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2
Squeezed mechanical state

In this chapter we demonstrate strong optomechanical squeezing of a thermal state
in the membrane-in-the-middle setup. Parametric modulation is used to squeeze
the in-phase quadrature. The out-of-phase quadrature is restrained from diverging
by a single-quadrature active feedback cooling. The parametric modulation is ac-
complished by modulating the detuning of a red-detuned pump light fields at twice
the frequency of the mechanical mode, while the feedback cooling is provided by
electrostatic forces from a sharp metallic tip in the vicinity of the mechanical mode.

This chapter is based on: S. Sonar, V. Fedoseev, M.J. Weaver, F. Luna, E. Vlieg,
H. van der Meer, D. Bouwmeester and W. Löffler, Strong thermomechanical squeez-
ing in a far-detuned membrane-in-the-middle system, Physical Review A 98, 013804
(2018). The experiment was performed together with Sameer Sonar.

2.1 Introduction

Non-classical states of a mechanical oscillator are of considerable interest to im-
prove the measurement sensitivity of an optical interferometer with mirrors attached
to a mechanical resonator (as needed for example for gravitational wave detectors
such as LIGO and VIRGO), and for fundamental tests of quantum mechanics [19].
Here we discuss a method to produce a mechanical state where one of the motional
quadratures is diminished at the expense of the other quadrature. The method is ap-
plied to a thermal state while generally it works also in the quantum regime. Meth-
ods have been proposed to generate squeezing in the classical [20, 21] and in the
quantum regimes [2, 22, 23, 24, 25]. Experimental demonstrations [26, 27, 28, 29, 30]
of squeezing include an observation of 4.7 dB squeezing below the zero point motion
[19].

The idea of squeezing is based on a parametric oscillator, where the spring con-
stant is modulated at twice the mechanical frequency Ωm. Let’s consider a response
of such an oscillator to the in-phase excitation fs sinΩt and out-of-phase excitation
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fc cosΩt for frequencies Ω:
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Let’s find the steady state solution of this equation in the form

x = A sinΩt+B cosΩt (2.2)

and in the limit of high quality factor Q≫ 1, where A and B are mechanical suscep-
tibilities. Noticing that
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and neglecting terms rotating at 3Ω, for Ω ≈ Ωm we get
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(2.4)

where we introduced gain g = ϵQ
2 . Therefore, in the presence of the parametric

modulation the response of the oscillator depends on the phase of the modulation
relative to the excitation force acting on the oscillator. Significantly, in the presence of
the in-phase excitation and g > 1 the motion of the oscillator becomes unstable: the
amplitude of motion grows exponentially with time. If g < 1, a steady state solution
exists with different susceptibilities A and B.

Now, extending this analysis to the case of a mechanical oscillator excited by
thermal forces, we get the variances of the oscillator quadratures of motion x(t) =
X2(t) sinΩmt+X1(t) cosΩmt [31, 9]:
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,

⟨X2
1 ⟩ =

kBT

meffΩm

1

1− g
,

(2.5)

where meff is the effective mass of the oscillator, T is its temperature. In the absence
of the modulation g = 0 the oscillator is in a thermal state with equal quadrature
variances

σ0 = ⟨X2
1 ⟩ = ⟨X2

2 ⟩ =
kBT

meffΩm
. (2.6)

It can be seen that modulating the oscillator with g < 1 the thermal state becomes
squeezed. Maximal squeezing is achieved when g → 1: in this case ⟨X2

2 ⟩ → +σ2
0/2

and ⟨X2
1 ⟩ → ∞.

Thus parametric modulation squeezing is limited to 1/2 or ∼ 3 dB. This limit
is not universal, it can be overcome by cooling the diverging quadrature. In this
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approach g may become larger than 1. This was demonstrated experimentally using
active feedback on the diverging quadrature [31, 32].

How can parametric modulation be achieved in an optomechanical system? The
intracavity light fields modify the spring constant and the damping rate of an op-
tomechanically coupled oscillator via the optical spring effect. This effect can be
used to modulate the overall spring constant of an oscillator and perform the para-
metric modulation. The optical spring effect is a function of the light fields detuning
∆ = ωL − ωcav. If the detuning is modulated at twice the mechanical frequency,
then the frequency of the mechanical mode is also modulated at twice the mechan-
ical frequency. This approach was demonstrated in a sideband-unresolved system
[33] by modulation of the pump light fields detuning. Here we demonstrate 8.5 dB
squeezing of a mechanical state using the same technique but in a sideband-resolved
regime.

The remainder of this chapter is structured as follows. First we describe our
setup, the realization of the parametric modulation and active feedback cooling.
Next we show the experimental results of the parametric modulation only. Finally
we stabilize the diverging quadrature and show a beyond 3 dB squeezing.

2.2 Setup

Our setup consists of a high mechanical quality transparent membrane placed in
the middle of a high-finesse 98 mm optical cavity. The membrane is a high-stress (1
GPa) Si3N4 50 nm thick membrane attached to a silicon chip available commercially
from NORCADA Inc, see Fig. 2.1. A sharp metallic tip is positioned in the vicinity
of the membrane. Generally, there are charges on the membrane, application of a
voltage to the tip induces a force on the membrane. The cavity consists of two DBR
mirrors with 10 ppm transmission (specs) from Laseroptik GmbH implying optical
finesse of 3 × 105, but optical ringdown measurements showed finesse of 6 × 104

and much smaller than expected transmission consistent with 40 ppm of absorption.
This can be explained by dust particles visible by naked eye in the mirror holding
box as delivered from the company. The mirrors were cleaned by blowing clean He
gas. Insertion of the membrane in the cavity reduced the optical finesse further to
3.3 × 104. The setup is placed in a room temperature vacuum chamber pumped by
an ion pump to pressure of ∼ 10−6 mbar. The membrane holder can be tip-tilted
in situ by three rotary piezo stick-slip motors with a step size of about 20 nm, see
Fig. 2.2. The motors are used to maximize the transmission signal and membrane
positioning.

The membrane is positioned ∼ 30 µm from the exact center along the optical axis
of the cavity by measuring the 2FSR value. The detailed description can be found in
the next chapter.

We performed experiments with the fundamental vibrational mode of the mem-
brane having resonance frequency Ωm = 385 kHz, effective mass meff = 30 ng and
mechanical quality factor Q = 3× 105, further called mechanical mode.

The optical setup is shown in figure 2.3. A weak probe laser (10 µW) is used
to trace the resonance of the cavity via the Pound-Drever-Hall locking technique
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Figure 2.1: Photo of the membrane on a sample holder. The sharp tip does not touch the
membrane.

(PDH) [34]. To accomplish this the probe laser light goes through an electro-optical
modulator (EOM) modulated at 9.5 MHz. The light back-reflected from the cav-
ity is detected by a photodetector and its signal is demodulated at 9.5 MHz to get
the PDH error signal. This error signal is sent to a proportional-integral-differential
controller (PID) providing feedback to the probe laser. The feedback bandwidth is
much smaller than Ωm. The PDH error signal is also demodulated at Ωm to get the
two motional quadratures X1(t) and X2(t) of the mechanical mode.

A strong pump laser is used to modulate the frequency of the mechanical mode
by dynamic backaction. The optical fields back-reflected from the optical cavity are
directed towards detectors using an optical circulator. The pump and probe fields
are separated by a polarizing beam splitter (PBS). To decrease possible interference
effects at the detectors even further, different cavity resonances are used for the probe
and pump lasers. The pump laser is locked to the probe laser with a frequency
difference ∼ 3 GHz by a phase-locked-loop: the light from both lasers interferes on
a fast photodiode which produces a beat electronic signal, see Fig. 2.4. This beat
signal is mixed with a reference radio-frequency (RF) signal produced by a signal
generator and sent to a low pass filter. The resulting signal is sent to a PID controller
which provides feedback to the pump laser maintaining the frequency difference of
the lasers equal to the RF signal frequency. This frequency difference is set to 2FSR
+ ∆, where ∆ is the required detuning of the pump laser from the cavity resonance.
We chose 2FSR because the consecutive resonance frequency difference 1FSR is a
function of the membrane position x (see Fig. 1.3 from Chapter 1), while 2FSR is
not in the case when the membrane is exactly in the middle of the cavity. The pump
frequency detuning ∆ is modulated at 2Ωm using a signal ∝ sin (2Ωmt+ ϕ), this
signal is added to the pump feedback signal. The feedback bandwidth of the phase-
locked-loop is much smaller than 2Ωm and thus the added modulation does not
affect the frequency locking between the lasers. The phase ϕ is adjusted to align the
squeezing axis such that X2 quadrature is squeezed.

A change in the detuning of the pump laser ∆ with fixed light intensity out-
side the cavity leads also to a change in the effective quality factor of the oscilla-
tor. Figure 2.5 shows the measured frequency shift δΩm and the effective damping
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Figure 2.2: Setup in a room temperature vacuum chamber. The first cavity mirror is visible
pressed against the Invar body. The sample holder is mounted on a motorized tip-tilt stage
(black).
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Figure 2.3: Optical setup.

ProbePump

Frequency
2FSR

Figure 2.4: The probe and pump laser frequencies.

Γeff = Ωm/Q + Γopt, where Γopt is the optical damping due to dynamic backaction
in a detuning ∆ sweep. Note, the intracavity light intensity also changes when the
detuning is changed. δΩm and Γeff were extracted from fitting the noise spectrum
of the mechanical mode. We highlight three different detuning regions in this plot
where the slope of the frequency shift is much larger than the slope of the damping
curve as required by our model Eq. 2.1. Region I was hard to realize for our sys-
tem because due to fluctuations in the detuning the detuning occasionally becomes
positive and the lock of the probe laser is lost. In region II the second derivative of
the frequency shift is significant which makes the modulation non-linear. Region III
where ∆ = −1.43Ωm is most practical due to stability considerations of our system.

In the case of an ideal membrane the modulation of the intracavity light intensity
at 2Ωm should excite the 2,2 vibrational mode. For our membrane the frequency of
the 2,2 mode is however a few hundred Hertz away from 2Ωm, so this mode is not
excited due to the parametric modulation.

Figure 2.6 shows phase-space trajectories under different conditions. Figure 2.6(a)
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shows a thermal state with effective temperature T = 120 K when the pump light
is on and is not modulated, providing a weak cooling effect only. When the pump
modulation is on, the X2 quadrature becomes squeezed and the X1 quadrature be-
comes enhanced, Fig. 2.6(b). When the modulation strength is increased even further
to surpass the limit g = 1, the motion becomes bi-stable probably due to non-linear
mechanical effects in the membrane, Fig. 2.6(c) and 2.6(d).

Figure 2.5: Optical spring effect as a function of the pump detuning ∆ showing three regions
I, II and III where frequency modulation can be realized.

2.3 Active feedback

To achieve stronger squeezing we applied active feedback to cool the diverging
mode X1 only.

The mechanical mode can be cooled by applying active feedback via the intro-
duction of a viscose damping force f ∝ −ẋ [9]. In the limit of a high-Q oscillator

x(t) = X2(t) sinΩmt+X1(t) cosΩmt,

ẋ(t) ≈ ΩmX2(t) cosΩmt− ΩmX1(t) sinΩmt,

ẋ(t) ≈ Ωmx(t+
π

2Ωm
) ≈ −Ωmx(t−

π

2Ωm
),

(2.7)

where we neglected the terms proportional to Ẋ1 and Ẋ2. Thus by measuring x(t)
and applying a force proportional to the measured value with a fixed delay of one
quarter of the mechanical period the mechanical mode can be cooled. Both quadra-
tures are cooled equally. To cool X1(t) only the following feedback force should be
applied:

f ∝ X1(t) sinΩmt. (2.8)
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For this purpose we applied a voltage signal to the sharp metal tip in the vicinity of
the membrane in the form V (t) ∝ X1(t) sinΩmt. To realize this experimentally one
of the measured quadratures is mixed with the local oscillator Ωm and after amplifi-
cation it’s sent to the sharp metal tip. In this case the variance of the quadratures of a
mechanical mode driven by thermal motion and parametric modulation is modified
in the following way [31]:

⟨X2
2 ⟩ =

kBT

meffΩm

1

1 + g
,

⟨X2
1 ⟩ =

kBT

meffΩm

1

1− g + h
,

(2.9)

where h is proportional to the strength of the feedback. We see that the variance of
X2 stays unchanged. Now, the 3 dB limit can be surpassed by increasing g above
unity while keeping 1− g + h > 0.

Figure 2.7 shows squeezing results for different feedback strengths h. The vari-
ances are normalized against the case of g = 0 and h = 0 but with the pump light
on, resulting in an effective temperature Teff = 120 K.

Figure 2.6: Quadratures X1 and X2 evolution for (a) thermal state; (b) squeezed state for
parametric modulation with g < 1; (c) and (d) parametric modulation with g > 1.

The first measurement was done without any feedback (h = 0), the results are



2.4 Discussion 21

shown with diamonds. A maximum squeezing of 3 dB was achieved.
The second measurement run was done with feedback strength equivalent to

h = 2.9. A maximum squeezing of 7 dB was achieved.
In the third measurement run the intensity of the pump laser light was decreased.

The effective temperature was measured to be 182 K with the pump light on. Using
the feedback strength of h = 21.5, a maximum squeezing of 8.5 dB was achieved.
For high values of gain g the experimentally measured squeezing starts to deviate
from the theoretical predictions. Some assumptions of our model are not fulfilled
in this regime, for example the quadratures are not independent any more or some
linearity conditions are violated. Another possible reason is that the modulation of
the pump laser light leads to a sideband with detuning −1.43Ωm + 2Ωm = 0.57Ωm.
This sideband is blue-detuned and heats both quadratures. This can be avoided if
the detuning ∆ < −2Ωm.

Figure 2.7: Normalized variance of X1 (red) and X2 (blue) as a function of parametric mod-
ulation g for h = 0 (diamonds), h = 2.9 (circles), h = 21.5 (squares).

2.4 Discussion

Let’s consider the final state achieved with highest gain g = 6 and feedback strength
h = 21.5. It has approximately equal quadrature variances for X1 and X2, see Fig.
2.7. Generally speaking, it can be achieved just by sideband cooling without any
feedback or parametric modulation. Another thing to note is that when g = 21.5
and h = 0 (strongest feedback and no parametric modulation) the achievable state is
squeezed 14 dB, which is more than the maximum squeezing reported here (8.5 dB)
due to the parametric modulation. However, it is worth to note that the squeez-
ing due to parametric modulation is in principle noiseless [31], while to achieve
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a quantum squeezed state via the single quadrature feedback, strong backaction-
evading quantum-limited measurement of the single quadrature would be required.
Such a measurement does not introduce any noise due to backaction into the mea-
sured quadrature (all the noise goes to the other quadrature [9]) and as the mea-
sured quadrature can be measured to an arbitrary precision, this quadrature be-
comes squeezed just by the measurement.

A limitation of a sideband-resolved system as used here is that active feedback
becomes less efficient as the mechanical mode makes many oscillations within the
time of light leakage from the cavity 1/κ.

2.5 Conclusions

We demonstrated strong squeezing of a mechanical thermal state via parametric
modulation of the effective spring constant of the mechanical mode. Single quadra-
ture feedback was essential to achieve beyond 3 dB squeezing for high-gain modula-
tion, which restrains the non-squeezed quadrature from unconstrained growth. The
modulation is achieved by frequency modulation of a red-detuned pump, while the
feedback force is generated by electrostatic forces exerted on the membrane from a
sharp metallic tip.

This method can be also applied in the quantum regime to squeeze one of the
quadrature of a mechanical mode below the vacuum noise level. This will increase
the sensitivity of position measurements of a mechanical oscillator, and will allow
for a study of decoherence and the corresponding evolution of quantum systems
into classical ones [35].
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