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A B S T R A C T   

Objective: Early identification of emergency department (ED) patients who need hospitalization is essential for 
quality of care and patient safety. We aimed to compare machine learning (ML) models predicting the hospi
talization of ED patients and conventional regression techniques at three points in time after ED registration. 
Methods: We analyzed consecutive ED patients of three hospitals using the Netherlands Emergency Department 
Evaluation Database (NEED). We developed prediction models for hospitalization using an increasing number of 
data available at triage, ~30 min (including vital signs) and ~2 h (including laboratory tests) after ED regis
tration, using ML (random forest, gradient boosted decision trees, deep neural networks) and multivariable lo
gistic regression analysis (including spline transformations for continuous predictors). Demographics, urgency, 
presenting complaints, disease severity and proxies for comorbidity, and complexity were used as covariates. We 
compared the performance using the area under the ROC curve in independent validation sets from each 
hospital. 
Results: We included 172,104 ED patients of whom 66,782 (39 %) were hospitalized. The AUC of the multi
variable logistic regression model was 0.82 (0.78− 0.86) at triage, 0.84 (0.81− 0.86) at ~30 min and 0.83 
(0.75− 0.92) after ~2 h. The best performing ML model over time was the gradient boosted decision trees model 
with an AUC of 0.84 (0.77− 0.88) at triage, 0.86 (0.82− 0.89) at ~30 min and 0.86 (0.74− 0.93) after ~2 h. 
Conclusions: Our study showed that machine learning models had an excellent but similar predictive performance 
as the logistic regression model for predicting hospital admission. In comparison to the 30-min model, the 2-h 
model did not show a performance improvement. After further validation, these prediction models could sup
port management decisions by real-time feedback to medical personal.   

Abbreviations: ED, emergency department; LOS, length of stay; ML, machine learning. 
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1. Introduction 

1.1. Background 

Emergency department (ED) crowding is a well-known problem 
affecting the quality of care and patient safety, also in the Netherlands 
[1,2]. Long ED length of stay (LOS) is associated with reduced patient 
satisfaction, negative effects on staff, and poorer patient outcomes, 
including increased in-hospital mortality [3–6]. ED patients who ulti
mately need to be admitted contribute disproportionately to the occur
rence of crowding [7,8]. 

1.2. Importance 

Reduction of ED-LOS by early identification of patients who need 
hospitalization has several advantages. First, the hospitalization process 
can be initialized in parallel to ED management, which would save time 
and enables fast admission to an appropriate level of care. This has been 
suggested to reduce mortality [9]. Secondly, patients can anticipate 
hospitalization, which could increase patient satisfaction. Finally, it may 
have prognostic value as patients who need hospitalization are often the 
sickest and will benefit most from time-sensitive ED treatment, i.e., fluid 
resuscitation in sepsis [8,10]. 

Unfortunately, the clinical judgment of triage nurses is not good 
enough to accurately predict the hospitalization of ED patients [11]. ED 
physicians may produce better risk estimates, but it is uncommon for 
them to perform triage [12]. Therefore, various regression models have 
been developed to aid the decision to hospitalize the patient, often with 
mediocre results [13–18]. 

The advent of machine learning (ML) and the growing availability of 
increasingly large databases such as electronic health records offer new 
opportunities to develop novel prediction models that have a better 
predictive performance [19–21]. 

However, recent articles [22,23] state that, on average, the perfor
mance of ML was no different from that of logistic regression. Further
more, a prediction model can only reduce ED-LOS when it has good 
predictive performance with data available soon after triage. However, 
some potentially important prognostic patient information (such as vital 
signs and blood tests) is not available at time of triage. Waiting longer 
for this information to become available means the ED-LOS reduction 
will be lower than when deploying soon after triage. 

1.3. Aims of this investigation 

The aim of the present study was twofold. First, we investigated 
whether ML models could predict hospitalization of ED patients more 
accurately than logistic regression. Second, we investigated the trade-off 
between the potential to improve the predictive performance of the 
models when including more variables and the potential to reduce time 
to decision-making by developing models at triage, at ~30 min (when 
vital signs are available) and ~2 h (when blood test results are 
available). 

2. Methods 

2.1. Study design and setting 

We used observational multi-center data from the Netherlands 
Emergency Department Evaluation Database (NEED, for more infor
mation, see www.stichting-need.nl), the national quality registry of EDs 
in the Netherlands. For the present study, data were available of 3 EDs, 
one tertiary care center, and two urban teaching hospitals. We used data 
collected between 1 January 2017 and 31 December 2019. The study 
was approved by the medical ethics committee of the LUMC and regis
tered in the Netherlands Trial Register (NL8743). 

2.2. Selection of participants 

All consecutive ED patients with a registered presenting complaint in 
the NEED registry database were prospectively included in the study 
unless they objected to participating in the registry. We filtered patients 
at three consecutive time points at which, on average, an increasing 
number of data become available in the electronic hospital information 
systems: at triage (~15 min after ED registration), after ~30 min 
(including all vital signs if measured) and after ~2 h (also including 
laboratory testing, if performed). For the 15-minute dataset, we 
excluded patients sent home or referred to a GP within the first 15 min of 
arrival. It should be kept in mind that these points in time are theoretical 
and merely indicate the approximate moment when additional data are 
available in clinical practice, i.e., in the Netherlands, it will take 
approximately two hours before diagnostic test results are available. 

2.3. Data collection 

For model development, we used the variables of the Minimal Data 
Set (MDS) collected in the NEED. For data definitions in the MDS, see 
Appendix A. 

2.4. Variables 

2.4.1. Dependent variable 
Hospital admission was defined as admission to a normal ward, 

admission to a medium care or coronary care unit, transfer to another 
hospital, admission to an intensive care unit, and the patient dying in the 
ED. The remaining cases were categorized as the patient being dis
charged. The treating physician was in charge of the decision to hospi
talize. Generally, the decision to admit a patient was made after the 
consultation results and laboratory/radiology testing had become 
available. 

2.4.2. Independent variables 
A set of independent variables was identified to predict hospital 

admission based on a review of the literature [13] and consensus be
tween two ED physicians obtained over multiple discussions involving 
two ED physicians and two data scientists. The selection was made based 
on expected relevance and availability. The following variables were 
considered, depending on the sequential dataset collected (~15 min, 
~30 min, and ~2 h after arrival). 

Demographics based on age and gender (all models). 
Urgency based on referral type, mode of transport, and triage cate

gory (all models). The included hospitals used the Manchester Triage 
System [22] and the similar Netherlands Triage System [23] (both 
validated tools). 

Time of day of presentation (all models). 
Presenting complaints categorized in 18 main categories (all models). 

Presenting complaints of the MTS and NTS systems were merged to form 
one coherent list (see Appendix B.1.). 

Treating specialty of the physician who first saw the patient or to 
whom the general practitioner referred the patient (all models). 

Disease severity based on a continuous (ordinal) Glasgow Coma Scale 
(all models), vital signs (categorical for the 15-minute model as the 
outcomes were not available yet at this time point, continuous for the 
subsequent models), Numeric Rating pain score (NRS; 30-min and 2-h 
models) and a categorical variable for intravenous fluids administered 
(2-h model). 

Proxies for comorbidity and complexity based on binary indicator 
variables for blood tests requested, blood cultures, blood gas analysis, 
radiology imaging, and electrocardiogram (30-min and 2-h models) and 
a categorical variable for the number of consultations (2-h model) [8]. 

Laboratory test results (2-h model). We also included whether lab tests 
were completed for a patient via binary indicator variable (see Proxies 
for comorbidity and complexity) as this signals a certain degree of disease 
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severity. 

2.5. Descriptive statistics and model development 

The patient population was described with descriptive statistics at 
each moment after arrival (triage, ~30 min and ~2 h after arrival). 
Subsequently, we developed four models for each of these moments. 

First, we developed a classical statistical multivariable logistic 
regression model with restricted cubic spline transformations and 
penalization. It is inherently interpretable: the model equation can be 
easily written down and understood [24]. However, logistic regression 
will underperform compared to ML when faced with (highly) complex 
data patterns. 

We also developed two tree-based models: a random forest and a 
gradient boosted decision trees (XGBoost) model [25]. They perform 
well in practice, are robust to outliers, and can capture complex re
lationships. However, they perform poorly on large amounts of cate
gorical data. 

Lastly, a deep neural network was developed. This modelling tech
nique has shown exceptional performance in some instances. However, 
deep neural networks require large amounts of data and have a partic
ular risk of overfitting when using elaborate architectures with respect 
to sample size. 

2.6. Handling of missing data 

All values which were unrealistic according to the expert opinion of 
two ED physicians were set to missing. We removed the observations for 
which ED location, age, gender, triage category, presenting complaint, 
and ED length of stay were missing as these were considered crucial in 
the modeling. For the remaining categorical variables, missing values 
were assigned a separate category. We imputed the missing value for 
continuous variables via multiple imputation, and a dummy variable 
was constructed for each continuous variable indicating where the 
missing values occurred. The categorical variables were converted into 
dummy variables, and the continuous variables were normalized. 

2.7. Training procedure 

We split the data in a train (2/3 of the data) and test dataset (1/3 of 
the data) stratified by ED location and hospital admission. The train data 
were used to predict the hospital admission with the abovementioned 
independent variables. We performed internal-external validation [26]. 
This is a ‘leave one group out’ cross-validation (where each ED location 
forms one group) to address the heterogeneity between ED locations 
throughout the Netherlands [27,28]. We tuned the hyperparameters for 
the training data on the cross-validated. Subsequently, all models were 
trained on the entire train dataset with the tuned hyperparameters to 
arrive at the final models. 

2.8. Testing procedure 

We applied the models that resulted from the training procedure 
(2.7) to each ED location separately in the remaining 1/3 of test data. 
The discriminative performance was measured through the area under 
the receiver operating characteristic curves (confidence intervals were 
obtained through bootstrapping). We assessed the calibration through 
the calibration slope. The test results for the three ED locations were 
pooled through a random-effects meta-analysis. Sensitivity and speci
ficity were calculated using the cutoff that maximized the sum of 
sensitivity and specificity. Feature importance was obtained via SHapley 
Additive exPlanations. 

To assess the potential clinical value of these models, we calculated 
the Mean theoretical reduction in time to decision making based on the 
thresholds corresponding to the 95 % positive and negative predictive 
value. A 5% error rate was considered reasonable given the 

consequences of such an error. Patients retrospectively received an 
actionable decision (hospitalized or sent home) by the best performing 
model if their probability of hospitalization was either i) higher than the 
threshold corresponding to the 95 % PPV or ii) lower than the threshold 
corresponding to the 95 % NPV. For this set of patients, the time to 
decision making was adjusted to the model’s time point (15 min, 30 min, 
or 2 h), and the Mean difference in observed and expected time to de
cision making was calculated for all patients. 

2.9. Software 

Descriptive statistics were obtained with IBM SPSS version 25. The 
main analyses were performed in Python 3.8.0. with R 3.6.3 plug-ins to 
perform the logistic regression and obtain the pooled results. The code to 
obtain the results can be obtained upon request. 

3. Results 

The total number of patients present at the ED decreased over time 
(Fig. 1 and Table 1). Compared to triage, patients still at the ED after 2 h 
were on average older, more likely to have arrived by ambulance, had a 
higher triage category, and were more likely to be admitted to the 
hospital (Table 1). 

After cross-validation (Appendix B.3.), the trained models were 
validated on the test data. The AUC score (Table 2) of the best per
forming ML model (XGBoost with AUC 0.84 (0.77− 0.88) at triage, 0.86 
(0.82− 0.89) at ~30 min and 0.86 (0.74− 0.93) at ~2 h after arrival) was 
by and large comparable to that of the logistic regression model (0.82 
(0.78− 0.86) at triage, 0.84 (0.81− 0.86) at ~30 min and 0.83 
(0.74− 0.90) at ~2 h after arrival). The calibration of all models was 
generally excellent (Table 2), with calibration slopes close to 1. The 
XGBoost model had an average sensitivity and specificity of 0.78 and 
0.72 at triage, 0.80 and 0.73 at ~30 min, and 0.76 and 0.77 after ~2 h. 
The models showed minor improvements for the consecutive time points 
(Table 2). Age and treating specialty were important predictors across 
all time points (Appendix B.9.-B.11.). 

More patients received a decision to be discharged home compared 
to hospitalization for the 15-minute and 30-min time points (Table 3). 
For the model at triage, a Mean theoretical time to decision-making 
reduction of 33 min (25 %) could be realized based on both thresholds 
across the whole population. At the 30-min time point, this increased to 
40 min (26 %), which fell back to 31 min (12 %) at the 2-h point. 

4. Limitations 

This study has some limitations. All ED locations were used in the 
training and testing of the models to develop highly generalizable 
models. An advantage of this approach is that it acknowledges the 
heterogeneity between locations [27,28]. However, the quest for 
generalizability might negatively impact the performance at each spe
cific location. 

Secondly, the clinician’s decision regarding patient admission was 
used as the dependent variable for model training. However, the clinical 
decision-making in itself may be inaccurate, introducing a ceiling effect 
in terms of the ultimately attainable accuracy of predictive algorithms 
[29]. Also, patients’ preferences regarding hospitalization or social cir
cumstances might play a role. However, the ceiling effect and effect of 
patient preferences will be similar for the conventional regression and 
machine learning models, and therefore the main conclusions remain 
unchanged. 

Finally, consistent with the nature of quality registries, the NEED 
only contains variables that are registered in the hospital information 
system. Therefore, vital signs and blood tests were only available for 
those patients in whom it was measured. Nevertheless, the clinical de
cision to measure these values contains important prognostic 
information. 
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5. Discussion 

5.1. Discussion 

Our study showed that machine learning models had an excellent but 
similar predictive performance as the logistic regression model for 
predicting hospital admission. Compared to the 30-min model, the 2-h 
model (including laboratory test results) did not improve performance. 

The predictive performance of our models is comparable to other ML 
and logistic regression models reported in recent literature ([18](N =
506,486) [30];(N = 85,526) [31];(N = 1160) [32];(N = 47,200)) and 
confirm that – in the current setting – ML models and logistic regression 
are comparable in performance [18,30–32] with small advantages of 
modern algorithms. Two of these studies [18,32] also used multi-center 
data. However, neither one incorporated the potential heterogeneity of 
the different centers in their training and testing designs, meaning that 
the general discriminatory performance could be an overestimation of 
the performance at the individual sites. Also, Peck et al. [31] only 
included 1160 patients, which might have resulted in a reduction of the 
predictive power of machine learning models in their study. 

A recent study by Barak-Corren, Israelit, and Reis [30] found that 
laboratory results in a 1 -h model did improve discriminatory perfor
mance, in contrast to the findings reported here. This difference with our 
results may well be explained by the fact that 89 % of patients who had 
full blood work were hospitalized in the study by Barak-Corren and 
colleagues. In the NEED, the decision for admission is made after lab 
results become available. 

In only one study [31] did the authors compare their model to the 

clinical judgment of triage nurses. They found better calibration for the 
predictions of the models than those of the nurses. We did not directly 
compare the predictive performance of our models with clinical judg
ment. However, compared to the pooled sensitivity and specificity of 
clinical judgment of triage nurses in a recent systematic review [11], our 
models had slightly higher sensitivity but lower specificity, making their 
performance roughly comparable. 

The present study has several consequences. First, it implies that ML 
has little benefit for predicting hospital admission over conventional 
models, at least in the ED setting. ML algorithms may only outperform 
conventional models if millions rather than hundreds of thousands of 
patients are included since ML may benefit from a growing sample size 
[33]. Moreover, the current dataset may lack the covariate complexity 
that would require the high modeling flexibility ML has to offer. 
Increasing the number of covariates or the addition of unstructured data 
could bring to light an advantage of ML over conventional regression 
methods [18,34]. 

Although the ML and conventional prediction models had a predic
tive performance comparable to clinical judgment, they have the 
advantage that they can be fully automated, and the probability of 
hospitalization may be reported in the hospital information system, 
increasing awareness among treating physicians and serving as verifi
cation of clinical judgment. Also, as mentioned in the limitations sec
tion, it remains to be seen whether clinical judgment should be regarded 
as the gold standard. 

Secondly, although laboratory test results are needed for other pur
poses such as diagnosis, they appear to have little value for predicting 
hospital admission in our study. Lab test completion (available after 

Fig. 1. Flow chart of patients at the ED after ~15 min, ~30 min, and ~2 h after arrival at three different locations. 
Abbreviations: ED = emergency department. 
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Table 1 
Characteristics split up by time of model.   

Total cohort Patients, 
15 min 
after 
arrival 

Patients, 
30 min 
after 
arrival 

Patients, 2 h 
after arrival 

Demographics     
N(%) 172,104 

(100) 
166,516 
(100) 

159,499 
(100) 

110,150 
(100) 

Age, Mean (SD) 49.9(25.2) 50.4 
(25.1) 

50.9 
(25.1) 

55.1(23.7) 

Gender (female), N 
(%) 

82,812(48.1) 80,544 
(48.4) 

77,476 
(48.6) 

54,970(49.9)  

Urgency     
Referral type, N(%)     
Self-referral 68,135(39.6) 63,341 

(38.0) 
58,251 
(36.5) 

39,579(35.9) 

Referral from GP 74,302(43.2) 73,769 
(44.3) 

72,676 
(45.6) 

52,742(47.9) 

Referral from 
specialist 

27,207(15.8) 26,970 
(16.2) 

26,171 
(16.4) 

16,202(14.7) 

Missing 2460(1.4) 2436(1.5) 2401(1.5) 1627(1.5) 
Arrival by 

ambulance, N(%) 
47,581(27.6) 47,159 

(28.3) 
46,672 
(29.3) 

36,975(33.6) 

Missing 13,149(7.6) 12,929 
(7.8) 

12,589 
(7.9) 

9209(8.4)  

Triage category, N 
(%)     

Blue & green 53,815(31.3) 51,348 
(30.8) 

47,876 
(30.0) 

27,014(24.5) 

Yellow 68,445(39.8) 67,542 
(40.6) 

66,053 
(41.4) 

48,909(44.4) 

Orange 36,128(21.0) 36,008 
(21.6) 

35,600 
(22.3) 

28,313(25.7) 

Red 6216(3.6) 6204(3.7) 6144(3.9) 4251(3.9) 
Missing 7500(4.4) 5414(3.3) 3826(2.4) 1663(1.5)  

Time of day of 
presentation ‘hh: 
mm’, N(%)     

‘00:00− 5:59’ 13,933(8.1) 13,566 
(8.1) 

13,148 
(8.2) 

7943(7.2) 

‘6:00− 11:59’ 41,351(24.0) 40,256 
(24.2) 

38,683 
(24.3) 

27,188(24.7) 

’12:00− 17:59’ 73,586(42.8) 71,380 
(42.9) 

68,425 
(42.9) 

49,121(44.6) 

’18:00− 23:59’ 43,236(25.1) 41,314 
(24.8) 

39,243 
(24.6) 

25,898(23.5)  

Top 5 Presenting 
complaints, N(%)     

Extremity problems 36,614(21.3) 35,616 
(21.4) 

34,067 
(21.4) 

16,246(14.7) 

‘Feeling unwell’ 26,653(15.5) 26,328 
(15.8) 

25,740 
(16.1) 

21,324(19.4) 

Abdominal pain 17,425(10.1) 17,248 
(10.4) 

17,025 
(10.7) 

14,273(13.0) 

Dyspnea 14,369(8.3) 14,296 
(8.6) 

14,195 
(8.9) 

12,233(11.1) 

Chest pain 12,196(7.1) 12,099 
(7.3) 

11,897 
(7.5) 

9399(8.5)  

Disease Severity     
Vital score*, N(%)     
Not measured 62,430(36.3) 57,754 

(34.7) 
52,102 
(32.7) 

24,100(21.9) 

1− 4 vital signs 
measured 

58,193(33.8) 57,310 
(34.4) 

56,100 
(35.1) 

42,247(38.3) 

All vital signs 
measured 

51,481(29.9) 51,452 
(30.9) 

51,297 
(32.2) 

43,803(39.8) 

GCS, N(%)     
GCS = 15 9745(5.7) 9417(5.7) 9381(5.9) 7767(7.1) 
GCS < 15 1385(0.8) 1237(0.7) 1233(0.8) 1005(0.9) 
Not assessed 160,974 

(93.5) 
155,862 
(93.6) 

148,885 
(93.3) 

101,378 
(92.0)  

Table 1 (continued )  

Total cohort Patients, 
15 min 
after 
arrival 

Patients, 
30 min 
after 
arrival 

Patients, 2 h 
after arrival  

Pain score, scale 
1–10, N(%)     

Not measured 112,030 
(65.1) 

108,974 
(65.4) 

104,832 
(65.7) 

7823(67.0) 

1− 3 26,277(15.3) 24,927 
(15.0) 

23,398 
(14.7) 

14,502(13.2) 

4− 6 22,672(13.2) 21,796 
(13.1) 

20,820 
(13.1) 

14,049(12.8) 

7+ 11,125(6.5) 10,819 
(6.5) 

10,449 
(6.6) 

7776(7.1)  

Fluids administered, 
N(%)     

< 500 mL 11,539(6.7)   9793(8.9) 
> 500 mL 12,870(7.5)   11,103(10.1) 
None 147,695 

(85.8)   
89,254(81.0)  

Proxies for 
comorbidity and 
complexity     

Treating specialty     
Emergency Medicine 33,908(19.7) 33,832 

(20.3) 
33,182 
(21.7) 

20,988(19.1) 

Surgery** 35,561(20.7) 35,440 
(21.3) 

89,118 
(55.9) 

20,778(18.9) 

Medicine*** 90,456(52.6) 90,144 
(54.1) 

34,683 
(21.7) 

67,882(61.6) 

Missing 12,179(7.1) 7100(4.3) 2516(1.6) 502(0.5)  

Number of 
consultations, N 
(%)     

None 139,555 
(81.1)   

89,807(81.5) 

One consultation 19,087(11.1)   16,214(14.7) 
Two or more 

consultations 
4212(2.4)   3870(3.5) 

Missing 9250(5.4)   259(0.2) 
Blood tests, N(%) 97,584(56.7)  97,297 

(61.0) 
82,867(75.2) 

Blood cultures, N(%) 13,680(7.9)  13,672 
(8.6) 

12,761(11.6) 

Blood gas analysis, N 
(%) 

22,833(13.3)  22,798 
(14.3) 

19,831(18.0) 

Radiology 
imaging****, N(%) 

94,258(54.8)  92,579 
(58.0) 

70,736(64.2) 

Electrocardiogram, N 
(%) 

43,014(25.0)  42,953 
(26.9) 

36,845(33.4)  

Laboratory tests     
Haemoglobin 

(mmol/L), median 
(IQR)[N] 

8.4(7.6− 9.1) 
[95,238]   

8.4(7.5− 9.1) 
[81,097] 

Hematocrit (L/L), 
median (IQR)[N] 

0.40 
(0.37− 0.43) 
[94,333]   

0.40 
(0.37− 0.44) 
[80,245] 

Sodium (mmol/L), 
median (IQR)[N] 

140 
(137− 142) 
[94,144]   

140 
(137− 141) 
[80,334] 

Leukocytes (x10^9 
mg/L), median 
(IQR)[N] 

9.1 
(7.0− 12.1) 
[94,067)   

9.2 
(7.0− 12.2) 
[80,488] 

Potassium (mmol/L), 
median (IQR)[N] 

4.1(3.8− 4.4) 
[92,333]   

4.1(3.8− 4.4) 
[78,755] 

Creatinine (μmol/L), 
median (IQR)[N] 

76(63− 96) 
[92,212]   

94(63− 97) 
[79,229] 

Urea (mmol/L), 
median (IQR)[N] 

5.7(4.3− 7.8) 
[91,288]   

5.7(4.3− 7.9) 
[78,361] 

Platelets (x10^9 mg/ 
L), median (IQR) 
[N] 

245 
(196− 303) 
[88,955]   

245 
(195− 305) 
[76,198] 

(continued on next page) 
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~30 min) may already be a good predictor of hospitalization, regardless 
of the test result. The decrease in sample size and change in the sample 
composition (retaining the generally more complex patients in the ED 
while others are discharged or admitted) over time may also affect 
predictive performance. 

Consequently, the hospitalization process in Dutch EDs could be 
initialized before test results are available. Based on a prospective study 
by van der Veen et al. [8] in a similar setting, time to decision making, 
and therefore ED-LOS could theoretically be reduced by approximately 
40 min (see also Table 3), as long as exit blocks are not the main 
determinant of ED-LOS. As soon as hospital admission is indicated, 
additional testing could be performed in the clinical decision unit. Note 
that in clinical practice, an earlier decision may not necessarily translate 
into a shorter ED-LOS. Patients who are discharged may require other 
medical attention before being sent home. 

Nevertheless, a reduction in the time to decision-making may have 
other benefits, like helping patients anticipate on the hospitalization, 
which could increase patient satisfaction. Furthermore, because patients 
who need hospitalization are often the sickest, it may increase aware
ness of the treating physician, which could be used during ED man
agement. This type of decision support might also aid patient safety, 
particularly during the evening and night shifts of inexperienced junior 
doctors when their supervising consultants are often not present. 

Table 1 (continued )  

Total cohort Patients, 
15 min 
after 
arrival 

Patients, 
30 min 
after 
arrival 

Patients, 2 h 
after arrival 

ALAT (U/L), median 
(IQR)[N] 

23(17− 34) 
[83,733]   

23(17− 34) 
[72,051] 

Gamma GT (U/L), 
median (IQR)[N] 

29(18− 57) 
[83,632]   

30(18− 59) 
[71,964] 

ASAT (U/L), median 
(IQR)[N] 

25(20− 34) 
[81,503]   

25(20− 34) 
[71,964] 

CRP (mg/L), median 
(IQR)[N] 

10.5 
(4.3− 47.0) 
[80,310]   

12.0 
(5.0− 51.0) 
[69,378] 

Alkalic Fosfate (U/L), 
median (IQR)[N] 

82(66− 105) 
[66,200]   

83(67− 106) 
[56,496] 

LDH (U/L), median 
(IQR)[N] 

209 
(180− 105) 
[65,452]   

210 
(181− 252) 
[56,132] 

Mean Cell Volume 
(fL), median (IQR) 
[N] 

90(86− 93) 
[62,762]   

90(86− 93) 
[53,522] 

Neutrophilics (x10^9 
mg/L), median 
(IQR)[N] 

6.4(4.5− 9.3) 
[46,297]   

6.5(4.6− 9.5) 
[39,597] 

Calcium (mmol/L), 
median (IQR)[N] 

2.4(2.3− 2.4) 
[44,752]   

2.3(2.3− 2.4) 
[39,435] 

Creatine Kinase (U/ 
L), median (IQR) 
[N] 

88(57− 143) 
[35,078]   

87(56− 141) 
[29,362]  

Hemolysis material 
present, N(%)     

Yes 4749(2.8)   4166(3.8) 
Missing 80,476(46.8)   44,589(40.5) 

Patient characteristics are presented for the total cohort and three different 
times used in the prediction models: after ~15 min, ~30 min, and ~2 h of stay in 
the emergency department. Normally distributed data are presented as Mean 
(SD), skewed data as median (IQR), and categorical data as number (%). 
Abbreviations: N = number, SD = standard deviation, GCS = Glasgow Coma 
Scale, n/min = breaths/beats per minute, IQR = interquartile range, mmHg =
millimeter of mercury, mL = milliliter, U/L = Units per liter, fL = femtoliter, ED 
= emergency department. 

* Vital signs measured involve: Respiratory Rate, O2 Saturation, Heart Rate, 
Systolic Blood Pressure, Diastolic Blood Pressure, and Temperature. 

** Surgery contains the specialties of general surgery, traumatology, 
ophthalmology, orthopedics, otorhinolaryngology, thoracic surgery, urology, 
gynecology, and neurosurgery. 

*** Medicine contains the specialties of internal medicine, cardiology, pul
monology, gastroenterology, neurology, pediatrics, and rheumatology. 

**** Radiology imaging is positive if either an X-ray, ultrasound or CT- scan 
was performed. 

Table 2 
Pooled random effect meta-analysis performance characteristics.  

Dataset Algorithm Test AUC (95 % CI) Calibration slope (95 % CI) 

Triage LR 0.82 (0.78, 0.86) 1.14 (0.92, 1.41)  
RF 0.80 (0.72, 0.85) 1.05 (0.95, 1.17)  
XGBoost 0.84 (0.77, 0.88) 1.09 (0.92, 1.29)  
DNN 0.83 (0.77, 0.88) 1.05 (0.89, 1.24) 

~ 30 min LR 0.84 (0.81, 0.86) 1.12 (0.94, 1.34)  
RF 0.86 (0.83, 0.88) 1.03 (0.90, 1.17)  
XGBoost 0.86 (0.82, 0.89) 1.07 (0.94, 1.21)  
DNN 0.86 (0.82, 0.89) 1.13 (1.01, 1.27) 

~ 2 h LR 0.83 (0.74, 0.90) 1.06 (0.92, 1.23)  
RF 0.86 (0.75, 0.92) 0.98 (0.85, 1.14)  
XGBoost 0.86 (0.74, 0.93) 1.03 (0.92, 1.15)  
DNN 0.86 (0.75, 0.93) 1.02 (0.89, 1.17) 

AUC and calibration slope were calculated separately for the three centers and 
pooled through a random effect meta-analysis for each model. 
Abbreviations: LR Logistic Regression, RF Random Forset, XGBoost gradient 
boosted decision trees, DNN Deep Neural Network, AUC Area Under the Curve. 

Table 3 
Potential Mean (relative) time to decision making (TDM) reduction based on 
number of patients in the test data receiving an earlier decision (admitted or sent 
home) according to best performing model (XGBoost).   

Total 
number of 
patients 
test data 

Number of 
patients with 
an actionable 
decision* 

Mean TDM 
reduction in 
minutes (Mean 
relative TDM 
reduction)** for 
patients with an 
actionable 
decision* 

Mean TDM 
reduction in 
minutes (Mean 
relative TDM 
reduction) for all 
patients** 

Triage     
PPV 52,928 1227 (2%) 174 (90 %) 4.04 (2%) 
NPV 52,928 15,281 (29 %) 99.34 (79 %) 28.68 (23 %) 
PPV & 

NPV 
52,928 16,508 (31 %) 104.91 (79 %) 32.72 (25 %)  

30 
min     

PPV 51,137 3200 (6%) 182.29 (83 %) 11.41 (5%) 
NPV 51,137 15,369 (30 %) 94.46 (68 %) 28.39 (20 %) 
PPV & 

NPV 
51,137 18,569 (36 %) 109.60 (71 %) 39.80 (26 %)  

2 h     
PPV 35,649 6000 (17 %) 117.28 (44 %) 19.74 (7%) 
NPV 35,649 5706 (16 %) 69.13 (31 %) 11.07 (5%) 
PPV & 

NPV 
35,649 11,706 (33 %) 93.81 (38 %) 30.80 (12 %) 

*A patient receives an actionable decision from the model when: 
i) P(hospitalization) > 95 % PPV threshold for PPV scenario. 
ii) P(hospitalization) < 95 % NPV threshold for NPV scenario. 
iii) P(hospitalization) > 95 % PPV threshold or P(hospitalization) < 95 % NPV 
threshold for PPV & NPV combined scenario. 
**Mean time to decision making (TDM) and Mean relative TDM reduction in 
minutes are calculated as: Mean(TDM patient – TDM patient model) and Mean 
(100x(TDM patient – TDM patient model) / TDM patient). TDM patient model is set 
to 15 min (triage model), 30 min (30-min model), or 2 h (2-h model) for patients 
with an actionable decision. TDM patient model is set to TDM patient when the 
patient did not receive an actionable decision. 
Abbreviations: ED Emergency Department, TDM Time to Decision Making, PPV 
Positive Predictive Value, NPV Negative Predictive Value. 
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5.2. Conclusion 

Our study showed that machine learning models had an excellent but 
similar predictive performance as the logistic regression model in pre
dicting admission. In comparison to the 30-min model, the 2-h model 
did not show a performance improvement. Future studies should 
investigate whether larger sample sizes or more variables result in a 
better predictive performance of ML models. Future research should also 
examine the clinical effectiveness of implementing of our predictive 
algorithm including an investigation of the type of circumstances in 
which one might prefer ML models over classical statistical techniques. 
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SUMMARY TABLE  

What was known  

- Early identification of emergency department (ED) patients who need 
hospitalization is essential for quality of care and patient safety.  

- The advent of machine learning and the growing availability of increasingly large 
databases such as electronic health records offer new opportunities to develop novel 
prediction models with better predictive performance. 

What this study added to our knowledge  

- Machine learning models have excellent but similar predictive performance as 
logistic regression for predicting hospital admission.  

- While it might be tempting to wait for additional information such as blood test 
results, they do not improve the machine learning prediction of hospital admission.  
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