attention
mechanism, the target slice serves as a guideline to keep
the primary features, and the global pooling is used to
compute the weights of different channels to select the fea-
ture maps generated from the target slice. Therefore, the
stack attention can not only reserve the primary feature
information but also balance the importance of different
channels to pick up the more important maps. Figure 9
illustrates the process of SAUN method extracting the fea-
ture maps from a random sample taken from the LUD
dataset. The first row illustrates the features for the LV
chamber, and the second row is the features for the myo-
cardium. The first column is one test case, the last column
is the ground truth segmentation, and the middle four col-
umns represent feature maps from the low, middle, high
level and final layer.

It can be observed from the performance of Dice on LUD
that the segmentation predicted by SAUN for the apical level
is much better than the other approaches. When comparing

Medical Physics, 48 (4), April 2021

the results from SUN and SAUN, it can be found that the
LOA from the SAUN is further improved. The clinical evalu-
ation results on ACDC illustrate that the PCC, bias and the
limit of agreement computed by SUN is inferior compared to
the other networks. The evaluations predicted by SAUN
achieve best with the attention mechanism. The Bland-Alt-
man plots show almost all of the subjects from LUD and
ACDC distribute between the upper bound and lower bound,
which confirms that in the clinical measures the automated
method is almost unbiased to the manual results. The experi-
ments demonstrate that the proposed stack attention mecha-
nism performs well in filtering out data noise during
integrating neighboring spatial information, weighting, and
confusing the feature maps of various levels as well.

Our proposed method has several limitations. It ignores
the right ventricle (RV) and only provided segmentation for
the left ventricle and myocardium. If more annotation infor-
mation about the RV is provided for the network, the segmen-
tation results could become more accurate. In the current
implementation, we separately trained the localization and
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TasLE VIII. Wilcoxon signed-rank test-based significance test results on acdc dataset. (1)w(saun,u-net): wilcoxon signed-rank test’s P-value between saun and u-
net, (2)w(saun,yun): wilcoxon signed-rank test’s P-value between saun and yun(yolo + u-net), (3)w(saun,sun): wilcoxon signed-rank test’s P-value between saun
and sun(ssm stack + u-net ), (4)w(saun,segnet):wilcoxon signed-rank test’s P-value between saun and segnet, (5)w(saun,3d u-net):wilcoxon signed-rank test’s P-

value between saun and 3d u-net.

ED ES
Chamber Myocardium Chamber Myocardium

Dice HD MCD Dice HD MCD Dice HD MCD Dice HD MCD
W(SAUN,U-Net) 3.65E-03 0.475 5.58E-03 3.62E-05 0.189 1.34E-05 2.10E-04 1.02E-03 7.08E-04 3.81E-06 3.22E-04 7.08E-04
W(SAUN,YUN) 2.61E-04 0.0241 3.28E-03 1.34E-04 7.30E-03 3.22E-04 6.48E-03 1.34E-05 8.31E-03 3.12E-04 6.29E-05 3.65E-03
W(SAUN,SUN)  1.49E-06 0.0583 2.10E-04 5.72E-06 0.0441 1.33E-06 0.0215 0.0355 1.43E-03 9.54E-06 0.1893 1.91E-06
W(SAUN, 3.97E-05 4.22E-03 191E-06 291E-06 3.65E-03 1.19E-05 9.54E-06 1.68E-04 1.69E-03 7.01E-05 1.05E-04 3.95E-04
SegNet)
W(SAUN,3D 1.89E-04 0.0124 6.81E-04 8.86E-05 2.20E-03 1.40E-04 0.0407 0.232 5.93E-04 1.03E-04 0.0479 1.63E-04
U-Net)
3.65E-03 means 3.65 x 107

ED-Manual ED-Auto ES-Manual ES-Auto

Apex

Base

FiG. 8. Examples of segmentation from the SAUN method from two randomly selected cases from the ACDC dataset. The left two columns show end-diastolic
images, and the right two columns images of end-systolic phase. For each phase, images at the apex, middle and base levels are shown. [Color figure can be

viewed at wileyonlinelibrary.com]

segmentation networks. As for both tasks, the MR image fea-

tures need to be explored; integration of both tasks into a sin-

gle network would result in improved efficiency of the

segmentation algorithm.

Medical Physics, 48 (4), April 2021

5. CONCLUSION

In this work, we proposed a Stack Attention U-Net-based

method for automatic LV segmentation in short-axis cine
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Fi1G. 9. Feature map visualization of SAUN. There are 42 convolutional layers in SAUN, we did the visualization for each convolutional layer. The first and last
columns are the original image and the ground truth, the other four columns represent the feature maps from low, middle, high levels (from 3rd, 18th, 32nd convo-
lutional layer) and the output of the final layer. [Color figure can be viewed at wileyonlinelibrary.com]

MRI and confirmed its benefits in integrating more informa-
tion from neighboring spatial images by employing an atten-
tion mechanism to weight each channel of the feature maps.
The experimental results demonstrate that the proposed
approach exceeds existing state-of-the-art segmentation meth-
ods and verify its potential clinical applicability.
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