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ABSTRACT

The success of checkpoint blockade therapy revolutionized cancer treatment. However, we 
need to increase the fraction of responding patients and overcome acquired resistance to 
these therapies. Recently, the inhibitory receptor NKG2A received attention as a new kid 
on the block of immune checkpoints. This receptor is selectively expressed on cytotoxic 
lymphocytes, including natural killer cells and CD8 T cells, and NKG2A+ T cells are preferentially 
residing in tissues, like the tumor microenvironment. Its ligand, HLA-E, is a conserved non-
classical HLA class I molecule that binds a limited peptide repertoire and its expression is 
commonly detected in human cancer. NKG2A blockade as a standalone therapy appears 
poorly effective in mouse tumor models, however in the presence of activated T cells, for 
example induced by PD-1/PD-L1 blockade or cancer vaccines, displays strongly enhanced 
efficacy. Clinical trials demonstrated safety of the humanized NKG2A-blocking antibody 
monalizumab and first results of phase II trials demonstrate encouraging durable response 
rates. Further development of this axis is clearly warranted.

Keywords: cancer immunotherapy, NKG2A, HLA-E, checkpoint blockade, cancer vaccinations, 
combination therapy, acquired resistance
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INTRODUCTION

The unprecedented clinical impact of immune checkpoint blockade therapy induced a new 
era of cancer treatment1. After introduction in clinical practice of antibodies to CTLA-4 and 
the PD-1/PD-L1 axis, additional checkpoints like TIM-3, TIGIT and VISTA and stimulation of 
activating receptors like CD27, CD40 and 4-1BB are evaluated for their anti-tumor inducing 
immunity. Recently, the inhibitory immune inhibitory receptor NKG2A draw the attention 
as the new kid on the block of checkpoints2-5. NKG2A forms heterodimers with the CD94 
chain6 and recognizes the non-classical HLA class I molecule HLA-E. These recent studies 
demonstrated high expression of NKG2A on natural killer (NK) cells and cytotoxic CD8 T 
cells in the tumor microenvironment as a result of PD-1 blockade therapy as well as after 
immune activation by cancer vaccines7,8. First clinical trials in gynecological cancers and 
head-and-neck carcinoma with the NKG2A-blocking antibody Monalizumab shows safety 
and promising clinical responses in refractory disease, including regressions of target 
lesions8,9. Interestingly, protein levels of HLA-E, which is the sole ligand of the CD94/NKG2A 
receptor10, are frequently upregulated in many cancers, suggesting that this axis functions as 
an acquired resistance mechanism after immune activation in the tumor microenvironment. 
Here, we provide an overarching view on the current understanding of NKG2A and HLA-E in 
cancer and touch upon gaps in our knowledge.

THE SIMILARITIES AND DIFFERENCES WITHIN THE NKG2A FAMILY

Activation of T cells is the result of T cell receptor (TCR) ligation with antigen-HLA complexes 
in combination with co-stimulatory signals, like CD28 and CD27, and cytokines. To avoid 
unrestricted immune responses that might result in pathology towards host tissues, T cells 
are also equipped with multiple inhibitory receptors, which are expressed in a programmed 
way11. As revealed, CTLA-4 and PD-1 inhibitory receptors are also considered as markers 
of recent T cell activation. The spaciotemporal dynamics are different for each inhibitory 
receptor, resulting in distinct profiles of immune pathology revealed in knockout mice. The 
CTLA-4 knockout mouse displays spontaneous and overt lymphoproliferation, whereas PD-1 
and NKG2A knockouts show much milder phenotypes12-15. The cytoplasmic tail of the NKG2A 
receptor contains two immunoreceptor tyrosine-based inhibition motifs (ITIM) capable 
of recruiting both SHP-116 and SHP-2 phosphatases, but not the polyinositol phosphatase 
SHIP17-19 (Figure 1). Both ITIMs are required to mediate the maximal inhibitory signal, but the 
membrane-distal ITIM is of primary importance rather than the membrane-proximal ITIM20. 
The partner CD94 has only seven cytoplasmic amino acids, thus lacks ITIMs and has no role 
in downstream signaling. Interestingly, CD94 can also form a heterodimer with a very close 
family member of NKG2A (encoded by the Klrc1 gene), which is named NKG2C (encoded 
by the Klrc2 gene). NKG2C is an activating receptor transducing an stimulating signal via 
association with DAP12, bearing an immunoreceptor tyrosine-based activation motifs 
(ITAM)21. The NKG2C protein carries some amino acid differences compared to NKG2A, 
resulting in a 6-fold lower affinity for the shared ligand HLA-E22,23. In NK cells, the two family 
members are usually not expressed together in the same cell and a switch to NKG2C marks 
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more mature NK cells, also referred to as ‘adaptive’ NK cells24,25. Another activating family 
member, NKG2D (encoded by the Klrk1 gene) is more distantly related and does not partner 
with CD94, but rather forms homodimers, and is engaged by stress induced self-proteins, 
e.g. MICA and ULBP members26. 
Figure 1.

Figure 1|NKG2 family and their ligands. 
The polymorphic classical HLA class I molecules present an�genic pep�de-epitopes to the T cell receptor 
(TCR) in complex with CD3 and coreceptor CD8 at the surface of CD8 T cells. In contrast, HLA-E is a mono-
morphic non-classical HLA class I molecule that presents a limited set of conserved signal pep�des. These 
pep�des are derived from leader sequences of classical HLA class I molecules. NKG2A and NKG2C form 
heterodimer receptors with CD94 and both target the same p/HLA-E complex, but liga�on induces an 
inhibitory signal for NKG2A and an ac�va�on signal for NKG2C. The NKG2 locus of mouse and man also 
encode the ac�va�ng family member NKG2E (not shown here), but its func�on remains elusive. The more 
distantly related ac�va�ng homodimer NKG2D receptor binds MICA/B and ULBP1-6, ‘empty’ molecules 
that fold like HLA class I heavy chains but do not contain β2-microglobulin (not shown here). The NKG2 
family is expressed by both cytotoxic CD8 T cells and NK lymphocytes.
Figure is created with BioRender.com.

Figure 1|NKG2 family and their ligands. 
The polymorphic classical HLA class I molecules present antigenic peptide-epitopes to the T cell receptor (TCR) 
in complex with CD3 and coreceptor CD8 at the surface of CD8 T cells. In contrast, HLA-E is a mono-morphic 
non-classical HLA class I molecule that presents a limited set of conserved signal peptides. These peptides are 
derived from leader sequences of classical HLA class I molecules. NKG2A and NKG2C form heterodimer receptors 
with CD94 and both target the same p/HLA-E complex, but ligation induces an inhibitory signal for NKG2A and 
an activation signal for NKG2C. The NKG2 locus of mouse and man also encode the activating family member 
NKG2E (not shown here), but its function remains elusive. The more distantly related activating homodimer NKG2D 
receptor binds MICA/B and ULBP1-6, ‘empty’ molecules that fold like HLA class I heavy chains but do not contain 
β2-microglobulin (not shown here). The NKG2 family is expressed by both cytotoxic CD8 T cells and NK lymphocytes. 
Figure is created with BioRender.com.

EXPRESSION AND FUNCTION OF NKG2A IN CYTOTOXIC LYMPHOCYTES

Approximately half of peripheral NK cells display the NKG2A receptor and these cells are 
mostly present in the CD56high fraction, which contain the more immature cells. Intratumoral 
NK cells have somewhat higher frequencies of NKG2A7. Interestingly, NKG2A expression on 
CD8 T cells seems to be highly regulated, as peripheral cells hardly express the receptor, but 
a substantial fraction of intratumoral T cells, especially those in immune reactive milieu, 
display NKG2A7,27. These CD8 T cells often display a late effector memory phenotype and 
lack expression of typical central memory markers CCR7, CD27 and CD28 or late effector 
markers KLRG1. Interestingly, we and others found NKG2A expression on CD8 T cells 
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harboring a tissue-resident signature, marked by specific integrins like CD1037,28-30. Although 
induction of NKG2A is initiated by TCR triggering, the presence of tissue cytokines like IL-15 
and TGF-β might enhance its expression31-33. TGF-β is often overtly present in the tumor 
microenvironment34. However, the functional relationship between the tissue-residence 
program, NKG2A and TGF-β is unclear at the moment.

Asides from its expression regulation, the NKG2A downstream effects are also not 
completely unraveled. The inhibitory signals induced by NKG2A receptor engagement 
results in decreased capacity of NK cells and CD8 T cells to lyse target cells33,35-39. NKG2A 
triggering inhibits cytotoxic effector functions on NK cells by disrupting the actin network 
at the immunological synapse of activating receptor NKG2D40. For CD8 T cells such mode of 
action is still to be elucidated, though NKG2D or the immunological synapse of the TCR could 
be lucid candidates41. In this context, the recent findings on the operational mechanism 
of PD-1, which was suggested to dephosphorylate T cell costimulatory receptor CD28, 
illustrate our limited understanding at molecular level of these important checkpoints42,43. 
CTLA-4 executes its inhibitory effects by competing with CD28 for the same ligands on APCs, 
thereby limiting T cell costimulation44. Such molecular details are lacking for NKG2A, let 
alone our insight on direct downstream target genes affected by NKG2A triggering.

BOX 1: THE BASICS OF HLA-E

In contrast to classical MHC class I molecules, HLA-E is virtually non-polymorphic with only 2 functional 
alleles present in the human population: the HLA-E*01:01 and the HLA-E*01:03 variants. These two 
alleles only differ in a single amino acid at position 107, being arginine (01:01) or glycine (01:03). 
Position 107 is located just outside the peptide-binding groove on the loop between the β-strands 
outside of the α2 domain of the heavy chain53. The crystal structure of the peptide binding groove, 
single alanine substitutions and peptide elution, have demonstrated that HLA-E has an optimal 
structure to bind peptides with two primary anchor residues at positions 2 and 9, and secondary 
anchor residues at position 7 and possibly 354-59. Surprisingly, a very limited repertoire of peptides 
was found under homeostatic conditions and the most prominent are the signal peptides of classical 
MHC class I molecules. The majority of HLA class I alleles share a consensus sequence in their signal 
peptides with the amino acid motif of VMAPRTLLL (Table 1). Position 7 and 8 vary between leucine 
and valine, without affecting binding affinity. Some HLA alleles however contain a substitution at 
residues p2, 3 or 6, which impair binding23. In addition, the immunotolerance molecule HLA-G, which 
is expressed in immune-privileged sites and frequently in cancers, encodes a unique leader peptide 
that binds with high affinity to HLA-E60,61. Interestingly, the leader peptide motif is extremely conserved 
among mammalian species, implying an important role in immune defense62 and is even copied by 
the human cytomegalovirus gpUL40 protein in order to sustain HLA-E surface display on infected cells 
while shutting down classical HLA class I antigen presentation of host cells63-65. Importantly, the CD94/
NKG2A receptor exhibits clear preference for peptide-containing HLA-E, especially for this consensus 
leader peptide56. Under stress, HLA-E can present a peptide of multidrug resistance-associated 
protein 7 (ALALVRMLI)66 and under high cell densities the leader peptide QMRPVSRVL of heat shock 
protein 60 (hSP60) stabilizes HLA-E67. In cancers, classical HLA class I molecules are frequently lost to 
prevent T cell-mediated recognition68,69, but surprisingly, expression of the HLA-E molecule is often 
enhanced70-78. Finally, HLA-E surface display is determined by expression levels of classical alleles 
through the availability of their leader peptide and the binding affinity of this peptide to HLA-E, as 
peptides with a threonine at position 2 poorly bind (see also Table 1)79,80.
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HLA-E AS A MOLECULE OF IMMUNE TOLERANCE 

The ligand of the heterodimeric receptor CD94/NKG2A is the human histocompatibility 
leucocyte antigen E (HLA-E) and its mouse orthologue Qa-1b. These non-classical MHC 
class Ib molecules are surprisingly conserved in the population and present signal peptides 
of classical MHC class I molecules (Box 1)45. Interestingly, whereas most tissues express 
low basal cell surface levels, HLA-E is highly expressed in immune privileged sites of the 
body, including trophoblast cells of the placenta and ductal epithelial cells in the testis and 
epididymis, suggesting that HLA-E has a role to counter potential attack by CD8 T cells and 
NK cells against the partly HLA-mismatched fetus and haploid reproductive cells (Figure 2)46. 
Interestingly, CD94/NKG2A is rather peptide-specific and preferentially interacts with HLA-E 
when canonical peptides are bound, but not when these are absent22,47. These canonical 
peptides are derived from the leaders of HLA class I molecules, including the immune 
tolerant molecule HLA-G48. Additionally, the expression of HLA-E or its mouse orthologue 
Qa-1b provides protection of tissue integrity during viral clearance and limits excessive 
activation and apoptosis of CD8 T cells15,49-52. 

Table 1. Sequences and origins of HLA-E binding peptides
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The ligand of the heterodimeric receptor CD94/NKG2A is the human histocompatibility 
leucocyte antigen E (HLA-E) and its mouse orthologue Qa-1b. These non-classical MHC class 
Ib molecules are surprisingly conserved in the population and present signal peptides of 
classical MHC class I molecules (Box 1)45. Interestingly, whereas most tissues express low 
basal cell surface levels, HLA-E is highly expressed in immune privileged sites of the body, 
including trophoblast cells of the placenta and ductal epithelial cells in the testis and 
epididymis, suggesting that HLA-E has a role to counter potential attack by CD8 T cells and 
NK cells against the partly HLA-mismatched fetus and haploid reproductive cells (Figure 2)46. 
Interestingly, CD94/NKG2A is rather peptide-specific and preferentially interacts with HLA-
E when canonical peptides are bound, but not when these are absent22,47. These canonical 
peptides are derived from the leaders of HLA class I molecules, including the immune 
tolerant molecule HLA-G48. Additionally, the expression of HLA-E or its mouse orthologue 
Qa-1b provides protection of tissue integrity during viral clearance and limits excessive 
activation and apoptosis of CD8 T cells15,49-52.  

HLA-E EXPRESSION IN CANCER 

Whereas classical HLA alleles are frequently lost in human cancer to prevent T cell 
recognition68,69, we and others reported high levels of HLA-E in several cancer types, 
including gynecological cancers (up to 90% of tumor samples)70-72 and up to 50% in breast 
cancer, non-small cell lung carcinoma (NSCLC) , liver, pancreas, kidney , melanoma, 
prostate, head and neck, stomach, rectal, and colorectal cancer73-78. Figure 2 displays some 
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HLA-E EXPRESSION IN CANCER

Whereas classical HLA alleles are frequently lost in human cancer to prevent T cell 
recognition68,69, we and others reported high levels of HLA-E in several cancer types, 
including gynecological cancers (up to 90% of tumor samples)70-72 and up to 50% in breast 
cancer, non-small cell lung carcinoma (NSCLC), liver, pancreas, kidney, melanoma, prostate, 
head and neck, stomach, rectal, and colorectal cancer73-78. Figure 2 displays some examples 
of tissue sections of human cancers and their healthy counterparts. The surface expression 
of HLA-E is correlated with functional antigen processing components and infiltration of 
CD8 T cells, however, expression can also be observed in tumors with downregulated 
classical HLA class I expression. In a cohort of patients diagnosed with high grade serous 
ovarian carcinoma, HLA-E expression correlated with a significantly worse survival81. A 
poor relapse-free survival rate was also observed in breast cancer, but only when classical 
class I expression was lost73. CD8 T cell infiltration and retained expression of classical 
HLA class I strongly associate with a better prognosis for patients with non-small cell lung 
(NSCLC), cervical and ovarian carcinomas. However, this predictive value is abrogated 
when tumor display high HLA-E levels, suggesting that HLA-E mediates resistance against 
CD8 T cell attack70,71,74. In primary colorectal cancers, patients with high HLA-E expression 
showed a significantly decreased disease-free survival for Duke’s C patients76. In a another 
retrospective cohort of 234 colorectal patients the expression of HLA-E, β2m, CD94, CD8, 
and NKp46 was examined by immunohistochemistry on tissue microarray. HLA-E/β2m was 
overexpressed in microsatellite instable tumors and to a lesser extend in microsatellite stable 
ones (45% vs. 19%, respectively) and corresponded with worse survival78. Unfortunately, 
NKG2A expression cannot be quantified in paraffin embedded tissues due to lack of specific 
antibody. An independent study of colon cancers, the researchers concluded that the total 
absence of HLA-class I, including HLA-E and HLA-G, related to a better overall and disease-
free survival77. This was attributed to NK cell-mediated killing in the portal vein of MHC 
class I negative cancer cells, which give rise to liver metastases. It should be stated that 
there are also several studies of patient cohorts in which the researchers did not observe a 
relevant correlation with HLA-E expression75,82. However, as previously demonstrated, the 
role of HLA-E expression seems to be dependent on immune contexture, like lymphocyte 
infiltration and presence of classical HLA class I molecules. Stratification on these factors 
might also signify the negative effect of HLA-E in these cohorts as observed in others. Finally, 
it should be noted that HLA-E directed antibodies fail to distinguish between peptide-filled 
molecules and empty conformers (see Box 2), complicating the interpretation of these 
tissue slide results, as especially HLA-E filled with leader peptides constitute ligands for the 
CD94/NKG2A receptor56.
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Figure. 
HLA-E expression in healthy and cancer tissue. 
Immunohistochemical staining of healthy 
and cancer tissues for HLA-E, as deposited in 
the Human Protein Atlas (www.proteinatlas.
org). Tissue slides were stained either with 
MEM-E/02 antibody or rabbit polyclonal 
HPA031454 (85, 86). Of note: HLA-E antibodies 
also binds free heavy chains.

INDUCTION OF HLA-E

The fact that HLA-E is generally 
upregulated in cancers compared 
to healthy tissue touches upon 
responsible gene transcription 
mechanisms. Interferon (IFN)-γ is 
proposed as an important cytokine 
and is locally produced by tumor-
infiltrating T cells and NK cells. 
At the transcription level, this is 
substantiated through binding of a 
STAT1-containing complex to distinct 
IFN-γ-responsive region (IRR) present 
upstream of the HLA-E gene92. In 
addition, the upstream UIRR region 
mediates a three- to eight-fold 
increase in HLA-E transcription in 
response to IFN-γ upon binding of 
GATA-193. In vitro experiments indeed 
showed that IFN-γ significantly 
increases the surface expression 
of HLA-E and the shedding of 
soluble HLA-E by melanoma cells, 
in a metalloproteinase-dependent 

fashion94. This also corresponds to studies showing enhanced HLA-E expression on tumors 
upon increased cytotoxic lymphocyte infiltration71 and enhanced Qa-1b expression in mice in 
response to immune therapy leading to increased T cell infiltration7. Nevertheless, there are 
also tumors and tumor cell lines that constitutively upregulate HLA-E molecules, soluble and 
at the cell surface, irrespective of IFN-γ treatment94. Importantly, HLA-E surface expression 
is post-translationally regulated by availability of the conserved leader peptides, the peptide 
transporter TAP and proteolytic enzymes. Moreover, HLA-E can present alternative peptides 
aside from the HLA class I leaders and can be recognized by αβ T cell receptors95,96. Clearly, 
novel research tools are required to distinguish HLA-E complexed with the monomorphic 
leader peptides from those complexed with alternative peptides, which might actually be 
present in tumors58.

Figure 2.
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BOX 2: ANTIBODIES AGAINST HLA-E

Generation of specific antibodies to HLA-E was challenging due to its close homology with classical HLA 
class I molecules. Three antibodies stand out as most specific: 1. Clone 3D12 is frequently used in flow 
cytometry and was generated against soluble HLA-E with the HLA-A2 leader peptide83 and is capable 
to stain the native conformation of the molecule and also binds to β2m-free HLA-E conformations84. 
2. Clone MEM-E/02 recognizes a linear epitope on HLA-E and is mostly used in formalin-fixed paraffin 
embedded tissue slide staining84,85. 3. Clone TFL-033 binds HLA-E in a highly specific manner and is 
reactive to the α1 and α2 helices of HLA-E that are the same sequences recognized by the CD94/NKG2A 
inhibitory receptors86. A debate on the exact specificity and potential cross-reactivity with classical 
HLA molecules of these antibodies is ongoing83-85,87,88, and stirred by recent findings that HLA-E and its 
mouse ortholog Qa-1b poorly associate with β2m and accumulates as an β2m-free and peptide-empty 
form at the cell surface84,89-91. As currently available antibodies fail to distinguish between peptide-
loaded or open HLA-E conformers and the biological relevance of open conformations remains to 
be determined, novel antibodies to peptide-containing forms of HLA-E and preferably even peptide-
specific antibodies, are urgently required to promote the development of this field.

TARGETING THE NKG2A - HLA-E AXIS 

Similarities between the PD1 – PD-L1 axis and the NKG2A – HLA-E axis are obvious, as they 
both involve lymphocytes and represent inhibitory immune receptors and their ligands are 
expressed on cancer cells and inducible by the pro-inflammatory cytokine IFN-γ. Of note, 
HLA-E transcripts in the TCGA database exceed those of PD-L1, suggesting a high and general 
overexpression (figure 3). These two pairs reflect feedback signals to dampen overt T-cell 
mediated tissue damage at affected lesion sites, which might result in resistance and immune 
escape of cancer97,98. In contrast to PD-1, NKG2A is selectively expressed on lymphocytes 
with cytolytic function, including NK cells, NKT cells and a subset of CD8 T cells. Thereby the 
NKG2A – HLA-E axis is suggested to predominantly act at the terminal tumor-attack stage 
and not to be involved in priming or regulation of immune responses. Interruption of this 
axis by blocking antibodies can be envisaged at both sides. However, NKG2A is the preferred 
target instead of HLA-E, since blockade of HLA-E would also prevent interaction with the 
activating NKG2C receptor. A NKG2C-expressing subset of NK cells, also called “adaptive 
NK cells”, displays an altered receptor profile and is associated with chronic viruses, like 
CMV99,100. Its role in immunity to CMV remains elusive, but anti-HLA-E antibodies would also 
block activation of such NK cells through NKG2C. Disappointingly, mouse cancer models 
demonstrated limited success of NKG2A blockade therapy when provided as a standalone 
blocking antibody, however it greatly improved anti-tumor efficacy of other forms of 
immunotherapy, like PD-L1 blockade or cancer vaccines7,8,101. Cancer vaccines induced strong 
tumor-directed T cell responses and infiltration of CD8 T cells in the tumors, leading to local 
IFN-γ release and increase of the mouse HLA-E ortholog7. In addition, frequencies of NKG2A+ 
CD8 T cells were increased in TIL. The association of immune reactivity and NKG2A+ T cell 
frequency was corroborated in human TIL of oropharyngeal carcinomas7. Together, these 
observations designated a role for NKG2A as an acquired resistance mechanism102. This 
concept is further substantiated by pre-clinical in vitro data demonstrating a requirement 
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of immune activation signals to reveal beneficial effects of NKG2A blockade8,27,38. Design of 
clinical trials should therefore be based on combination therapy leading to inflammatory 
responses in cancer patients. Induced expression of HLA-E or enhanced frequencies of 
NKG2A+ immune cells in the tumor might serve as predictive biomarkers.Figure 3.
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Figure 3. 
HLA-E and PD-L1 transcription 
levels in various cancer types. RNA-
seq data for HLA-E and PD-L1 is 
reported as median FPKM (number 
Fragments Per Kilobase of exon 
per Million reads), generated by 
The Cancer Genome Atlas (TCGA). 
Normal distribution across the 
dataset is visualized with box plots, 
shown as median and 25th and 75th 
percentiles. Points are displayed as 
outliers if they are above the 97.5 or 
below the 2.5 percentile.

NKG2A IN CLINICAL TRIALS

Monalizumab (IPH2201, Innate Pharma/AstraZeneca) is a humanized IgG4 antibody 
blocking the interaction of human NKG2A with HLA-E and showed a therapeutic effect 
in immunodeficient mice harboring human leukemia103. The NKG2A-blocking antibody 
monalizumab was furthermore administered in a dose ranging phase II clinical trial in 
patients with gynecologic malignancies9. Administration of 10 mg/kg i.v. every 2 weeks was 
well tolerated and even short-term disease stabilizations were observed9. In another recent 
clinical trial, monalizumab was combined with the EGFR-blocking antibody cetuximab 
in previously treated squamous cell carcinoma of the head and neck. This combination 
showed a promising 31% objective response rate8. Cetuximab is able to activate NK cells via 
Fcγ-receptors, leading to antibody-mediated cellular cytotoxicity. Addition of monalizumab 
enhanced NK cell effector functions8. Currently, several trials in which monalizumab is 
tested are enrolling patients. Different combinations with anti-EGFR, anti-PD-L1, tyrosine 
kinase inhibitors and chemotherapy are tested in several cancer indications, including 
patients with resectable non-small cell lung carcinoma (NCT03794544), PD-1 therapy-
resistant NSCLC patients (NCT03833440), and advanced non-resectable stage III NSCLC 
patients (NCT03822351) as well as patients with advanced squamous cell carcinoma of the 
head and neck (NCT02643550), refractory chronic lymphocytic leukemia (NCT02557516) or 
other hematologic malignancies after stem cell transplantation (NCT02921685), and also 
a basket trial with advanced solid malignancies (NCT02671435). This latter trial reported 
a manageable safety profile and durable partial responses in patients with microsatellite-
stable colorectal carcinoma treated with combinations of FOLFOX chemotherapy and 
blocking antibodies to VEGF, PD-L1 and NKG2A104. Based on these promising results, a larger 
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phase II trial will start in the near future for high-risk MSS colorectal carcinoma patients 
who received radical surgery, testing different adjuvant therapies based on standard-of-care 
chemotherapy FOLFOX in combination with durvalumab (anti-PD-L1) and monalizumab 
(anti-NKG2A) (Columbia 2) (NCT04145193).

CONCLUSIONS

The current challenge of checkpoint blockade therapy is to increase the fraction of 
responding patients and, secondly, to overcome acquired resistance. NKG2A blockade 
displays unique characteristics compared to other immune checkpoints, as this target is 
selectively expressed within tumor lesions on cytotoxic lymphocytes and is not involved 
in priming or regulation of immunity against cancer. NKG2A+ T cells are mostly residing in 
the tumor microenvironment where they are effector cells attacking the transformed cells. 
Moreover, we and others showed increased frequencies of these cytotoxic lymphocytes 
upon administration of therapeutic cancer vaccines. These observations plea for 
combination therapies of the NKG2A-blocking antibody monalizumab with such vaccines. 
In the meanwhile, fundamental investigation on NKG2A and its ligand HLA-E should provide 
mode-of-action of this novel immune checkpoint.
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