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3
STIRAP of a classical state

In multimode optomechanical systems, the mechanical modes can be coupled via the
radiation pressure of the common optical mode, but the fidelity of the state transfer
is limited by the optical cavity decay. In this chapter we demonstrate stimulated Ra-
man adiabatic passage (STIRAP) in optomechanics, where the optical mode is not
populated during the coherent state transfer between the mechanical modes. There-
fore the optical decay channel is avoided. We show a state transfer of a coherent
mechanical excitation between vibrational modes of a membrane in a high-finesse
optical cavity with a transfer efficiency of 86%. Combined with exceptionally high
mechanical quality factors, STIRAP between mechanical modes can enable genera-
tion, storage and manipulation of long-lived mechanical quantum states, which is
important for quantum information science and for the investigation of macroscopic
quantum superpositions.

This chapter is based on: V. Fedoseev, F. Luna, I. Hedgepeth, W. Löffler and D.
Bouwmeester, Stimulated Raman Adiabatic Passage in Optomechanics, Phys. Rev.
Lett. 126, 113601 (2021).

3.1 Introduction

STIRAP describes adiabatic population transfer between two states coherently cou-
pled via a mediating state that remains unoccupied. This renders STIRAP robust
against loss and noise in the mediating state, leading to profound applications in
atomic- and molecular-optics research [16, 36], trapped-ion physics [37], supercon-
ducting circuits [38], other solid-state systems [39, 40], optics [41], in entanglement
generation [42, 43] and qubit operations [44]. STIRAP in optomechanics has been
proposed for optical frequency conversion with a mechanical mode being the medi-
ating state, where the fidelity of the state transfer is not deteriorated by the residual
thermal noise of the mechanical mode [45, 46], and for a mechanical state transfer
through the common optical mode [47].

In a theory paper [48] a method was proposed to create an indirect coupling
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between non-degenerate mechanical modes via a common optical mode. In this
scheme the coupling is created by two stationary red-detuned pump light fields. Ex-
perimentally the coupling was observed in an electromechanical system via splitting
of the hybridized mechanical peaks in the avoided level crossing [49]. The same in-
direct coupling can be seen in the energy transfer between two mechanical modes.
Such a transfer between the two non-degenerate mechanical modes was demon-
strated in [12, 15] where the beating between two driving light fields bridges the
frequency difference of the modes. The motion of the modes modulate the intracav-
ity light fields creating motional sidebands [9]. This transfer scheme relies on the
matched motional sidebands and requires the detuning of the driving fields to be
much higher than the mechanical frequencies [48]. In this case the other unmatched
motional sidebands are of similar amplitudes as the matched ones and cause inco-
herent driving or cooling of the mechanical modes, limiting the state transfer fidelity.
In optomechanical STIRAP in the sideband-resolved regime the loss due to the un-
matched motional sidebands can be made negligibly small by choosing the detuning
of the two driving light fields equal to the frequencies of the mechanical modes. In
this case the two matched sidebands at the cavity resonance interfere destructively
driving the state transfer. The other motional sidebands have much smaller ampli-
tudes. This strongly decreases the unwanted effects of the unmatched motional side-
bands and allows the state transfer fidelity to approach unity in the quantum regime.
Such a state transfer is equivalent to the π-pulse (π rotation on the Bloch-sphere in the
vertical plane). Via a specific modification of the STIRAP driving pulses a π/2-pulse
can be achieved resulting in a fully entangled state. In spite of the two red-detuned
pumps no energy is lost to the environment from the mechanical modes in a STIRAP
transfer with the adiabaticity condition fulfilled.

An indirect cavity-mediated coupling can also be created via one red-detuned
pump and one blue-detuned pump with detunings equal to the corresponding fre-
quencies of the mechanical modes. Such a scheme was realized in electro-mechanical
systems in the quantum regime [50, 51, 52]. The coupling resulted in an entangle-
ment of the two mechanical oscillators. In this scheme the state of the mechanical
mode corresponding to the red-detuned pump (mode 1) is transferred to the other
mechanical mode (mode 2) similar to the two red-detuned pumps scheme. But, in
addition, mode 2 is being driven incoherently by the blue-detuned pump and a fully
entangled state cannot be achieved.

Fig. 3.1(a) shows the basic Λ-type arrangement of 3 levels typical for STIRAP.
In the triply rotating frame at frequencies ωi = Ei/ℏ for states ψi, i = 1, 2, 3, the
Hamiltonian is:

Ĥ(t) =
ℏ
2

 0 Ω12(t) 0
Ω12(t) 0 Ω23(t)

0 Ω23(t) 0

 , (3.1)

with Ω12 and Ω23 the Rabi frequencies resulting from two driving fields at frequen-
cies (E2 − E1)/ℏ and (E2 − E3)/ℏ. One of the three instantaneous eigenstates has
eigenvalue 0 and does only include states ψ1 and ψ3:

Φ0(t) = cos θ(t)ψ1 − sin θ(t)ψ3, (3.2)

with tan θ(t) = Ω12(t)/Ω23(t). The existence of this ”dark” state in optomechanics
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has been firstly demonstrated in [53]. STIRAP is based on the adiabatic following
of Φ0(t) by slowly varying θ(t) from θ(−∞) = 0 to θ(∞) = π/2. Thus, the sys-
tem can be adiabatically transferred from ψ1 to ψ3, never occupying state ψ2. Fig.
3.1(b) shows a driving pulse sequence satisfying this requirement and Fig. 3.1(c)
shows the energy eigenvalues corresponding to the three eigenstates Φ+(t), Φ0(t),
and Φ−(t). This driving pulse sequence together with the adiabaticity condition√
Ω12(t)2 +Ω23(t)2 ≫ θ̇ prevents the lossy mediating state from being occupied

throughout the transfer process.
The Hamiltonian in Eq. (3.1) can be realized in multimode optomechanics [45, 46]

where states 1 and 3 are mechanical excitations with frequencies ω1 and ω2 and state
2 is an optical cavity mode at ωcav, see Fig. 3.1(d). Two optical driving fields at ωLi =
ωcav − ωi for i = 1, 2 are introduced in order to create the beamsplitter interaction
âb̂†i + â†b̂i that couples the mechanical modes to the cavity mode, where â(â†) and
b̂i(b̂

†
i ) are the photon and phonon annihilation (creation) operators.

Frequency

(d)

(a)

Time

(b)

Time

(c)

Figure 3.1: STIRAP scheme in optomechanics. (a) Energy levels diagram. (b) Coupling
strengths of the pulse sequence for the driving fields. (c) The resulting energy eigenvalues
for the instantaneous Hamiltonian eigenstates. STIRAP explores the properties of Φ0(t) given
in Eq. (3.2). (d) The optomechanical implementation contains a cavity mode at frequency ωcav,
two driving fields at ωL1 and ωL2 and eight motional sidebands due to the mechanical modes
at ω1 and ω2 on the driving fields, red bars corresponding to the sidebands on ωL1 and blue
bars corresponding to the sidebands on ωL2. Two sidebands match ωcav. In the case of Φ0(t)
the states ψ1 and ψ3 are out of phase leading to destructive interference of the sidebands that
overlap with ωcav.

The optical mode can be represented by the operator â = ᾱ + δâ, where ᾱ is the
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Figure 3.2: Optomechanical setup. (a) A transparent dielectric membrane patterned with a
phononic crystal is placed in the middle of a high-finesse optical cavity. Shift of the mem-
brane along the axis of the cavity changes the cavity resonance frequency, causing coupling
of light in the cavity to vibrational modes of the membrane. (b) Simulated displacement of a
mechanical mode of the defect of the phononic crystal. The mode is localized as its frequency
lies in the band gap (mode 1, initially excited). (c) Simulated displacement of the 3,3 drum-
head mode of the full membrane (mode 2). This second mode was selected because it has an
appropriate mechanical frequency and quality factor and has a maximum amplitude at the
center. This allows both modes to be aligned for optimal coupling to the same cavity mode.

average coherent amplitude due to the driving optical fields and δâ is the fluctuat-
ing term [9]. Each mechanical mode produces two sidebands on each optical field.
Due to resonance with the cavity the two sidebands with frequencies ωcav acquire
much larger amplitudes than the other sidebands. Taking into account only those
two sidebands and including mechanical and optical loss rates, Γi and κ, the time
evolution of the state vector ψ(t) = (b̂1(t), δâ(t), b̂2(t))

T is given by

i
dψ(t)

dt
=

−iΓ1

2 g1(t) 0
g1(t) −iκ2 g2(t)
0 g2(t) −iΓ2

2

ψ(t). (3.3)

Here, the rotating wave approximation has been used and it is valid in the linearized
regime of cavity optomechanics [9]. gi(t) is the optomechanical multiphoton cou-
pling for mechanical modes i = 1, 2, gi = gi0ᾱi, where gi0 is single photon coupling
and ᾱi is the driving field at ωLi, see section Theory. Equation (3.3) is valid in the
sideband resolved regime together with the requirement |ω1 − ω2| ≫ κ and is iden-
tical to Eq. (3.1) in the absence of losses and with the Rabi frequencies Ω12 and Ω23

corresponding to 2g1 and 2g2.
Experimentally we demonstrate the state transfer in the membrane-in-the-middle

(MIM) configuration [54], where a membrane with low optical absorption is placed
in the center of a high-finesse optical cavity with κ/2π = 54 kHz (including mem-
brane), see Fig. 3.2. A displacement of the membrane along the optical axis leads
to a shift in the optical cavity transmission described by the interaction Hamiltonian
Ĥint = −ℏg0â†â(b̂ + b̂†), where g0 is the single photon optomechanical coupling [9].
The membrane is a highly stressed 25 nm thick SiN film lithographically patterned
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with a phononic crystal with a defect in its center suspended on a silicon frame [7].
There are two types of mechanical modes: whole membrane drumhead modes and
modes localized near the phononic crystal defect with frequencies in the phononic
crystal bandgap. Vibrational energy of the drumhead modes is mainly lost in the
bending regions where the membrane is connected to the frame [55, 7]. The modes
localized near the defect possess enhanced quality factors by 1-2 orders of magni-
tude compared to the drumhead modes [7]. We demonstrate STIRAP between the
fundamental mode of the defect with frequency ω1/2π = 1.25 MHz and quality fac-
torQ = 1.3 ·107 (mode 1, Fig. 3.2(b)), and the 3,3 drumhead mode with ω2/2π = 0.22
MHz and Q = 1.2 · 106 (mode 2, Fig. 3.2(c)). The modes are coupled to the optical
cavity with single-photon couplings of g01/2π = 1.5± 0.1 Hz and g02/2π = 1.0± 0.1
Hz respectively. In addition to these modes possessing relatively large single photon
coupling, quality factors and frequency separation, there are no other mechanical
modes in the range of ∼ 1/σ from ω1 and ω2, where σ defines the width of the driv-
ing pulses. The latter requirement guaranties that modes 1 and 2 are not coupled
to other modes during the transfer. STIRAP is very sensitive to the double-photon
detuning ∆2ph = (ωL1 + ω1) − (ωL2 + ω2) [13], therefore the two optical fields are
created by amplitude modulation of light from a single 1064 nm laser using acousto-
optic modulator (AOM). As a result the laser phase noise is not limiting the transfer
efficiency [56]. Due to nonlinear response of the AOM the detuning of this single
laser light tone is chosen such that harmonics of the AC voltage sent to the AOM
have a negligible effect on the transfer efficiency (see section Generation of driving
pulses). The membrane is in a vacuum chamber with pressure below 10−6 mbar at
room temperature.

3.2 Experimental details

3.2.1 Setup
The motion of the membrane is read out via the light fields generated by a probe
laser at ωprobe (10 µW) locked to the transmission resonance frequency of the opti-
cal cavity via the Pound-Drever-Hall technique (PDH) [34]. In order to measure the
instantaneous oscillation displacement of a mechanical mode ω, the reflection signal
is demodulated at ω + ωEOM, where ωEOM = 10 MHz is the detuning frequency of
the sidebands in the PDH locking scheme. The driving light fields generated by the
pump laser at ωpump is locked to the probe laser by a phase-locked loop, see Fig. 3.3.
The light fields from the two lasers are measured by a fast photodetector and the
beating signal is mixed with a reference microwave signal, supplied by an RF gen-
erator. The resulting signal is sent to a proportional-integral-differential controller
(PID) which adjusts the frequency of the pump laser. The difference between the
lasers frequencies is kept at ωprobe − ωpump = 2FSR + ∆ ∼ 3 GHz because the dis-
persion curves of membrane-in-the-middle systems are parallel for all odd and all
even resonances [18]. This ensures a well-defined cavity resonance detuning of the
pump laser in spite of drifts in the membrane position along the optical axis (∼ 10
nm/hour). The pump light fields have orthogonal polarization to the probe light
fields in order to minimize interference of both fields at the reflection photodetector.
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To excite a membrane mechanical mode, an AC voltage (∼ 10 mV) at its mechanical
frequency is applied to a needle placed close to the defect of the membrane (∼ 0.5
mm). The full membrane 1,1 mechanical mode thermal motion is damped by ap-
plying an electrostatic force through the needle. The force is proportional to the
instantaneous position of this mode but delayed by a quarter of its oscillation, which
effectively creates a frictional force proportional to the mode’s velocity.
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Figure 3.3: Optical setup. The probe laser is locked to the transmission peak of the cavity. The
pump laser is locked to the probe laser with frequency difference ωprobe − ωpump = 2FSR +
∆, controlled by an RF source. The driving pulses are shaped by electronic pulses sent to
the AOM from an arbitrary wave function generator (ArbFunGen). Polarizing beam splitters
(PBS) are used to separate the probe and pump light fields. Mechanical modes are excited by
a needle placed close to the membrane defect.

3.2.2 Membrane positioning

The dispersion curves of a membrane-in-the-middle system are parallel for the curves
separated by 2FSR provided the membrane is positioned exactly in the middle of the
cavity. For a small displacement z of the membrane from the center, the free-spectral
range changes as 2FSR− 2FSRmiddle ∝ 2FSRmiddle

z
L sinπ z

λ , where L is the length of
the cavity and λ is the wavelength. The membrane holder is mounted on a tip-tilt
stage with 3 vacuum compatible motors (1 step ∼ 20 nm). To minimize the influence
of the membrane drift along the optical axis, the membrane was moved towards the
middle of the cavity to z ∼ 30 µm by measuring 2FSR as a function of z, which
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provides an estimate for the direction and amplitude of the movement. To further
minimize the influence of membrane drifts, we use a piezo element to bring the
membrane to the position where 2FSR has a local maximum as a function z. This
position coincides with the maximum optomechanical coupling strength. As a re-
sult an average drift of the membrane during a measurement run of 1 hour causes
an acceptable change of 2FSR ∼ 5 kHz. When the actual experiment is running, we
use the piezo to bring the membrane back to the position of maximum 2FSR every
hour.

3.2.3 Membrane fabrication
We begin the fabrication process of the devices with a commercially supplied 525 µm
thick silicon wafer coated on both sides with 25 nm of LPCVD high-stress silicon ni-
tride. We pattern the phononic crystal structure into the nitride on one side through
the use of standard photolithography. During a second photolithography step, we
use an IR contact aligner to pattern a square hole in photoresist on the opposite side
of the chip. A subsequent Bosch etch step etches through the exposed nitride and re-
moves about 425 µm of the silicon underneath the phononic crystal. After cleaning
the chip in piranha solution, we release the phononic crystal membrane by wet etch-
ing the remaining 100 µm of silicon using KOH at 80◦C. We perform a final clean by
submerging the chip in HF for 1 minute and then we extract it out of IPA and allow
it to dry through evaporation.

Figure 3.4: Photos of the membrane. The left photo is the dark field imaging, any particle
on the membrane is visible as a bright spot. The right photo shows the device on a metallic
holder. The sharp metallic tip for driving via electrostatic forces is also visible in the front.

3.2.4 Generation of driving pulses
Fluctuations in the difference of the frequencies of the two driving pulses must
be much less than 1/Ttransfer for the adiabaticity condition to be satisfied[13]. We
achieve this by generating both driving pulses from the same pump laser by fre-
quency shift, see Fig. 3.5. An AC voltage with frequency ωAOM generates two light
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fields in the first diffraction maximum of the acousto-optical modulator (AOM) with
frequencies ωpump ± ωAOM. In order to independently address both frequencies re-
quired for the state transfer (ωL1 and ωL2), we send two electronic pulses to the AOM
with frequencies ωAOM,i, i = 1, 2 and Gaussian envelopes generated by an arbitrary
function generator (ArbFunGen). The pump laser detuning ∆ = 3.5 MHz is chosen
so that ωLi = ωpump + ωAOM,i = ωcav − ωi for mechanical modes at ωi, i = 1, 2, and
the effect on the transfer process of the other pair of light fields at ωpump − ωAOM,i

and harmonics ωpump + k · ωAOM,i, k = 2, 3, 4, ... is negligible. The measured am-
plitude of the 2nd harmonics is much smaller than that of the 3rd harmonics, as is
represented by the arrows labeled “harm.” in Fig. 3.5. To check the effect of the
harmonics, we excite the mechanical modes to a level much higher than the thermal
motion and we send driving pulses individually during the mechanical decay. With
the above shown value for ∆, mode 2 is not affected by the pulse sent to the AOM at
ωAOM,1 within detection sensitivity, while the measured effect of the pulse at ωAOM,2

on mode 1 agrees well with the theoretically predicted optomechanical effect from
the light fields at ωL2.

2nd
harm.

3rd
harm.2nd

harm.
AOM,1AOM,1

AOM,2AOM,2

cav

cav
 - 

Pump Probe

cav
 + 2FSRL2L1

Frequency
12

Figure 3.5: Scheme of the optical frequencies. The probe laser is locked to the cavity resonance
at ωcav + 2FSR. The amplitude of the pump laser at ωcav −∆ is fully modulated by an AOM
driven with AC voltage at ωAOM,i, thus only the light fields at ωpump±ωAOM,i reach the cavity.
The upper sidebands (ωpump+ωAOM,i) drive the state transfer, while the unwanted light fields
at ωpump−ωAOM,i have a negligible effect due to their large detuning. The nonlinear response
of the AOM leads to harmonics (small red and blue arrows) which we measure to also have a
negligible effect.

3.2.5 Calibration procedure
The transfer efficiency is defined as the ratio of the phonon population in mode 2 at
the end of the transfer process to the phonon population in mode 1 at the beginning.
The number of phonons in a mechanical mode ⟨b̂†i b̂i⟩ + 1

2 ∝ u2i ∝ R2
i , where ui is

the amplitude of oscillation, and Ri is the amplitude of the demodulated reflection
signal measured at ωi + ωEOM. Thus the transfer efficiency is

Eff1→2 =
k2R

2
2(tend,1→2)

k1R2
1(tbeginning,1→2)

, (3.4)

where the state is transferred from mode 1 to mode 2 and ki are coefficients of pro-
portionality. Let us consider the reverse transfer 2 → 1. The product of the transfer
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efficiencies

Eff1→2Eff2→1 =
R2

2(tend,1→2)

R2
1(tbeginning,1→2)

R2
1(tend,2→1)

R2
2(tbeginning,2→1)

(3.5)

does not have any coefficients of proportionality, thus it can be measured directly
without any calibration. For the parameters of the transfer σ = 25 ms and ∆t/σ =
1.25, this product is measured to be 0.73 ± 0.05. This implies that we demonstrate
a transfer efficiency of at least

√
Eff1→2Eff2→1 = 0.855 ± 0.03, independently of

the model and calibrations. A numerical solution of the full model shows that for
the above chosen σ and ∆t, the efficiencies Eff1→2 and Eff2→1 differ by 0.01, which
amounts to the transfer efficiency from the defect mode to the 3,3 mode being 0.86±
0.03, see Fig. 3.6.
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Figure 3.6: Representative single runs of state transfer from mode 1 to mode 2 (left) and in
the opposite direction (right). Left scale, thick lines: phonon population as a function of time,
red line corresponds to mode 1, blue line to mode 2, both divided by the phonon population
of mode 1 in the beginning of the transfer. Right scale, thin lines: multiphoton optomechan-
ical couplings g1(t) red line, g2(t) blue line. The driving field pulses have a nearly Gaussian
temporal profile, but their beginning and ending are modified such that they have zero ampli-
tude outside the pulse. Vertical lines indicate the beginning and ending of the transfer process.
Black stars correspond to the phonon populations used to calculate the transfer efficiency.

The AOM used to shape the driving pulses has a non-linear intensity vs voltage
response, which causes the actual temporal profile of the pulse’s intensity to deviate
from a Gaussian shape. Another consequence of this non-linearity is that the sum
of intensities of individual pulses is not equal to the intensity of the pulse resulting
from two Gaussian pulses being added and sent to the AOM. To account for these
undesired effects, we measured the time profiles of the multiphoton optomechanical
coupling gi(t) as follows. We excite mode 1 to a level much higher than the thermal
occupation. During the mechanical decay, we send a single short Gaussian pulse
g1(t, σ) to the cavity, with frequency ωL1 and the same peak intensity as used for the
STIRAP measurements. We adjust σ for this pulse so that exactly half of the initial
excitation energy is lost due to the optomechanical damping. This gives σ1,1/2 =
0.12± 0.01 ms. Numerical solution of Eq. (3.3) for such a pulse gives the peak value
of the pulse max g1(t) ∼ 2 kHz. Next a similar procedure is followed for mode 2,
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but σ of the pulse is set equal to σ1,1/2, and the peak value of the pulse is set so that
exactly half of the initial excitation of mode 2 is lost after the pulse g2(t, σ1,1/2) at ωL2.
This gives the estimate of max g2(t) ∼ 2 kHz and the required voltage amplitude sent
to AOM in the pulse.

To get the actual temporal profile of gi(t), we measure in transmission the time
profiles of the intensities of the pulses used for the transfer, with σ = 25 ms and with
each value of ∆t/σ used for the measurements (-1, -0.75, -0.5, .., 3.5, 3.75, 4). In order
to measure the exact temporal intensity profile of both STIRAP pulses individually,
while both pulses are simultaneously applied (STIRAP sequence), the pump laser
detuning ∆ is adjusted such that ωcav−ωL1 ∼ κ, while ωL2+ω2 = ωL1+ω1 as always,
making |ωcav −ωL2| ≫ κ. Therefore the transmitted light consists almost exclusively
of the intensity at ωL1. To correct for the small fraction of light at ωL2, we send this
pulse individually with the same detunings, and subtract the measured transmission
from the case when both pulses are present. We follow the same procedure in order
to measure the individual intensity of light at ωL2. The measured intensity profiles
of the pulses are used in the numerical simulations presented here.

3.3 Theory

Here we derive Eq. (3.3) and the full model which accounts for the unmatched side-
bands. We start from the optomechanical equations of motion [9] in the presence of
two mechanical modes b̂i and two coherent driving fields at ωL1 and ωL2 with the
condition ωL1+ω1 = ωL2+ω2 = ωcav, where ωi is the frequency of mechanical mode
i, i=1,2. In the linearized approximation and in the frame rotating at ωcav, the total
intracavity light fields â is

â = |ᾱ1(t)|ei(ω1t+ϕ1) + |ᾱ2(t)|ei(ω2t+ϕ2) + δâ, (3.6)

where ᾱi is the amplitude of the intracavity field due to driving field i, ϕi is a con-
stant and δâ is a fluctuating term. The evolution of δâ is given by

δ ˙̂a = −κ
2
δâ+ i(G1x̂1 +G2x̂2)â, (3.7)

where Gi is the optical frequency shift per displacement of the mechanical mode
x̂i = xzpm,i(b̂i+ b̂

†
i ) with xzpm being the zero-point motion of mode i. Neglecting the

thermal occupation of the environment, the mechanical modes evolve as

˙̂
bi = (−Γi

2
− iωi)b̂i + ig0iâ

†â, (3.8)

where g0i is the single photon optomechanical coupling of mode i. In the frame
rotating at ωi for both mechanical modes ĉi = ei(ωit+ϕi)b̂i

˙̂ci = −Γi

2
ĉi + ig0iâ

†âei(ωit+ϕi). (3.9)

The sidebands at ωcav have much larger amplitude than the other sidebands. Thus
RWA is a good approximation for this situation. Applying RWA and linearizing, we
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obtain

â†âei(ωit+ϕi) = (|ᾱ1|e−i(ω1t+ϕ1) + |ᾱ2|e−i(ω2t+ϕ2) + δâ†)×
× (|ᾱ1|ei(ω1t+ϕ1) + |ᾱ2(t)|ei(ω2t+ϕ2) + δâ)ei(ωit+ϕi) =

= |ᾱi|δâ,

˙̂ci = −Γi

2
ĉi + ig0i|ᾱi|δâ, (3.10)

δ ˙̂a = −κ
2
δâ+ iG1xzpm,1|ᾱ1|ĉ1 + iG2xzpm,2|ᾱ2|ĉ2. (3.11)

Using the multiphoton optomechanical coupling gi(t) = Gixzpm,i|ᾱi(t)|, changing
notation ĉ→ b̂ and δâ→ −δâ we get Eq. (3.3):

i
˙̂
bi = −iΓi

2
b̂i + gi(t)δâ, (3.12)

iδ ˙̂a = −iκ
2
δâ+ g1(t)b̂1 + g2(t)b̂2. (3.13)

Next, we consider the full model which includes the unmatched sidebands by
not using RWA. We start with the linearized equation for the light fields Eq. (3.11)
and the expression x̂i = xzpm,i(b̂i + b̂†i ). Using Eq. (3.10) we get

δ ˙̂a = −κ
2
δâ+ i(g01(b̂1 + b̂†1) + g02(b̂2 + b̂†2))×

× (|ᾱ1(t)|ei(ω1t+ϕ1) + |ᾱ2(t)|ei(ω2t+ϕ2)).
(3.14)

The dynamics of the mechanical modes is still described by Eq. (3.12). As before we
change the frame by applying the transformation ĉi = ei(ωit+ϕi)b̂i. In the expansion
of its last term ig0iâ

†â the terms not including δâ can be omitted and we get

˙̂ci = −Γi

2
ĉi + ig0ie

i(ωit+ϕi)×

× (|ᾱ1(t)|e−i(ω1t+ϕ1)δâ+ |ᾱ2(t)|e−i(ω2t+ϕ2)δâ+

+ |ᾱ1(t)|ei(ω1t+ϕ1)δâ† + |ᾱ2(t)|ei(ω2t+ϕ2)δâ†).

(3.15)

To simulate this model we average the operators â, ĉ to get the classical fields. Simu-
lation of this model for the experimental parameters is done by solving these differ-
ential equations.

The transfer efficiencies calculated by the full model start to deviate from ones
by Eq. (3.3) by more than 3% for pulses with σ ≳ 25msec. We see negligibly small
dependence of the transfer efficiency on ϕ1 − ϕ2.

Note, simulations show that using Eq. (3.3) with added corrections due to the
optical spring effect of the unmatched sidebands give incorrect result.
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3.4 Results

STIRAP with parameters tuned for maximum phonon number state transfer effi-
ciency is shown in Fig. 3.7. The measurement of a typical transfer process has the
following sequence: mode 1 is excited to an amplitude much higher than its thermal
occupation by applying an AC voltage in resonance with the mechanical frequency
to a needle positioned close to the center of the membrane. During its free decay the
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Figure 3.7: Experimental optomechanical STIRAP. (a) Left scale: phonon number as a func-
tion of time, red dots correspond to averaged measurements for mode 1 (ψ1), blue dots for
mode 2 (ψ3). The prefactor 109 is a rough estimate. Light red and light blue regions rep-
resent the phonon populations with statistical uncertainties (1 standard deviation) obtained
from simulations without free fit parameters. Right scale: multiphoton optomechanical cou-
pling strengths, calculated from measured pulse intensities. The driving field pulses have a
nearly Gaussian profile with the standard deviation parameter σ and separation ∆t, but their
beginning and ending are smoothly truncated to zero. Black stars correspond to the phonon
populations used to calculate the transfer efficiency (5% of the peak voltage sent to the AOM).
(b) Measured phases of mode 1 (red) and mode 2 (blue) in the rotating frame.
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two optical pulses are sent which transfers the excitation of mode 1 to mode 2. The
transfer starts with the beginning of pulse 1 (red) and finishes with the end of pulse
2 (blue), these moments are denoted by dashed vertical lines. The transfer efficiency
is calculated as the ratio of the number of phonons in mechanical mode 2 at the end
of the transfer to the number of phonons in mechanical mode 1 at the beginning of
the transfer (black stars). A theoretical model without free fit parameters was de-
veloped in the classical limit to simulate the transfer process taking into account the
corrections due to the other sidebands and the measured profiles of the light pulses
(see section Theory), and shows excellent agreement to the experimental data in Fig.
3.7(a). Simulations show that the average rate of loss through the optical mode is
∼1 Hz in the dark state during the transfer. We observe small variations in the fre-
quencies of the mechanical modes with each STIRAP sequence. To account for these
variations, we measure the mechanical frequencies in thermal motion and adjust the
values of the mechanical frequencies for the driving pulse generation accordingly
before each STIRAP sequence.

In our realization of STIRAP using coherent state populations, i.e. in the classical
regime, the phases of the mechanical modes during the transfer can be continuously
monitored, see Fig. 3.7(b). There are four time domains with distinct behavior of
phases: in domain 1 g1(t) = 0 and the phase of mode 1 is defined by the excitation
used to drive it, while mode 2 is in its thermal motion, thus the difference between
the phases is random; in domain 2 STIRAP starts and the phase of mode 2 adjusts
itself until the sidebands at ωcav become π out of phase; in domain 3 the phase of the
locked mechanical modes changes due to the optomechanically induced frequency
shift from field ωL2 (unmatched sidebands); in domain 4 the read-out signal of mode
1 becomes much less than the read-out noise.

Next we investigate the dependence of the transfer efficiency on the parameters
of the process. First the time delay between the optical pulses ∆t is varied, see Fig.
3.8. The adiabaticity condition becomes more and more violated when the separation
between the pulses is too small or too large, leading to decreasing efficiency. Then
the duration of the pulses σ is varied while keeping the time delay ∆t optimal. The
adiabaticity condition is satisfied increasingly better with longer pulses such that for
pulses with σ = 100 ms only 2% of the initial phonon population in mode 1 is lost
through the population and decay of the optical mode. Nevertheless the efficiency
starts to decrease for σ ≳ 25 ms due to the mechanical decay of the modes, setting
the upper bound on the transfer efficiency. The solid curves in Fig. 3.8(a-b) are
numerical results and Fig. 3.8(c-d) compare experiment and simulations for varying
∆t and σ. We observe an increasing discrepancy between measured and simulated
data for the state transfer with σ ≳ 25 ms. This is caused by membrane heating from
the driving pulses and by the defect mode frequency dependence on the amplitude
of the full membrane 3,3 mode, see below.

3.4.1 Membrane heating and non-linear effects

We observe increasing discrepancy of measured and simulated data for the state
transfer with σ ≳ 25 msec. This is caused by membrane heating by the driving
pulses and by the defect mode frequency dependence on the amplitude of the full
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membrane 3,3 mode. Driving pulses heat the area of the membrane in the vicinity
of the defect which decreases its frequency by ∼ 5 Hz (out of 1.25 MHz) through
thermal expansion leading to a decrease in the local stress. We observed a frequency
change of the defect mode persisting for some time after a driving pulse. The other
effect that changes the frequency of the defect mode is non-linearity of the mem-
brane. In the realization of STIRAP, the level of excitation of the 3,3 mode should be
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Figure 3.8: The transfer efficiencies under different parameters of the optical pulses. (a) The
transfer efficiency as a function of the ratio of the delay between the pulses ∆t and the Gaus-
sian pulse width σ. Positive values of ∆t correspond to the case that the field at ωL2 is applied
before the field at ωL1. (b) Maximal transfer efficiencies as a function of σ. In (a) and (b) the red
dots show measured efficiencies in individual runs, black dots are the simulated efficiencies,
and the black lines are guides to the eye. The increasing error bars for larger σ in (b) are due
to observed but not accounted for small non-linear and heating effects. (c) and (d) show the
experimental (c) and predicted (d) transfer efficiency as a function of the Gaussian parameter
σ and separation ∆t. The horizontal row of dots in (c) and (d) correspond to the data shown
in (a), while the vertical row of dots correspond to the data shown in (b). The transfer process
for the parameters corresponding to the open circle in (c) and (d) is shown in Fig. 3.7.
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much higher than its thermal occupation. This requires relatively large amplitudes
of the 3,3 mode which effects the frequency of the defect mode through increased
stress in the membrane averaged over an oscillation of the 3,3 mode. We observed
an increase of the frequency of the defect mode when the 3,3 mode is excited by a
couple of Hz.

To calculate ωL1 and ωL2 we measure the frequencies of the mechanical modes in
their thermal motion before each STIRAP sequence. The two effects described above
shift the frequency of the defect mode, effectively introducing a small two-photon
detuning with complicated dependence on time, which we do not take into account
in our simulations. This small two-photon detuning of the order of 5Hz becomes
comparable to the width of the two-photon detuning curve and starts influencing
the state transfer with σ ≳ 25 msec as the width of the two-photon detuning curve
is inversely proportional to σ.

A signature of STIRAP [13] is strong sensitivity of the transfer efficiency to the
two-photon detuning ∆2ph = (ωL1 + ω1) − (ωL2 + ω2) given ∆1ph = 0, compared
to the sensitivity to the single-photon detuning ∆1ph = ωcav − (ωL1 + ω1) given
∆2ph = 0, Fig. 3.9. The frequency scale for the two-photon detuning is set by the
duration of the transfer process: ∆2ph ∼ π/τtransfer, implying that the sidebands
at ωcav accumulate a phase difference of π during the transfer and consequently no
longer interfere destructively. The frequency scale for ∆1ph is set by the optical cavity
linewidth κ: non-zero ∆1ph leads to changes in the intracavity light fields intensities
and in the amplitudes of the sidebands.
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Figure 3.9: (a) The transfer efficiency as a function of the two-photon detuning ∆2ph with zero
single-photon detuning. (b) The efficiency as a function of the single-photon detuning ∆1ph

with zero two-photon detuning. In (a) and (b) the red circles are measured efficiencies in in-
dividual runs, and the shaded regions are simulated efficiencies with statistical uncertainties.
The simulated curve in (a) has a frequency correction of 4 Hz caused by small non-linear and
heating effects.
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The highest phonon number transfer efficiency we observe in our system is 86±
3%. The highest demonstrated state transfer efficiencies in other systems are: trans-
mon qubit 83% [38]; Bose–Einstein condensate of atoms 87% [57]; trapped ions 90%
[37]; superconducting Xmon qutrit 96% [58]; doped crystals 98±2% [59]; atom beams
98±2% [60]. In general, the STIRAP scheme in optomechanics can result in the trans-
fer efficiencies close to unity if the following set of requirements is satisfied:

ωi ≫ κ,

|ω1 − ω2| ≫ κ,

κ≫ max gi(t),

τ max g2i (t) ≫ κ,

Γiτtransfer ≪ 1.

(3.16)

The first two inequalities allow to address the mechanical modes individually; the
third one is the weak coupling regime; the forth one is the adiabaticity condition; the
last inequality assumes that the loss due to intrinsic mechanical decay during the
transfer is small. This set of stringent requirements applies both to the classical and
the quantum regime of STIRAP in optomechanics. Other experimental challenges
are the accurate control of 1- and 2-photon detunings, circumventing detrimental
effects of the unmatched sidebands, and proving stable subwavelength positioning
of the membrane to maximize the coupling strength.

3.5 Conclusions

Here we have shown the first optomechanical implementation of STIRAP and demon-
strated a maximum phonon number state transfer efficiency of 86 ± 3%. The effi-
ciency is benchmarked against variation in the STIRAP pulse duration and separa-
tion as well as against the STIRAP single- and 2-photon detuning and is found to be
in good agreement with theory. Our quantum simulations show that STIRAP of a
single phonon Fock state is feasible to observe with demonstrated technology. Fur-
thermore, modified versions of STIRAP (fractional STIRAP [61], tripod STIRAP [62])
can be used to create and detect entangled mechanical states. Therefore, STIRAP in
optomehanics can play an important role in quantum information protocols and in
generating macroscopic superposition states.


