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1
Introduction

In 1577 the Great Comet passed close to Earth. One of the best astronomical ob-
servers of the time, Tycho Brahe, noted that the comet’s tail was pointing away from
the Sun. Johannes Kepler, analyzing the data recorded by Brahe and observing an-
other comet 30 years later, concluded that there must be radiation pressure pushing
the comet’s tail outwards from the Sun. In a letter to Galileo Galilei he hypothesized
that one day this radiation pressure could be used for solar sails.

In 1872 James Clerk Maxwell put forward his theory of electromagnetism which
gave a quantitative prediction of the radiation pressure. There were several attempts
to measure the light pressure by illuminating a light mill in a vacuum chamber. The
main difficulty was that the residual gas in the chamber complicated the interpreta-
tion of the measurements due to convection and radiometric forces. The first conclu-
sive experimental observation was reported by Pyotr Lebedev in 1899 who managed
to decrease the residual gas pressure to ∼ 10−4 mbar by building a pump similar to
the later introduced diffusion pumps.

It was shown by Vladimir Braginskii that there is a limit on the precision with
which the position of an object can be continuously monitored [1]. This standard
quantum limit (SQL) practically sets a lower bound on the sensitivity of optical in-
terferometers, including gravitational wave detectors such as LIGO and VIRGO. Bra-
ginsky also proposed a way to beat the SQL by not measuring the position contin-
uously, such measurements were termed quantum non-demolition (QND) measure-
ments [2]. Nowadays these ideas are explored towards improving the sensitivity of
the gravitational wave detectors.

Advances in the micro-electromechanical systems (MEMS) technology allowed
to miniaturize optomechanical systems to the micro- and nano- scales. This allowed
to reach GHz frequencies for optomechanically coupled oscillators. This is impor-
tant as such mechanical oscillators are in a thermal state close to the ground state
already at the dilution refrigerators temperatures, greatly facilitating experiments in
the quantum regime [3, 4, 5].

Another step forward was made with the introduction of phononic crystals in
optomechanical devices greatly enhancing the isolation of a mechanical mode from
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its mechanical bath [6, 7].
Optomechanical devices are promising candidates to bridge disparate degrees of

freedom like microwave and optical signals via a mechanical oscillator coupled to
both fields [8]. This is essential in Quantum Information Science, for example for
stationary (superconducting transmon) to flying (photon) qubit conversion.

Finally, optomechanical devices serve as ultra-sensitive probes of force, displace-
ment, mass and acceleration [9] and provide a testbed for extensions of Quantum
Mechanics [10].

Historically our group has a particular interest in studying massive superposi-
tions and possible interplay of Quantum Mechanics and Gravity [11]. The idea be-
hind it is that the gravitational self-energy might induce higher rates of decoherence
than predicted by the standard quantum theory. These effects are predicted to be-
come increasingly pronounced for larger test masses. This is one of the motivations
for our group to work with relatively low frequency optomechanical devices natu-
rally having higher effective masses. Therefore, lots of effort is put in the develop-
ment of a low-vibration refrigeration capable of reaching the sub-mK regime.

1.1 Motivation and outlook

The goal of the work presented in this thesis is to build an optomechanical sys-
tem based on the membrane-in-the-middle configuration operating in the quantum
regime and to develop a method for a quantum state transfer between two mechan-
ical oscillators coupled to a common optical mode.

Mechanical modes have long coherence times and can be used in quantum infor-
mation as quantum memory. Therefore, a state transfer between mechanical modes
may be an important tool for Quantum Information Science. It appears that the pro-
cess of a state transfer can be stopped in the middle of the process and the mechanical
modes become entangled [12, 13]. This brings a possibility to realize entanglement
between massive oscillators which is an achievement on itself. Studies of the evolu-
tion of entangled oscillators with increasing masses may probe the parameter space
where some theories predict new physics beyond predictions based on the model of
environment induced decoherence in standard quantum mechanics. [11].

Several methods of a state transfer in optomechanics were demonstrated [14,
12, 15]. The demonstrated state transfer efficiency in the topological energy trans-
fer [14, 15] was about 0.1 which is quite low. The two tone swapping method [12]
requires precise control over the experimental parameters: the difference in the fre-
quencies of the driving light tones should be equal to the difference in the mechanical
frequencies of the modes adjusted by the optical spring effect within the mechani-
cal linewidth. It is hard to realize experimentally for very high quality mechanical
modes.

Stimulated Raman Adiabatic Passage (STIRAP) is a technique for a population
transfer which is both robust to uncertainties in the experimental parameters and
can achieve high state transfer efficiencies [16, 13]. This is a well-established tech-
nique demonstrated in many physical systems but not in optomechanics. The work
shown in this thesis was to analyze the feasibility and requirements of STIRAP in op-
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tomechanics as well as towards experimental realization of STIRAP of a non-classical
state between two vibrational modes in the MHz range.

In section 2 of this chapter we discuss the main optomechanical concepts and effects
encountered throughout this thesis. Section 3 introduces the system we are working
with - a membrane inside a high finesse optical cavity.

The work presented in this thesis started with building a membrane-in-the-middle
setup using a commercial SiN membrane. Chapter 2 presents a strong squeezing of
a thermal mechanical state achieved in this system by parametric modulation of the
optical spring effect.

Next, we introduced a phononic crystal membrane into this cavity fabricated in
our group in UC Santa Barbara. These membranes possess 1-2 orders of magnitude
higher mechanical quality factors for vibrational modes localized in the defect of the
phononic crystal. High mechanical quality factors and the phononic crystal bandgap
allowed the realization of a high efficiency state transfer between two vibrational
modes of the same membrane through the optical mode using STIRAP. Such a state
transfer of a classical state at room temperature is described in Chapter 3.

Chapter 4 discusses a possibility to realize STIRAP of single-phonon Fock state
between two in-gap membrane modes. We show that a state transfer with fidelity of
0.6 is feasible assuming system parameters achieved in state-of-the-art devices at 1 K
with single photon detection by superconducting nanowire single photon detectors.
We also discuss a possibility to entangle two membrane modes and detect such an
entanglement using a modified version of STIRAP.

Next, the design and fabrication of a novel cryogenic compatible optical cavity is
presented. In Chapter 5 we characterize this cavity and demonstrate optical coupling
to a single mode optical fiber > 0.9 at cryogenic temperatures.

In Chapter 6 we discuss a setup for quantum optomechanical experiments based
on detection of Stokes and anti-Stokes photons. For example, it would be possible
to realize STIRAP of a single-phonon state described in Chapter 4 using this setup.
Such a setup is under construction in our lab.

In Chapter 7 we investigate the feasibility of measuring the average phonon oc-
cupation of a thermal state close to the quantum ground state in our system using a
balanced heterodyne detection scheme. We found that it is not possible to do such a
measurement without sending relatively strong probe light fields which most likely
will heat the membrane. To do a measurement where the heating by the intracavity
light fields of a probe light is weaker than the heating by the cooling light, single
photon detection described in Chapter 6 is required.

The work presented in this thesis is summarized in Chapter 8 in connection to
previous and future work in our lab.
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1.2 Basic optomechanics

A generic optomechanical system based on a Fabry-Perot resonator is depicted in
Fig. 1.1. The Fabry-Perot resonator (which will be further referred to as the optical
cavity) consists of two high reflectivity mirrors where one of the mirrors is fixed
while the other mirror is attached to a spring. The movable mirror on a spring system
has a resonance frequency Ω.

Let’s find the evolution of the intracavity light fields. Light with frequency ωL

and electric field amplitude Ein is sent to the cavity. Light entering the cavity will be
reflected inside the cavity many times. Interference of these reflections will result in
an intracavity light field amplitude E. In the steady state situation:

E = Eint+ Eintr
2eiϕ + Eint(r

2eiϕ)2 + .., (1.1)

where t and r are amplitude transmissivity and reflectivity of each mirror (mirrors
are ideal and identical, r2 + t2 = 1) and ϕ is accumulated phase in one round trip
ϕ = 2π/λ × 2L = ωL

c × 2L with λ the wavelength of light, L the cavity length and c
the speed of light. For this derivation we consider flat parallel mirrors for simplicity
with plane waves Ein. Performing the summation in Eq. 1.1 we get

E =
Eint

1− r2eiϕ
. (1.2)

The incoming light fields are on resonance with the cavity when eiϕ = 1 correspond-
ing to the frequency ωcav such that ei

2L
c ωcav = 1 and the intracavity light fields

amplitude E = Ein/t. Let’s introduce the detuning ∆ from the cavity resonance
∆ = ωL − ωcav. For the detuning values much smaller than the frequency between
the two adjacent resonances which is equivalent to |ϕ| ≪ 1

eiϕ = ei
2L
c ωL = ei

2L
c ωLe−i 2L

c ωcav = ei
2L
c ∆ ≈ 1 + i∆

2L

c
. (1.3)

Equation 1.2 can be written as

Eint = E(1− r2eiϕ) ≈ E(1− (1− t2)(1 + i∆
2L

c
)) ≈ Et2(1− i∆

2L

ct2
). (1.4)

We see that the intracavity light amplitude is a function of the distance between
the mirrors. Therefore, the mechanical motion of the movable mirror affects the
intracavity light fields. Further we will see that there is also a reverse effect where
the intracavity light affects the motion of the mirror - hence the name optomechanics.

Figure 1.1: Basic optomechanical system.
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Let’s consider a situation where the incoming light fields are abruptly switched
off. The intracavity light will decay. To find the decay rate let’s consider photons
inside the cavity. The probability of a photon to leave the cavity via one of the mirrors
is t2, each photon impinges on a mirror everyL/c seconds, thus the energy decay rate
κ = t2/(L/c). The intracavity electric field will decay as

Ė = −κ
2
E. (1.5)

The 2 in the denominator comes from the fact that energy (∝ E2) decays with the
rate κ, electric field E decays with the rate κ/2.

Now we introduce the frame rotating at ωcav and find the electric field in this
frame Ecav. Recalling that E is the field amplitude, the intracavity field changes
with time as

E(t) = EeiωLt = Ecave
iωcavt, (1.6)

therefore
E = Ecave

i(ωcav−ωL)t = Ecave
−i∆t, (1.7)

where ∆ = ωL − ωcav is the light fields detuning. Substituting E from Eq. 1.7 into
Eq. 1.5 we get

Ėcav = −κ
2
Ecav + i∆Ecav. (1.8)

Returning to the case of the steady state situation Eq. 1.4 can be written as

0 = −κ
2
Ecav + i∆Ecav +

√
κext

√
c

2L
Ein, (1.9)

where we introduced the coupling rate of the incoming light fields κext = κ/2. Gen-
eralizing Eq. 1.8 and 1.9 for a non-steady state we get

Ėcav = −κ
2
Ecav + i∆Ecav +

√
κext

√
c

2L
Ein, (1.10)

To find the quantum analog of Eq. 1.10 we need the expressions for the incoming
light intensity

Iin =
1

2
cϵ0|Ein|2 = ℏωL⟨â†inâin⟩ (1.11)

and the energy of the intracavity light fields

W = Icav
2L

c
=

1

2
cϵ0|Ecav|2 ×

2L

c
= ℏωL⟨â†â⟩, (1.12)

where ϵ0 is the vacuum dielectric permittivity, ain is the quantum field corresponding
to the incoming light fields, Icav is the intracavity light intensity corresponding to
the running wave with amplitude Ecav and â is the intracavity quantum field. Using
these expressions we get

˙̂a = −κ
2
â+ i∆â+

√
κextâin. (1.13)
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Equation 1.13 is identical to the general one describing the evolution of the intra-
cavity light fields [9] in the absence of any incoming noise f̂in. We showed here an
intuition behind this equation rather than its derivation.

Next, we consider how the intracavity light affects the motion of an optomechan-
ically coupled oscillator. For the simple case shown in Fig. 1.1 the equation of motion
of the movable mirror is

ẍ+ Γmẋ+Ω2x =
F

m
, (1.14)

where x is the shift of the mirror along the optical axis, Γm = Ω/Q is the damping
rate and Q is the mechanical quality factor, m is the mirror mass and F is the ra-
diation pressure force due to the intracavity light fields â. Each photon transfers a
momentum 2ℏωL/c each 2L/c seconds, resulting in the overall force

F = (2ℏωL/c)/(2L/c)⟨â†â⟩ = ℏ
ωL

L
⟨â†â⟩. (1.15)

Generally, the force is
F = ℏG⟨â†â⟩, (1.16)

where we introduced optomechanical couplingG = −∂ωcav/∂x, in our caseG = ωL

L .
In the case of a high-Q mechanical oscillator Eq. 1.14 can be simplified to a first

order differential equation because the amplitude of oscillations cannot change fast
[9]. Let’s use this property:

x = Ae−iΩt, ẋ = Ȧe−iΩt − iΩAe−iΩt, ẍ = −2iΩȦe−iΩt − Ω2Ae−iΩt, (1.17)

where we neglected the term containing Ä. Using Eq. 1.17 and 1.14 we get

− 2iΩȦe−iΩt − iΩΓmAe
−iΩt =

F

m
, (1.18)

where we neglected the term containing ΓȦ (Γ and Ȧ are small). Going back to the
non-rotating frame x = Ae−iΩt we get

ẋ = (−Γm

2
− iΩ)x+ i

F

2mΩ
. (1.19)

The quantum version of this equation is [9]

˙̂
b = (−Γm

2
− iΩ)b̂+ i

F̂

2mΩxzpf
, (1.20)

where x̂ = xzpf(b̂ + b̂†) and xzpf =
√
⟨0| x̂2 |0⟩ =

√
ℏ

2mΩ is the zero point fluctuation
amplitude, |0⟩ is the mechanical vacuum state. Using Eq. 1.16 we get

˙̂
b = (−Γm

2
− iΩ)b̂+ ig0â

†â, (1.21)

where g0 = Gxzpf is the single photon optomechanical coupling rate.
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Equation 1.21 together with Eq. 1.13 written in the form

˙̂a = −κ
2
â+ i(∆0 + g0(b̂+ b̂†))â+

√
κextâin (1.22)

are the basic optomechanical equations governing the dynamics of the interaction
of light fields and an optomechanically coupled oscillator. The classical version of
these two coupled differential equations is used in Chapter 3.

Next, we expand the detuning ∆ from Eq. 1.13 into ∆ = ∆0+x̂∂∆/∂x = ∆0+Gx̂

and x̂ = xzpf(b̂+ b̂†), where ∆0 is the unperturbed laser detuning.
The energy of an optomechanical system consists of the energy of the photons

ℏωL⟨â†â⟩, energy of the phonons ℏΩ⟨b̂†b̂⟩, and their interaction energy. The interac-
tion part is the potential energy of the oscillator −⟨F̂ x̂⟩ = −ℏg0⟨â†â(b̂ + b̂†)⟩. Now
we can write the full Hamiltonian of an optomechanical system

Ĥ = ℏωLâ
†â+ ℏΩb̂†b̂− ℏg0â†â(b̂+ b̂†). (1.23)

In Chapter 4 we use Eq. 1.23 to simulate the dynamics of an optomechanical system
via the Linblad formalism requiring a Hamiltonian.

Next, we consider an oscillator in thermal equilibrium with a thermal bath at tem-
perature T . The oscillator has a mechanical susceptibility defined through x(ω) =
χ(ω)F (ω)

χm(ω) =
1

2mΩ(Ω− ω − iΓm/2)
, (1.24)

where x(ω) is the Fourier transform of the oscillator position x and F (ω) is the
Fourier transform of the external force applied to the oscillator. The power spectral
density (PSD) of the oscillator relates to the mean square of x via

1

2π

∫ ∞

−∞
Sxx(ω) dω = ⟨x2⟩. (1.25)

The fluctuation dissipation theorem relates Sxx(ω) to the mechanical response χm(ω)
in thermal equilibrium [9]:

Sxx(ω) =
2kT

ω
Imχm(ω) =

kT

2mΩ2

Γm

(ω − Ω)2 + Γ2
m/4

. (1.26)

These relationships allow us to calculate the PSD of the force exerted by the bath on
the oscillator:

SFF (ω) =
Sxx(ω)

|χm(ω)|2
= 2kTmΓm. (1.27)

Next, we consider the case when a constant intensity light fields with detuning
∆ is sent to the cavity with an optomechanically coupled oscillator. The dynamics
of the oscillator can be found by solving Eq. 1.21 and 1.22. The radiation pressure
backaction alters the mechanical susceptibility to

χ(ω) =
1

2mΩ((Ω + δΩopt)− ω − i(Γm + Γopt)/2)
, (1.28)
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with

δΩopt = g20ncav

(
∆− Ω

(∆− Ω)2 + κ2/4
+

∆+ Ω

(∆ + Ω)2 + κ2/4

)
(1.29)

Γopt = g20ncav

(
κ

(∆ + Ω)2 + κ2/4
− κ

(∆− Ω)2 + κ2/4

)
(1.30)

under the assumption of small intracavity photon number ncav resulting in Γopt ≪ κ.
Now the oscillator is not in thermal equilibrium with the bath. Let’s find its mean
square motion ⟨x2⟩. Though the mechanical susceptibility has changed to Eq. 1.28
the oscillator is still driven by the thermal force given by Eq. 1.27:

Sxx(ω) = SFF (ω)|χ(ω)|2 =
kT

2mΩ2

Γm

(ω − Ω)2 + (Γm + Γopt)2/4
. (1.31)

Comparing this result to Eq. 1.26 we find

⟨x2⟩ = 1

2π

∫ ∞

−∞
Sxx(ω) dω =

Γm

Γm + Γopt
⟨x2⟩|ncav=0. (1.32)

Now we can define the effective temperature Teff satisfying the fluctuation-dissipation
theorem:

Teff =
Γm

Γm + Γopt
T. (1.33)

Finding Teff for an oscillator in the quantum regime requires consideration of the
rates of the probabilities of the oscillator transitioning from the state with n phonons
to the state of n+ 1 phonons [17]

γn→n+1 =
x2zpf
ℏ2

(n+ 1)SFF (−Ω) (1.34)

and the rates of the probabilities of the oscillator transitioning from the state with n
phonons to the state of n− 1 phonons

γn→n−1 =
x2zpf
ℏ2

nSFF,total(Ω). (1.35)

In this case a bare mechanical oscillator is considered with SFF,total being the total
PSD due to the radiation pressure forces and the forces from the mechanical bath.
The final phonon occupation n̄f is obtained by finding a steady state when the prob-
abilities of the oscillator to occupy a state n are not changing in time. This gives
[17]:

n̄f =
γ0→1

γ1→0 − γ0→1
. (1.36)

Considering the same probabilities it can be shown that the state n̄f is approached
with the rate Γ = γ1→0 − γ0→1, therefore this rate is the energy decay rate as defined
above.

If the oscillator is coupled to the mechanical bath only, it has the phonon popula-
tion n̄f,m = nth = kT

ℏΩ for kT ≫ ℏΩ and has the energy decay γ1→0 − γ0→1 = Γm.



1.3 Membrane-in-the-middle 9

If the oscillator is coupled to the optical bath only, the PSD of the forces acting on
it is [17]:

SFF,opt(ω) =
ℏ2

x2zpm
g20ncav|χopt(ω)|2, (1.37)

where χopt(ω) =
√
κ

κ/2+i(∆−ω) is the optical susceptibility of the cavity. Now we can
find the steady state phonon occupation of an oscillator coupled to the optical bath
only using Eq. 1.37 and 1.36:

n̄f,opt =
|χopt(−Ω)|2

|χopt(Ω)|2 − |χopt(−Ω)|2
. (1.38)

The energy decay of the oscillator in this case is

Γopt = g20ncav(|χopt(Ω)|2 − |χopt(−Ω)|2), (1.39)

which coincides with Eq. 1.30.
Finally, we can find the steady state when the oscillator is coupled to the optical

and mechanical baths simultaneously. As the optical and thermal forces are indepen-
dent the total PSD of the force is the sum of the mechanical and optical components:

SFF,total(ω) = SFF,m(ω) + SFF,opt(ω). (1.40)

Therefore,

n̄f =
γ0→1,m + γ0→1,opt

(γ1→0,m + γ1→0,opt)− (γ0→1,m + γ0→1,opt)
= (1.41)

=
γ0→1,m + γ0→1,opt

Γm + Γopt
. (1.42)

Using Eq. 1.36 we are getting γ0→1,j = Γj n̄f,j and finally

n̄f =
Γmnth + Γoptnmin

Γm + Γopt
, (1.43)

where nmin = n̄f,opt from Eq. 1.38.

1.3 Membrane-in-the-middle

In this section we discuss an optical cavity with a transparent dielectric membrane
in the middle. The reflectivity of the membrane is given by [18]

rd =
(n2 − 1)sin( 2πλ nLd)

2incos( 2πλ nLd) + (n2 + 1)sin( 2πλ nLd)
, (1.44)

where n is the refractive index of the membrane and Ld is the thickness of the mem-
brane. In this thesis we are discussing two SiN membranes with n ≈ 2, one with
thickness 50 nm in Chapter 2, all the other chapters are based on a membrane with
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Figure 1.2: Theoretical reflectivity of a SiN membrane as a function of thickness. The red
circles represent theoretical values for the two membranes used in this thesis with Ld = 25
nm and Ld = 50 nm.

thickness 25 nm. Theoretical intensity reflectivity |rd|2 is plotted in Fig. 1.2 as a func-
tion of the membrane thickness. Membrane acts as a Fabry-Perot resonator which
gives rise to the shape of this curve.

Solving the boundary condition equations for the electromagnetic wave in the
cavity with a membrane results in the following equation under the assumption of
Im(n) = 0 and cavity mirror reflectivities rm → 1 [18]:

ωcav(x) =
c

L
arccos(|rd|cos

2π

λ
x), (1.45)

where c is the speed of light. Here x is a membrane shift from the cavity center on the
wavelength scale. The theoretical cavity-with-membrane resonant frequency ωcav is
plotted in Fig. 1.3 for various membrane reflectivities.

The membrane-in-the-middle system differs from the system with one fixed mir-
ror and one movable mirror depicted in Fig. 1.1 and it’s not straightforward to
see how the optomechanical coupling arises in the membrane-in-the-middle system.
Generally, the intensities of light at the left membrane boundary and at the right one
are different. This is true for all membrane positions except for the nodes and anti-
nodes. The difference in the intensities gives rise to non-zero net radiation pressure
and thus to optomechanical coupling. Mathematically the dependence of the cavity
resonance frequency on the membrane position ωcav(x) as seen in Fig. 1.3 gives rise
to the optomechanical coupling.

Another important difference with the system with a moving mirror is that the
difference of the consecutive cavity resonance frequencies is a function of the mem-
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Figure 1.3: Resonant frequency of a cavity with a SiN membrane in the middle as a function of
the membrane position x for different membrane reflectivities. The dashed line corresponds
to |rd|2 = 0 (empty cavity), the blue line corresponds to membrane thickness Ld = 25 nm and
|rd|2 = 0.05, red to Ld = 50 nm and |rd|2 = 0.16, black to |rd|2 = 0.9.

brane position while the odd or even cavity resonances have constant frequency dif-
ference which we further will call 2FSR.
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