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ABSTRACT Bacterial microbiota play a critical role in mediating local and systemic
immunity, and shifts in these microbial communities have been linked to impaired
outcomes in critical illness. Emerging data indicate that other intestinal organisms,
including bacteriophages, viruses of eukaryotes, fungi, and protozoa, are closely
interlinked with the bacterial microbiota and their host, yet their collective role dur-
ing antibiotic perturbation and critical illness remains to be elucidated. We employed
multi-omics factor analysis (MOFA) to systematically integrate the bacterial (16S
rRNA), fungal (intergenic transcribed spacer 1 rRNA), and viral (virus discovery next-
generation sequencing) components of the intestinal microbiota of 33 critically ill
patients with and without sepsis and 13 healthy volunteers. In addition, we quanti-
fied the absolute abundances of bacteria and fungi using 16S and 18S rRNA PCRs
and characterized the short-chain fatty acids (SCFAs) butyrate, acetate, and propio-
nate using nuclear magnetic resonance spectroscopy. We observe that a loss of the
anaerobic intestinal environment is directly correlated with an overgrowth of aerobic
pathobionts and their corresponding bacteriophages as well as an absolute enrich-
ment of opportunistic yeasts capable of causing invasive disease. We also observed
a strong depletion of SCFAs in both disease states, which was associated with an
increased absolute abundance of fungi with respect to bacteria. Therefore, these
findings illustrate the complexity of transkingdom changes following disruption of
the intestinal bacterial microbiome.

IMPORTANCE While numerous studies have characterized antibiotic-induced disrup-
tions of the bacterial microbiome, few studies describe how these disruptions impact
the composition of other kingdoms such as viruses, fungi, and protozoa. To address
this knowledge gap, we employed MOFA to systematically integrate viral, fungal,
and bacterial sequence data from critically ill patients (with and without sepsis)
and healthy volunteers, both prior to and following exposure to broad-spectrum
antibiotics. In doing so, we show that modulation of the bacterial component of the
microbiome has implications extending beyond this kingdom alone, enabling the
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overgrowth of potentially invasive fungi and viruses. While numerous preclinical
studies have described similar findings in vitro, we confirm these observations in
humans using an integrative analytic approach. These findings underscore the
potential value of multi-omics data integration tools in interrogating how different
components of the microbiota contribute to disease states. In addition, our findings
suggest that there is value in further studying potential adjunctive therapies using
anaerobic bacteria or SCFAs to reduce fungal expansion after antibiotic exposure,
which could ultimately lead to improved outcomes in the intensive care unit (ICU).

KEYWORDS bacteriophages, fungi, multi-omics, data integration, bacteria, microbiome

In recent years, widespread efforts have been dedicated to elucidating the impact of
intestinal microorganisms in health and disease (1, 2). Animal studies have shown

that broad-spectrum antibiotic modulation of the intestinal microbiota enhances sus-
ceptibility to enteric and systemic infections (3–5). In line with these preclinical find-
ings, our group and others have observed that exposure to broad-spectrum antimicro-
bial therapy profoundly distorts the composition of the intestinal microbes of critically
ill patients in the intensive care unit (ICU) (6–8). These disruptions within the intestinal
environment enable the rapid expansion of opportunistic pathobionts and nosocomial
infections, including infections with vancomycin-resistant enterococci as well as inva-
sive disease by antibiotic-resistant Enterobacteriaceae (9–11).

Traditionally, viruses were considered solely pathogens; however, growing evidence
suggests a more dynamic relationship between the virome and the host, mediated by
direct interactions with the bacterial microbiome (12–15). Viruses influence immune
development and shape tissue architecture (16, 17), and changes in the composition
of viral communities have been associated with disease severity in inflammatory bowel
disease (IBD), AIDS, and the development of graft-versus-host disease (GvHD) (12, 18,
19). Similarly, intestinal fungi have recently been acknowledged as a small but poten-
tially important part of the intestinal ecosystem and have been shown to play a poten-
tially immunomodulatory role in the development of colorectal cancer, IBD, and irrita-
ble bowel syndrome (IBS) (20–24).

While these findings provide clues that specific cross-kingdom interactions poten-
tially contribute to or exacerbate disease, a large knowledge gap remains on the com-
position and interactions of fungi and viruses following exposure to broad-spectrum
antibiotics, both in healthy volunteers and in patients with a critical illness. Moreover,
there is a large gap between in vitro observations and confirmation of these patterns
in humans. Hence, there is an increasing need for integrative computational frame-
works that can systematically identify underlying patterns of variation across these
communities in health and disease (12, 23).

RESULTS AND DISCUSSION
Experimental design. To examine the extent of transkingdom associations during

critical illness, we collected fecal samples from 33 patients (mean age, 62 years; 45%
male) (see Table S1 in the supplemental material) admitted to the intensive care unit
(ICU) of the Amsterdam University Medical Center, Location AMC. Of these patients, 24
were admitted with sepsis, while 9 patients had a noninfectious diagnosis (nonseptic
ICU). All ICU patients were treated with between one and nine different classes of anti-
microbial agents (Fig. S1). Thirteen healthy, nonsmoking, Caucasian male subjects
(aged 18 to 25 years; mean age, 22 years) were evaluated as controls. Six healthy sub-
jects received oral broad-spectrum antibiotics (ciprofloxacin at 500mg every 12 h
[q12h], vancomycin at 500mg q8h, and metronidazole at 500mg q8h) for 7 days,
whereas 7 subjects did not receive antibiotics. Subjects were asked to collect fecal sam-
ples before antibiotic treatment and 1 day after completing the course of antibiotics.

We performed sequencing of the V3-V4 region of the bacterial 16S rRNA gene and
the fungal intergenic transcribed spacer 1 (ITS1) rRNA gene, seeking to examine com-
munity compositions by characterizing fungal and bacterial sequences into exact
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amplicon sequencing variants (ASVs) (25). We simultaneously performed virus discov-
ery cDNA-amplified fragment length polymorphism next-generation sequencing
(VIDISCA-NGS) (26) using a validated virome-enriched library preparation (27, 28).
Finally, the presence of Giardia lamblia, Cryptosporidium parvum, Entamoeba histolytica,
Blastocystis hominis, and Dientamoeba fragilis was assessed by real-time PCR targeting
the small-subunit (SSU) rRNA gene. Of note, the bacterial microbiomes of ICU patients
(6) and volunteers (29) included in this study have been described previously by our
group in two separate publications. For the purpose of this study, the bacterial micro-
biomes of patients and volunteers were resequenced to reduce batch effects.

Composition and diversity of the bacterial, fungal, and viral microbiome. First,
we characterized the changes of each microbiome kingdom before and after antibiotic
treatment. While the bacterial microbiome of healthy volunteers prior to antibiotic ex-
posure was predominated by the anaerobic bacterial families Lachnospiraceae and
Ruminococcaceae, the bacterial composition of both ICU patients and volunteers fol-
lowing antibiotics was characterized by an individualized loss of these anaerobic com-
munities (Fig. 1a). In addition, bacterial alpha diversity and richness dropped signifi-
cantly in ICU patients and healthy subjects exposed to antibiotics, with the latter being
most significantly impacted in both metrics (Fig. 1b). In line with previous observations
(30–32), fungal communities were dominated by Candida and Saccharomyces, while
Malassezia and Aspergillus were also frequently observed. Overall, fungal diversity met-
rics were comparable between ICU patients and healthy controls not exposed to anti-
biotics, while significant drops in diversity were observed in healthy subjects after ex-
posure to antibiotics. Viral communities were largely dominated by environmental
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Other fungi
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FIG 1 Overview of the composition and diversity of the bacterial, fungal, and viral microbiome. (a) Relative proportions of sequence reads at the genus
level assigned to different bacterial and fungal taxa and at the order level for viral taxa. Viral metagenomics of two samples did not pass quality control
due to high background levels, and these samples were therefore excluded from further analysis. For bacteria, the Ruminococcaceae, Lachnospiraceae,
and Enterobacteriaceae families as well as genera that made up $5% of the total microbiota in at least one sample are included; other genera and
families are pooled within the category “Other Bacteria.” (b) Alpha diversity metrics of bacteria (top), fungi (middle), and viruses (bottom), using the
Shannon diversity index (Shannon) and the observed taxon richness index (Observed). In the box plots, the central rectangle spans the first quartile to
the third quartile (the interquartile range [IQR]), the central line inside the rectangle shows the median, and whiskers above and below the box indicate
variability outside the upper and lower quartiles. Given the nonparametric nature of the data, P values were calculated using the Wilcoxon rank sum test.
*, P, 0.05; **, P, 0.01; ***, P, 0.001; ****, P, 0.0001.
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single-stranded RNA (ssRNA) viruses and bacteriophages of the order Caudovirales.
Strikingly, around 50% of the abundance of the virome consisted of cross-assembly
(crAss) phages, which have recently been connected to Bacteroides spp. (33, 34). No dif-
ferences in viral alpha diversity were observed, yet both septic ICU patients and antibi-
otic-perturbed volunteers displayed higher viral richness. We observed short-term tem-
poral stability of all three kingdoms in healthy subjects not receiving antibiotics (35)
(Fig. S2). In agreement with recent studies (36, 37), we observed that a total of 30% of
healthy subjects were colonized by the anaerobic gut protozoon Blastocystis hominis
or Dientamoeba fragilis, yet these protozoa were undetectable following antibiotic
administration (Table S2).

Multi-omics factor analysis reveals covariation patterns across kingdoms. Next,
to understand the patterns of covariation between these intestinal communities, we
used multi-omics factor analysis (MOFA), a statistical framework for multi-omics data
integration (38, 39). MOFA is a statistically rigorous generalization of principal-compo-
nent analysis (PCA) to multi-omics data. Given multiple data modalities derived from
the same sets of samples (Y matrices) (Fig. 2a), MOFA infers a common low-dimen-
sional representation in terms of a small number of latent factors that capture the
global sources of sample heterogeneity in the data (Z matrix) (Fig. 2a). Although the
factors are inferred using information from all data modalities simultaneously, MOFA
distinguishes variation that is shared across multiple modalities from the variation that
is present within a single modality. In addition, MOFA facilitates the association of mo-
lecular features with each factor by the exploration of the feature weights (W matrices)
(Fig. 2a). Notably, although this integrative method was initially conceived for single-
cell multimodal assays (40), here, we show that it is also effective for the analysis of
sparse readouts from microbiome data. For a more detailed mathematical treatment,
see Materials and Methods.

As input into the model, we collapsed the inferred bacterial and fungal ASVs and vi-
ral reads to their respective family or genus level, followed by centralized log ratio nor-
malization (41, 42). MOFA identified 6 factors with a minimum explained variance of
5% (see Materials and Methods) that were robust to downsampling analysis (Fig. 2a;
Fig. S3). Altogether, the latent representation explained 39% of the sample heteroge-
neity for bacteria, 39% for fungi, and 19% for viral composition (Fig. 2b and c; Fig. S4).
Notably, factor 1 and factor 3 (sorted by the total variance explained) captured covaria-
tion across all three kingdoms, allowing partitioning of microbiome compositions of
critically ill patients from those of healthy subjects exposed to antibiotics and unex-
posed healthy subjects (Fig. 2d).

Factor 1, the major source of variation, was linked to a transkingdom signature driven
by antibiotic perturbation in both health and critical illness (Fig. 3a and b). Specifically,
bacterial taxa positively associated with this factor were facultative aerobic bacterial
pathobionts that have been previously associated with critical illness (43–45), such as
Staphylococcus, Enterococcus, Klebsiella, Escherichia/Shigella, and Enterobacter. Bacterial
taxa that were negatively associated with this factor consisted predominantly of genera
within the obligatory anaerobic families Lachnospiraceae and Ruminococcaceae, which
have been identified as markers of a healthy microbiota and are linked to colonization
resistance against bacterial pathobionts (10, 46). Fungal taxa positively associated with
this factor were characterized by yeasts capable of causing invasive disease, such as
Candida, Aspergillus, and Debaryomyces (24, 47, 48), with a relative absence of the gut
constituents Filobasidium, Malassezia, and Dipodascus (31). The specific cooccurrences of
fungal and bacterial taxa observed in factor 1 are supported by previous studies. For
example, members of the Lachnospiraceae family, such as Blautia and Roseburia, display
a direct inhibitory effect on the growth of several Candida spp. and Saccharomyces cere-
visiae through the production of short-chain fatty acids (SCFAs) and other metabolites
(49–51). In addition, in vitro studies have shown that metabolites produced by Candida
spp. enhance the growth of Escherichia coli and Staphylococcus aureus (52, 53), providing
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further indications that the in vivo intestinal transkingdom signatures identified by
MOFA are biologically meaningful.

Factor 3 captured signatures that were absent in critically ill patients and present in
healthy subjects following exposure to broad-spectrum antibiotics, with a predomi-
nance of the closely related Streptococcaceae family (Streptococcus and Lactococcus),
Lactobacillales order (Lactobacillus and Granulicatella), and Actinomycetales order
(Actinomyces and Rothia). While 16S rRNA sequencing provides limited resolution to
identify the ASVs on the species and strain levels, several species of these bacterial
orders and families have been shown to possess mutualistic properties with Candida in
oral and vaginal environments, potentially through the modification of biofilm
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FIG 2 Multi-omics factor analysis (MOFA) delineates the sources of transkingdom heterogeneity. (a) Model overview. MOFA takes as the input the three
microbiome quantification matrices. MOFA exploits the covariation patterns between the features within and between microbiome modalities to learn a
low-dimensional representation of the data in terms of a small number of latent factors (Z matrix) and three different weight matrices (W) (one per
kingdom). By maximizing the variance explained under sparsity assumptions, MOFA provides a principled way to discover the global sources of variability
in the data. For each latent factor (i.e., each source of variation), the weights provide a measure of feature importance for every feature in each factor,
hence enabling the interpretation of the variation captured by every factor. (b) Heat map displaying the percentage of variance explained (R2) by each
factor (rows) across the three microbe modalities (columns). Factors 1 and 3 capture coordinated variation across all three microbiome modalities,
whereas factor 2 is mostly dominated by heterogeneity in fungal composition. (c) Bar plots showing the fraction of significant associations between the
features of each microbiome modality and each factor. P values were obtained using a t test based on Pearson’s product-moment correlation coefficient.
Statistical significance is called at a 10% FDR. This plot is useful to interpret whether the variance-explained values displayed in panel b are driven by a
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axis). Each dot represents a sample, colored by condition. Factor 1 captures the gradient in microbiome variation associated with antibiotic treatment
and critical illness (from negative to positive factor values), whereas factor 3 captures the variation associated with antibiotic treatment in healthy
patients (positive factor 3 values) versus critically ill patients (negative factor 3 values).
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formation (23, 54–56). These observations indicate that similar fungal-bacterial associa-
tions are potentially maintained within the gastrointestinal tract, warranting further
elucidation on a larger scale and at a higher taxonomic resolution.

Notably, the majority of viral sequences that were associated with factors 1 and 3
consisted of bacteriophages that significantly correlated with the presence of the cor-
responding bacterial targets in the same factor (Fig. S5). The expansion of aerobic bac-
terial species during critical illness and following antibiotics can therefore potentially
facilitate the enrichment of their corresponding bacteriophages (12, 57). Other notable
associations with the viral microbiome were the increases of the mycoviruses
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values), and features are shown in the rows. (c) Scatterplots displaying the distribution of bacterial (top), fungal (middle), and viral (bottom) weights for
factor 3. A positive value indicates a positive association with factor 3 values, whereas a negative value indicates a negative association with factor 3
values (Fig. 2d). The larger the absolute value of the weight, the stronger the association. For ease of visualization, weights are scaled from 21 to 1.
Representative taxa among the top weights are labeled. (d) Heat maps displaying the (denoised) data reconstruction (see Materials and Methods) based
on the MOFA model for the taxa highlighted in panel c. Samples are shown in the columns (sorted based on factor 3 values), and features are shown in
the rows.
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Chrysovirus and Partitivirus, which are capable of infecting fungi (58), in healthy sub-
jects following antibiotic exposure. These findings indicate that coordinated transking-
dom changes are occurring beyond intestinal bacteria, further underscoring the com-
plexity of relationships within the intestinal environment.

After the global characterization of the transkingdom microbiome associations
upon antibiotic exposure, we asked whether we could find associations between indi-
vidual MOFA factors and specific antibiotics. Whereas factor 1 is associated with expo-
sure to antibiotics in general, factor 4 was specifically associated with exposure to fluo-
roquinolones and negatively correlated with exposure to cephalosporins (Fig. S6a and
b). Specifically, we observed that patients receiving fluoroquinolones had higher abun-
dances of the Gram-positive genera Lactococcus and Pediococcus and lower abundan-
ces of, among others, the Gram-negative genera Escherichia/Shigella and Desulfovibrio.
Interestingly, we observed a negative correlation between Aspergillus and fluoroquino-
lone exposure, which could be linked to the previously described synergy between
ciprofloxacin and antifungal agents directed toward Aspergillus (59).

The 3 remaining factors identified sample heterogeneity related to low-abundance
fungal variations (factor 2) (Fig. S7) as well as bacterial (factor 5) and viral (factor 6) sig-
natures pertaining to individual ICU patients.

Fecal levels of short-chain fatty acids are negatively correlated with fungal
loads in health and critical illness. An important indicator of the influence of the bac-
terial microbiota on the fungal population in the gut is the dramatic increase in the
fungal burden after antibiotic treatment (23). This phenomenon can partly be
explained by antibiotic-induced alterations in nutrient availability, yet a loss of the
direct inhibitory effects of anaerobic bacteria and their associated metabolites toward
fungal expansion has also been documented (49–51). In light of these observations,
we quantified absolute levels of bacteria and fungi using targeted PCRs and linked
their abundance to the absolute quantities of the SCFAs butyrate, propionate, and ace-
tate, which are well-known metabolites of predominantly anaerobic bacteria. First, we
observed a strong depletion of SCFAs both in critical illness and following antibiotic
perturbation (Fig. 4a to c). Notably, both conditions were associated with increased
fungal-to-bacterial ratios, with the relative proportion of fungi to bacteria increasing
by a factor of 103 to 104 times. In addition, we observed that absolute fecal SCFA con-
centrations were inversely correlated with absolute fungal copies, with propionate lev-
els displaying the strongest correlation (r=0.75; P , 0.0001) (Fig. 4d). These findings
are in line with those of a recent study reporting that a reduction of anaerobic bacteria
during the course of allogeneic hematopoietic stem cell transplantation directly facili-
tates the intestinal overgrowth of specific Candida species, ultimately culminating in
invasive fungal disease (24). Therefore, our findings and those of others suggest that
fungal expansion not only occurs in the context of a decreased absolute bacterial
abundance but also is dependent on altered functions of the remaining bacterial com-
munities in the intestinal environment.

Perspectives and limitations. This study has several limitations. First, since 16S
rRNA sequencing provides limited taxonomic resolution of bacterial communities at
the species level, data were collapsed to the genus level. While our findings remained
robust in a downsampling analysis, implementing MOFA with larger data sets with
higher resolution, such as those obtained by shotgun metagenomic sequencing, will
be an important next step to further uncover the more intricate transkingdom cooccur-
rence associations, including interactions. Second, this study mainly describes associa-
tions between bacteria, fungi, and viruses, but it does not directly prove causality that
these shifts are mechanically linked. However, our findings are in line with those of sev-
eral preclinical in vitro studies, providing assurance that these transkingdom effects
seem to also occur in humans. Third, although our study is among the first to validate
several preclinical findings in humans and emphasizes the importance of transkingdom
disruptions of the intestinal microbiome during critical illness, it was not powered to
detect if the observed disruptions were associated with altered outcomes such as
increased mortality or length of hospital stay. Finally, while the characterization of
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demographic information and antibiotic exposure in our cohorts was excellent, our
analyses did not account for the different times between antibiotic exposure and sam-
ple collection nor for other well-known confounders such as dietary habits, (par)enteral
feeding, and exposure to (vasoactive) drugs.

In conclusion, our findings shed light on the covariation patterns between king-
doms following broad-spectrum antibiotic modulation, both in health and in the con-
text of critical illness. These findings underscore the potential value of multi-omics
data integration tools in interrogating how different components of the microbiota
contribute to health and disease.
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FIG 4 Correlation of total bacterial and fungal loads with fecal levels of short-chain fatty acids in health and critical illness. (a) Association analysis
between factor values and SCFA levels. (Left) Pearson correlation coefficients between factor values and the levels of three types of SCFAs: butyrate,
acetate, and propionate. (Right) Corresponding FDR-adjusted and log-transformed P values. (b) Box plots showing the SCFA concentrations (y axis) per
sample group (x axis). In the box plots, the central rectangle spans the first quartile to the third quartile (the interquartile range [IQR]), the central line
inside the rectangle shows the median, and whiskers above and below the box indicate variability outside the upper and lower quartiles. Given the
nonparametric nature of the data, P values were calculated using the Wilcoxon rank sum test. *, P, 0.05; **, P, 0.01; ***, P, 0.001; ****, P, 0.0001. (c)
Scatterplot of factor 1 (x axis) versus factor 3 (y axis) values. Each dot represents a sample, shaped by the sample group and colored by SCFA
concentrations (in milligrams per milligram of feces). (d) Scatterplot of fungal-to-bacterial absolute level ratios (after log10 transformation) (x axis) versus
SCFA concentrations (after log2 transformation) (y axis). The line represents the linear regression fit, and the shading represents the corresponding 95%
confidence interval. Corresponding Pearson correlation coefficients and P values are also displayed in the top left corner.
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MATERIALS ANDMETHODS
Study design and participants. Patients were recruited as part of a large prospective observational

study in critically ill patients admitted to the ICU (Molecular Diagnosis and Risk Stratification of Sepsis
[MARS] study [ClinicalTrials.gov identifier NCT01905033]) (6, 60). A total of 33 randomly selected adult
patients who were admitted to the ICU of the Academic Medical Center (Amsterdam, The Netherlands)
between October 2012 and November 2013 were included. Patients who were transferred from other
ICUs or had an expected length of ICU stay of ,24 h were excluded. All patients met at least two of the
following criteria: body temperature of #36°C or $38°C, tachycardia of .90 beats/min, tachypnea of
.20 breaths/min or partial pressure of carbon dioxide (pCO2) of ,4.3 kPa, and leukocyte count of
,4� 10E9 leukocytes/liter or.12� 10E9 leukocytes/liter. Sepsis was defined when the inclusion criteria
were associated with suspected infection within 24 h after ICU admission, with subsequent systemic
therapeutic administration of antibiotics to the patient (6). The control group consisted of 13 healthy,
nonsmoking, Caucasian male subjects (aged 18 to 25 years; mean age, 22 years) who had not taken anti-
biotics during the previous year (ClinicalTrials.gov identifier NCT02127749) (29, 61). Six healthy subjects
received oral broad-spectrum antibiotics (ciprofloxacin at 500mg q12h, vancomycin at 500mg q8h, and
metronidazole at 500mg q8h) for 7 days. Subjects were asked to collect fecal samples before antibiotic
treatment and 1 day after the 7-day course of antibiotics. Fresh stool samples from ICU patients were
stored at 4°C and transferred to 280°C within 24 h of collection. Fecal samples from healthy subjects
were collected in plastic containers, stored at 220°C at home, and transported to the study center for
storage at 280°C within 24 h.

Bacterial and fungal microbiota sequencing. Fecal DNA was extracted and purified using a combi-
nation of repeated bead beating (method 5) (62) and the Maxwell 16 tissue Low Elution Volume total
RNA purification kit (Promega, Madison, WI, USA), with STAR (stool transport and recovery) buffer
(Roche, Basel, Switzerland). Negative extraction controls (DNA-free water) were processed in a similar
manner.

Twenty nanograms of DNA was used for the amplification of the bacterial 16S rRNA gene with the
V3-V4 341F forward primer and the 805R reverse primer for 25 cycles. The PCR was performed in a total
volume of 30ml containing 1� High Fidelity buffer (Thermo Fisher Scientific, Waltham, MA, USA); 1ml
deoxynucleoside triphosphate (dNTP) mix (10mM; Promega, Leiden, The Netherlands); 1 U of Phusion
green high-fidelity DNA polymerase (Thermo Fisher Scientific, Waltham, MA, USA); 500 nM the forward
8-nucleotide (nt) sample-specific barcode primer containing the Illumina adapter, pad, and link (341F
[59-CCTACGGGNGGCWGCAG-39]); 500 nM the reverse 8-nt sample-specific barcode primer containing
the Illumina adapter, pad, and link (805R [59-GACTACHVGGGTATCTAATCC-39]); 20 ng/ml of template
DNA; and nuclease-free water. The amplification program was as follows: an initial denaturation step at
98°C for 30 s; 25 cycles of denaturation at 98°C for 10 s, annealing at 55°C for 20 s, and elongation at 72°
C for 90 s; and an extension step at 72°C for 10min (63). The size of the PCR products (;540 bp) was
confirmed by gel electrophoresis using 4ml of the amplification reaction mixture on a 1% (wt/vol) aga-
rose gel containing ethidium bromide (AppliChem GmbH, Darmstadt, Germany).

Fungal composition was determined by ITS1 amplicon sequence analysis. PCR-generated amplicon
libraries were obtained from 100 ng fecal DNA using the ITS1 primer set containing an overhang for the
Illumina Nextera platform (forward primer 59-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTTGG
TCATTTAGAGGAAGTAA and reverse primer 59-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCTGCG
TTCTTCATCGATGC) and Phusion high-fidelity DNA polymerase (Thermo Fisher Scientific, Waltham, MA,
USA). A duplicate reaction in 20ml was performed with following thermocycling conditions: an initial
denaturation step at 98°C for 1min followed by 35 cycles of denaturation (20 s), annealing (20 s at 58°C),
and extension (60 s at 72°C) and a final extension step at 72°C for 5min. The duplicates were pooled to a
final volume of 40ml. The PCR products were purified with AMPure XP beads (Beckman Coulter, Brea,
CA, USA) and taken into 15ml DNA-free water. A second amplification step was used to introduce multi-
plex indices and the Illumina sequencing adapters using the Kapa polymerase system. The reaction was
performed in 40 ml using the following thermocycling conditions: initial denaturation at 95°C for 3 min
followed by 24 cycles of denaturation (20 s at 98°C), annealing (20 s at 60°C), and extension (60 s at 72°
C) and a final extension step at 72°C for 5 min.

Bacterial and fungal PCR products were purified using AMPure XP beads (Beckman Coulter, Brea, CA,
USA). The amplicon DNA concentration was measured using the Qubit fluorometric quantitation
method (Thermo Fisher Scientific, Waltham, MA, USA), and DNA quality was determined using the
Agilent Bioanalyzer DNA-1000 chip, after which the purified products were equimolarly pooled. The
libraries were sequenced in a paired-end run with 251 cycles on an Illumina MiSeq platform
(GATCBiotech, Constance, Germany) using V3 chemistry. Forward and reverse reads were truncated to
240 and 210 bases, respectively, and merged using USEARCH (64). Merged reads that did not pass the
Illumina chastity filter, had an expected error rate higher than 2, or were shorter than 380 bases were fil-
tered. Amplicon sequencing variants (ASVs) were inferred for each sample individually with a minimum
abundance of 4 reads (25). Unfiltered reads were then mapped against the collective ASV set to deter-
mine the abundances. Bacterial taxonomy was assigned using the RDP classifier (65) and SILVA 16S ribo-
somal database V132 (66). Fungal taxonomy was assigned using the UNITE database (67). Of note, for
the purpose of this study, the bacterial microbiomes of ICU patients (6) and volunteers (29) were rese-
quenced together to reduce batch effects.

Viral microbiota sequencing and analysis. The collected fecal suspension was centrifuged to pellet
cells and debris, and nucleic acids in the supernatant were extracted using the Boom method (68), fol-
lowed by reverse transcription with nonribosomal random hexamers (69) and second-strand synthesis.
DNA was digested with MseI (T^TAA; New England BioLabs, Ipswich, MA, USA) and ligated to adapters
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containing a sample identifier sequence. Next, size selection with AMPure XP beads (Beckman Coulter,
Brea, CA, USA) was performed to remove small DNA fragments prior to a 28-cycle PCR using adapter-
annealing primers. Small and large size selection was performed with AMPure XP beads to select DNA
strands with a length ranging between 150 and 550 nucleotides. Libraries were analyzed using the
Bioanalyzer (high-sensitivity [HS] kit; Agilent Genomics, Santa Clara, CA, USA) and Qubit (dsDNA [dou-
ble-stranded DNA] HS assay kit; Thermo Fisher Scientific, Waltham, MA, USA) instruments to quantify the
DNA length and concentration, respectively. Sample libraries were pooled at equimolar concentrations.
In total, 50 pmol DNA of the pool was clonally amplified on beads using the Ion Chef system (Thermo
Fisher Scientific, Waltham, MA, USA), and sequencing was performed on the Ion PGM system (Thermo
Fisher Scientific, Waltham, MA, USA) with the Ion 316 chip (400-bp read length and 2 million sequences
expected per run).

VIDISCA-NGS reads were aligned using BWA-MEM (70) to a reference database consisting of the
human reference genome (hg38), the SILVA SSU V132 database (66), and all RefSeq viral genomes
(downloaded in September 2019). Mapping outputs were further processed using the PathoID module
of PathoScope 2.0 (71, 72) to reassign reads with multiple alignments to their most likely target. Viral
candidates were aligned back to the reference database with BLASTn, and those aligning at $95% for
100 bp were retained as hits. To ensure that all known eukaryotic viruses were detected with this
approach, all reads that remained unmapped in the BWA-MEM step were analyzed with a separate virus
discovery bioinformatic pipeline described in detail previously (28). Briefly, rRNA reads were identified
with SortMeRNA v2.1, non-rRNA reads were made nonredundant using CD-HIT v4.7, and these were
queried against a eukaryotic virus protein database using the UBLAST algorithm provided as part of the
USEARCH v10 software package (64). Reads with a significant alignment to a viral protein were subse-
quently aligned to the nonredundant nucleotide database using BLASTn. Those with a best hit to a viral
sequence were regarded as confidently viral, and those not aligning to any sequences were regarded as
putatively viral, while those with a nonviral best hit were regarded as false positives.

Targeted measurement of intestinal protozoa. Automated nucleic acid extraction was performed
on the MagNA Pure 96 instrument (Roche Applied Science, The Netherlands) according to the manufac-
turer’s protocol. DNA was eluted in a 100-ml elution buffer (Roche Applied Science). Phocine herpesvirus
(PhoHV) DNA was added to all samples as an internal control for extraction and amplification efficiency.
The presence of Giardia lamblia, Cryptosporidium parvum, Entamoeba histolytica, Blastocystis hominis,
and Dientamoeba fragilis was assessed by real-time PCR targeting the small-subunit rRNA gene (37).
Positive controls consisting of a plasmid containing the target sequence were included in every run, as
were negative extraction controls and negative PCR controls. Subjects were excluded from further analy-
ses if internal controls tested negative in one or more samples.

Targeted measurement of short-chain fatty acids. Sample preparation of fecal extracts and nu-
clear magnetic resonance (NMR) spectroscopy for the quantification of SCFAs were performed as
described previously by H. K. Kim et al. (73), with some modifications. Briefly, aqueous extracts of feces
were prepared by mixing 50 to 100mg of feces and 0.3ml of deionized water, followed by mechanical
homogenization in a Bullet Blender 24 (Next Avance Inc., Troy, NY, USA). The fecal slurry was centrifuged
twice at 18,213� g for 10min at 4°C, and 0.225ml of the supernatant was mixed with 0.025ml of 1.5 M
potassium phosphate buffer (pH 7.4) containing 2mM sodium azide and 4mM sodium trimethylsilyl-
propionate-d4 (TSP-d4) in D2O. For each sample, the one-dimensional (1D) 1H-NMR spectrum was
acquired in a 14.1 T Avance II NMR instrument (Bruker Biospin Ltd., Karlsruhe, Germany). Quantification
of SCFAs from the NMR spectra was performed in ChenomX (Chenomx NMR suite 8.4) using the known
concentration of TSP-d4.

Quantitative PCR for bacterial and fungal loads. For the measurement of the total bacterial con-
tent in fecal samples, we used a method reported previously by Nadkarni and colleagues (74), with mod-
ifications. Briefly, we used a primer concentration of 500 nM in a final volume of 10ml with the SensiFast
SYBR No-ROX kit (Bioline, London, UK). The amplification conditions were as follows: an initial denatura-
tion step at 95°C for 5 s followed by denaturation (10 s at 95°C), annealing (10 s at 66°C), and extension
(20 s at 72°C) for 44 repetitive cycles in a Bio-Rad (Hercules, CA, USA) CFX96 thermocycler. The primer
set of FungiQuant (75) was used for fungal load determination, with modifications. The final PCR primer
concentration was 500 nM in a volume of 10ml with the SensiFast SYBR No-ROX kit (Bioline, London,
UK). The following amplification program was used: an initial denaturation step at 95°C for 5 s followed
by denaturation (10 s at 95°C), annealing (10 s at 60°C), and extension (20 s at 72°C) in 44 repetitive
cycles in a Bio-Rad (Hercules, CA, USA) CFX96 thermocycler. Following amplification, fungal and bacterial
ratios were calculated using LinRegPCR (76).

Multi-omics factor analysis: model description. The input into multi-omics factor analysis (MOFA)
is a set of M data matrices, Y1,. . ., YM, of dimensions N � Dm, where N is the number of samples and Dm is
the number of features in data matrix m. MOFA decomposes these matrices as

Ym ¼ ZWmT þ «m m ¼ 1; . . . ; M

Here, Z denotes the factor matrix and Wm denotes the weight matrices for each data modality m. «m

denotes the modality-specific Gaussian noise term «m
nd~Nð0; 1=tmd Þ.

The model is formulated in a probabilistic Bayesian framework, where prior distributions are placed
on all unobserved variables of the model. The most important prior is the sparsity-inducing prior in the
weights. MOFA uses a two-level regularization. The first level encourages modality- and factor-wise spar-
sity, thereby allowing the direct identification of which factor is active in which data modality. The sec-
ond level encourages feature-wise sparsity, resulting in a small number of features with nonzero weights
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for each factor. Mathematically, MOFA encodes this by combining an automatic relevance determination
prior for the first type of sparsity and a spike-and-slab prior for the second. Model inference is performed
using variational Bayesian inference with mean-field assumption. We refer the reader to a previous pub-
lication from our group for further mathematical details (38).

Multi-omics factor analysis: downstream analysis. After model fitting, the number of factors was
estimated by requiring a minimum of 5% variance explained across all microbiome modalities. The
downstream characterization of the model output included several analyses:

� variance decomposition. The fraction of variance explained (R2) by each factor in each view is

quantified using a coefficient of determination (38–40),

R2
m;k ¼ 12ðR

n;d
ymnd 2 znkw

m
kd 2 mm

d Þ2=ðRn;d y
m
nd 2 mm

d Þ2

� visualization of weights. The model learns a weight for every feature in each factor, which can be

interpreted as a measure of feature importance. Larger weights (in absolute values) indicate a

higher correlation with the corresponding factor values. The sign of the weight indicates the

directionality of the variation: features with positive weights are positively associated with

the corresponding values, whereas features with negative weights are negatively associated with

the corresponding values.

� visualization of factors. Each MOFA factor captures a different dimension of heterogeneity in the

microbiome composition. Mathematically, each factor ordinates cells along a one-dimensional axis

centered at zero. Samples with different signs manifest opposite phenotypes along the inferred

axis of variation, with a higher absolute value indicating a stronger effect. Note that the

interpretation of factors is analogous to the interpretation of the principal components in PCA.

� denoising by data reconstruction. MOFA generates a compressed low-dimensional representation

of the data. By taking the product of the factors and the weights, the model can reconstruct a

normally distributed denoised representation of the input data. This is particularly useful for the

visualization of sparse readouts.

Data processing for MOFA. The input into MOFA is a set of data modalities with matching samples.
In this case, bacterial 16S rRNA ASVs, fungal ITS1 rRNA ASVs, and viral sequences were defined as sepa-
rate data modalities. As a filtering criterion, bacterial and fungal features were required to have a mini-
mum of 10 ASVs observed in at least 25% of the data set. In addition, to mitigate the sparsity of the data
and to simplify the interpretation, we collapsed the inferred bacterial and fungal ASVs and viral sequen-
ces to their respective family or genus level. The numbers of sequences were subsequently scaled using
a centralized log ratio (41), which has been shown to be effective in normalizing compositional
data (42).

Significance of MOFA factors and downsampling analysis. The significance of the MOFA factors
can be assessed by the variance-explained estimates (per data modality) that result from the variance
decomposition analysis. In addition, we performed a sensitivity analysis to quantify the robustness of
the factors after downsampling the number of samples in the data set. For each downsampled version
of the data, we have retrained a MOFA model, and for each model, we then correlated the resulting fac-
tors with the factors that are found with the full data set (see Fig. S3 in the supplemental material).

Statistics. All analyses were performed in the R statistical framework (version 3.6.1; R Foundation for
Statistical Computing, Vienna, Austria). To assess alpha diversity and richness, we calculated the
Shannon diversity index and the observed taxon richness index with the phyloseq package (17). Data
were not normally distributed and are therefore presented as medians and interquartile ranges (IQRs),
while data were analyzed using a Wilcoxon rank sum test. Associations between factor values and cova-
riates were analyzed using linear regression by Pearson correlation coefficients. Statistical significance is
called at a 10% false discovery rate (FDR).

Ethics approval and consent to participate. Ethical approval for both the patient and healthy sub-
ject studies was received from the Medical Ethics Committee of the Academic Medical Center in
Amsterdam, and all research was conducted in accordance with the Declaration of Helsinki. Written
informed consent was obtained from all healthy subjects and patients or their legal representatives.

Availability of data. Raw sequencing data (bacterial and fungal ASVs and VIDISCA-NGS sequencing
reads) were submitted to the European Nucleotide Archive (ENA) (accession number PRJEB37289).

All code used for analysis is available at https://github.com/bwhaak/MOFA_microbiome. Links to the
processed data are included in the GitHub repository.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, TIF file, 0.8 MB.
FIG S2, TIF file, 1.2 MB.
FIG S3, TIF file, 0.4 MB.
FIG S4, TIF file, 0.1 MB.
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FIG S5, TIF file, 1 MB.
FIG S6, TIF file, 2.1 MB.
FIG S7, TIF file, 1.9 MB.
TABLE S1, DOCX file, 0.02 MB.
TABLE S2, DOCX file, 0.01 MB.
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