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Chapter 2 A combined GIS-archetype approach to model 

residential space heating energy: A case study for 

the Netherlands including validation1 

Abstract 

High spatial resolution is critical for a building stock energy model to identify spatial 

hotspots and provide targeted recommendations for reducing regional energy 

consumption. However, input uncertainties due to lacking high-resolution spatial 

data (e.g. building information and occupant behavior) can cause great discrepancies 

between modeled and actual energy consumption. We present a modeling framework 

that can act as a blueprint model for most European countries based on geo-

referenced data, building archetypes, and public algorithms. Further sophistication 

is added in a step-wise approach, including the shift from average to hourly weather 

data, refurbishment, and occupants’ heating schedules. The model is demonstrated 

for the city of Leiden, the Netherlands, and the simulated results are spatially 

validated against the measured natural gas consumption reported at the postcode 

level. Results show that when these factors are considered, the model can provide a 

good estimate of the energy consumption at the city scale (overestimated by 6%). At 

the postcode level, nearly 83% of the absolute differences between modeled and 

measured natural gas consumption are within one standard deviation (± 25 kWh/m2a, 

about 30% of the mean measured natural gas consumption). Further research and 

data would be required to provide reliable results at the level of individual buildings, 

e.g. information on refurbishment and occupant behavior. The model is well suited 

to identify spatial hotspots of residential energy consumption and could thus provide 

a practical basis (e.g. maps) for targeted measures to mitigate climate change. 

Keywords: building stock, space heating, spatially explicit model, Geographic 

Information System (GIS), the Netherlands 

2.1 Introduction 

The building sector is important for climate change mitigation [32], as it is 

responsible for approximately 40% of final energy consumption and 36% of the 

greenhouse gas (GHG) emissions in the European Union (EU) [158]. Spatially-

explicit building stock energy models can be used to identify energy consumption 

hotspots, assess the energy-saving potential of various technologies, such as 

envelope insulation, efficient HVAC (heating, ventilation, and air conditioning) 

system, or optimize the integration of renewables [159], such as solar photovoltaic 

 

1 Published as: Yang, X., Hu, M., Zhang, C., Steubing, B. A combined GIS-archetype 

approach to model residential space heating energy: A case study for the Netherlands 

including validation. Applied Energy 280, 115953 (2020). 
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systems (PVS), and thus support the building, neighborhood, or city-level decision 

making [98]. 

Many building stock energy models have been developed, which can be divided into 

top-down and bottom-up models [87]. The top-down models regard the building 

stock as a black box and estimate energy consumption by investigating the 

correlations between aggregated energy consumption and socioeconomic or 

sociotechnical drivers from a historical perspective, usually based on statistical data 

[160]. Due to lacking details of individual buildings, such models cannot capture the 

characteristics of the energy consumption of specific neighborhoods [161], 

especially those caused by discontinuous changes in techno-economic conditions, 

such as the wide application of new insulation materials, high-efficiency HVAC 

systems, and sustainable energy sources [162]. 

In contrast, bottom-up models use a hierarchy of disaggregated components as input 

data and account for the regional or national energy consumption by summation of 

the energy consumption of individual buildings or building groups [129]. Swan et al. 

[87] further classify the bottom-up models into statistical and engineering-based 

methods (also known as physical models or white box models [160]). The former 

performs statistical analysis (mostly regression techniques) on historical data and 

establishes the relationships between end uses and energy consumption [163] while 

the latter considers the building elements and HVAC of sample buildings 

representative of the building stock and simulates the energy demand with the 

balance of heat transfer following thermodynamic principles [164]. Kavgic et al. 

[162] add the hybrid models that estimate the energy consumption mainly influenced 

by occupant behavior, such as domestic hot water (DHW), cooking, lighting, and 

appliances with statistical methods while calculating the energy consumption for 

space heating and cooling with engineering-based methods due to a lack of historic 

data and the application of new technologies. 

According to the difference of aggregation process, Mastrucci et al. [129] divide the 

engineering-based bottom-up model into the archetype approach and building-by-

building approach. The archetype approach employs a subset of archetype or sample 

buildings to represent a specific building cohort that has similar properties (e.g. 

building type and age) and extrapolate them to total energy consumption (typically 

urban, regional, or national building stock) by factoring the results in proportion (by 

number or floor area per building type or age group) [95]. This method has been 

widely adopted by many studies [165]. However, the limited coverage and 

representativeness of archetypes for heterogeneous building stock may greatly 

influence the reliability of results for both individual buildings and the whole 

building stock [166]. Distinct from the archetype approach, the building-by-building 

method simulates building energy consumption one by one and then sums up the 

energy consumptions of individual buildings to the whole stock level. While this 

approach in principle can assess the different combinations of refurbishment 

measures applied to single buildings, expanding energy simulation tools from a 

single building to urban or national stock level makes data collection more 
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challenging [103]. 

The input data for engineering-based building stock energy models mainly includes 

building geometries, physical properties (e.g. thermal transmittance, solar energy 

transmittance, and air exchange by infiltration), HVAC systems, occupant behavior 

(e.g. hours of occupancy, number of occupants, internal room temperature, internal 

heat gains and air exchange by use), and external weather conditions [167]. In the 

past decades, the method of Geographic Information System (GIS) has significantly 

increased the availability of large-scale geo-referenced building information, 

especially the building geometries, which makes such models more sophisticated 

and spatially explicit [129]. GIS is mostly applied in result visualization or 

estimating the floor areas [98]. Only a few studies [98] use GIS data to quantify the 

areas of envelope elements and then simulate the energy consumption building by 

building. The main barrier is that the non-geometric building information such as 

properties, HVAC, and occupant characteristics [168], is typically not available at 

the city scale [98]. Therefore, archetypes complemented by assumptions are usually 

used to fill in the data gaps [169]. Besides, refurbishment records for existing 

buildings (i.e. the type and extent of insulation added or the upgrade of HVAC 

systems) are difficult to obtain and only a few studies [98] that consider these. 

Therefore, simplified energy models are often used [162], while both model 

simplification and input data uncertainty may lead to notable discrepancies between 

simulated and measured energy consumptions, known as the “energy-performance 

gap” [170]. 

The review above demonstrates that lacking the data at the individual building level 

is the main barrier for building stock models. Different models are developed for 

different countries or regions, depending on data availability and research purposes. 

Engineering-based bottom-up models can track the energy-efficiency measures 

while they differ significantly in the complexity of input data and energy simulation 

algorithms or tools. The previous models based on the building-by-building 

approach require particularly large amounts of detailed data that are only available 

for certain countries [98]. In addition, the energy simulation methods are usually 

national standards or expensive software [171], some of which are incapable of 

processing largescale building stock. Therefore, these models have limited 

applicability in other countries, and typically lack the high spatial resolution of 

energy consumption. There is a demand for a harmonized model that estimates the 

energy consumption of largescale building stock (city or national scale) with a high-

level spatial resolution and can act as a benchmark method for policy makers and 

planners to effectively quantify the energy efficiency of the current building stock, 

identify energy consumption hotspots, and evaluate the energy-saving effects of 

measures or technologies aimed at mitigating climate change in the building sector. 

Recently, GIS data of building footprints, archetype buildings (notably the 

residential archetype buildings for 21 EU countries in TABULA [68]), and other data, 

such as high-resolution weather data, have become available for many countries, 

which provides the possibility of developing such a model framework for a larger 

number of countries. 
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The goal of this paper is to develop a transferable framework for modeling residential 

space heating energy consumption based on GIS data and archetypes. The model 

maps the typical geometry parameters, physical properties, and HVAC of archetypes 

to individual buildings in GIS data according to age and type, and then simulates the 

energy consumption building by building. As in most countries, GIS data of 

buildings does not hold building types or simply differentiates between single-family 

houses and multi-family houses, we present an approach to identify them based on 

building size and morphology. A stepwise approach is presented to construct the 

model and thereby include key factors such as spatial building properties, building 

system, as well as temporally resolved weather data, refurbishment, and occupant 

schedules. The model is applied in Leiden, a city in the Netherlands and spatially 

validated against the measured energy consumption. 

2.2 Materials and methods 

2.2.1 Model overview 

Table 2.1 Steps and factors increasing sophistication for the energy consumption for space 

heating. 

Step 

Main factors for 

energy 

consumption 

Model implementation Data type 
Calculation 

method 

S1 Basic input data 
Derived from BAG [172] and 

TABULA [68]  
Spatial and archetypal Seasonal 

S2 
+ hourly 

weather data 

Temperature and global solar 

radiation from KNMI [173] 
Temporal and spatial Hourly 

S3 + refurbishment 
Random allocation by 

refurbishment rate [174] 
Statistical Hourly 

S4 
+ occupant 

schedule 

Assumption: 18:00-08:00 (+1 

day) 
Temporal Hourly 

In order to develop a building stock energy model and simultaneously investigate 

the effects of various factors on the modeled energy consumption for space heating, 

we stepwise simulate the energy consumption with increasing model sophistication. 

Step 1 (S1) uses the seasonal heat demand calculation method while S2-4 employ 

the hourly calculation approach (see section 2.2.3). All steps use the same basic input 

data, including geometry, physical property, supply system, and occupant-behavior 

data other than occupant schedule. S1 uses seasonal average weather data, while 

hourly weather data is introduced in S2, refurbishment in S3, and occupant schedule 

in S4, as shown in Table 2.1. 

Three principal data sources are used in this study: 
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(1) The GIS dataset from the Basic Registration of Addresses and Buildings (BAG) 

contains all official addresses and basic building information of the Netherlands 

[172]. The main information included in this dataset is the georeferenced building 

footprint as a polygon, function, year of construction, building height, and registered 

addresses per building. 

(2) The TABULA database (Typology Approach for Building Stock Energy 

Assessment) contains residential building typologies for 21 European countries 

including the Netherlands [68]. It distinguishes six construction periods, i.e. before 

1965, 1965-1974, 1975-1991, 1992-2005, 2006-2014 and after 2014, and five types 

of residential buildings, namely single-family house, mid-terraced house, end-

terrace house, apartment building, and multi-family house (see Table S7.1.1 in 

Appendix), and provides archetypical information on their surface areas, the thermal 

properties of envelope components, and supply systems. 

(3) Weather data is from the Royal Dutch Meteorological Institute (KNMI) [173]. 

Derived parameters

Ground floor area

Stories

Number of registered 
addresses

Number of shared walls

Derived typical geometries

Window to façade ratio

Door to façade ratio/door 
area

Façade area

Gross floor area

Building vintages

Building type

Construction period

Building dimensions

Building archetype

Roof area

Door area

Wall area

Window area

Physical properties and 
building system

U-values of ground floor

U-values of roof

U-values of door

U-values of wall

Solar energy transmittance

U-values of window

Air change rate by 
infiltration

Building system parameters

Ground floor area

Annual heating energy 
demand

Space heating

Conditioned floor area

GIS dataset 
(BAG)

Representative 
buildings 
(TABULA)

Refurbishment 
Rate(S3-4)

Weather data
(average for S1 

and hourly for S2-
4)

Occupant 
behavior(schedule 
added only in S4)

Domestic hot water

Calculation 
methods

Building archetype

 

Figure 2.1 Schematic overview of the relationships between different databases. The orange 

denotes data sources. The blue denotes the derived basic building parameters from BAG and 

TABULA. The red denotes the identified construction period and building type of each 

building. The purple denotes the derived input data for heating energy models. The pink 

denotes the calculation methods. The green denotes the outputs of different models. The 

colors of connection arrows are in line with the latter databases. 

These data sources are combined in the four models as shown in Figure 2.1. In order 

to characterize BAG buildings with TABULA archetypes, we first identify the types 

of BAG buildings, and then automatically map the parameters (typical geometries, 

physical properties, and supply system parameters) of archetypes to BAG buildings 

based on construction periods and building types. The following five criteria are 

employed to differentiate the types of BAG buildings: the number of shared walls, 

the number of registered addresses, building footprint area, gross floor area, and the 
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number of stories (see details in Table S7.1.2 in Appendix). These extracted 

parameters, together with the weather data, refurbishment statistics, and occupant-

behavior data, constitute the input data for S1-4. 

2.2.2 Input data 

2.2.2.1 Building information 

As proposed by Heeren and Hellweg [112], we use several strategies to correct and 

complete faulty and missing data. The implausible building heights (smaller than 2 

meters) are automatically replaced by the heights of the nearest buildings with the 

“spatial join” tool of ArcGIS 10.6.1. Because floor heights vary significantly in 

reality and many buildings may have slanted roofs, the average floor height is 

assumed as 3 meters [175]. The stories of buildings are estimated as follows: 

𝑠𝑡𝑜𝑟𝑖𝑒𝑠 = 𝑟𝑜𝑢𝑛𝑑(ℎ𝑒𝑖𝑔ℎ𝑡 ÷ 3𝑚)    (1) 

The gross floor area (𝐴𝑔𝑟𝑜𝑠𝑠) is calculated by multiplying the building footprint area 

(𝐴𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡) with the stories: 

𝐴𝑔𝑟𝑜𝑠𝑠 = 𝐴𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 × 𝑠𝑡𝑜𝑟𝑖𝑒𝑠    (2) 

The number and area of shared walls between adjoined buildings are critical for both 

identifying the building type and calculating the areas of façade components exposed 

to the outdoor air. ArcGIS 10.6.1 is employed to generate the shared line of two 

adjoined building footprints. The height of a shared wall is determined by the lower 

height of two adjoined buildings. It is formulated in eq 3: 

𝐴𝑠ℎ𝑎𝑟𝑒𝑑_𝑤𝑎𝑙𝑙 = ∑ 𝑙𝑒𝑛𝑔𝑡ℎ𝑠ℎ𝑎𝑟𝑒𝑑_𝑙𝑖𝑛𝑒𝑖 ×𝑚𝑖𝑛(ℎ𝑒𝑖𝑔ℎ𝑡𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔0 , ℎ𝑒𝑖𝑔ℎ𝑡𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑖)
𝑛
𝑖=1     (3) 

where 𝐴𝑠ℎ𝑎𝑟𝑒𝑑_𝑤𝑎𝑙𝑙 is the area of shared walls of a given building. 𝑛 is the number 

of walls that 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔0 shares with its adjacent buildings. 𝑙𝑒𝑛𝑔𝑡ℎ𝑠ℎ𝑎𝑟𝑒𝑑_𝑙𝑖𝑛𝑒𝑖 is 

the length of the shared wall between 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔0 and its adjoined 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑖. 

BAG does not hold the types (flat or slanted) and inclination angle of roofs. 

According to the research by Froemelt and Hellweg [167], roof inclination has a very 

limited effect on overall energy consumption for space heating, so we do not consider 

the roof types and each building is simplified as a cube. 

The area of roof and ground floor is assumed to be equal to the building footprint 

area. The façade consists of window, door, and external wall (exposed to the outdoor 

air). Its area is calculated by multiplying the perimeter of each building footprint 

with the corresponding building height and subtracting the areas of shared walls: 

𝐴𝑓𝑎𝑐𝑎𝑑𝑒 = 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 × ℎ𝑒𝑖𝑔ℎ𝑡 − 𝐴𝑠ℎ𝑎𝑟𝑒𝑑_𝑤𝑎𝑙𝑙     (4) 

In order to estimate the areas of windows, the window-to-façade ratio 

(𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑤𝑖𝑛𝑑𝑜𝑤 , see Table S7.1.5 in Appendix) are derived from the envelope 

component areas of representative buildings in TABULA. Then the window area is 

calculated by multiplying the façade area with the window-to-façade ratio: 
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𝐴𝑤𝑖𝑛𝑑𝑜𝑤 = 𝐴𝑓𝑎𝑐𝑎𝑑𝑒 × 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑤𝑖𝑛𝑑𝑜𝑤     (5) 

As the difference between the door areas of the single-family house and the terraced 

house is typically very small, the door areas of these buildings are obtained from the 

representative buildings in TABULA (𝐴𝑇𝐴𝐵𝑈𝐿𝐴_𝑑𝑜𝑜𝑟, see Table S7.1.5 in Appendix). 

The door areas of multi-family houses and apartment buildings are calculated by 

multiplying the façade area with the door-to-façade ratio (𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑑𝑜𝑜𝑟, see Table 

S7.1.5 in Appendix): 

𝐴𝑑𝑜𝑜𝑟 = {
𝐴𝑇𝐴𝐵𝑈𝐿𝐴_𝑑𝑜𝑜𝑟 𝑓𝑜𝑟𝑠𝑖𝑛𝑔𝑙𝑒 − 𝑓𝑎𝑚𝑖𝑙𝑦ℎ𝑜𝑢𝑠𝑒𝑜𝑟𝑡𝑒𝑟𝑟𝑎𝑐𝑒𝑑ℎ𝑜𝑢𝑠𝑒

𝐴𝑓𝑎𝑐𝑎𝑑𝑒 × 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑑𝑜𝑜𝑟 𝑒𝑙𝑠𝑒
    (6) 

The area of the external wall is calculated by subtracting the window area and door 

area from the façade area: 

𝐴𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙_𝑤𝑎𝑙𝑙 = 𝐴𝑓𝑎𝑐𝑎𝑑𝑒 − 𝐴𝑤𝑖𝑛𝑑𝑜𝑤 − 𝐴𝑑𝑜𝑜𝑟     (7) 

According to the TABULA calculation method, the conditioned floor area (𝐴𝑐𝑜𝑛) is 

determined by the internal dimensions [176]. In this study, the thickness of the 

external wall is assumed as 0.25 meters [177], [178] and the conditioned floor area 

is estimated by correcting the gross floor area: 

𝐴𝑐𝑜𝑛 = 𝐴𝑔𝑟𝑜𝑠𝑠 − 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 × 0.25𝑚 × 𝑠𝑡𝑜𝑟𝑖𝑒𝑠    (8) 

Based on the building classification and age determined above, the U-values 

(thermal transmittance coefficient) of envelope components, g-values (solar energy 

transmittance values) of windows, air change rate by infiltration, and supply system 

parameters from the archetypes in TABULA are allocated to BAG buildings. 

2.2.2.2 Weather data 

KNMI includes 50 weather stations distributed in the territory of the Netherlands 

and records the weather data per station per hour [173]. The typical heating season 

in the Netherlands is from October 1st to April 30th (212 days) [170]. S1 uses the 

average hourly outdoor temperature and global solar radiation, while S2-4 use the 

hourly weather data. 

2.2.2.3 Refurbishment 

TABULA includes refurbishment standards for representative buildings, including 

U-values of roof, window, wall, and ground floor, and the g-values of windows. The 

U-values distinguish conventional refurbishment, i.e. to the current standard, and 

advanced refurbishment, i.e. to the nearly zero-energy level [68]. However, BAG 

does not hold the information on what refurbishment measures have been exactly 

implemented for which buildings. We allocate the refurbishment of archetypes to 

BAG buildings based on refurbishment rates. As the latest cumulative refurbishment 

rates for envelope components are only available for 2012 [174], we linearly 

extrapolate the annual refurbishment rates of 2013-2015 based on the average annual 

refurbishment rates of 2006-2012. Therefore, the cumulative refurbishment rates 

(𝑅𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡) of ground floors, external walls, roofs and windows are 63%, 77%, 
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81%, and 88%, respectively. 

According to Milieu Centraal [179], the buildings constructed after 2000 are already 

well insulated and this is also shown by their U-values in the TABULA database [68]. 

In addition, these recently constructed buildings are unlikely to have undergone 

significant thermal refurbishment. Therefore, we assume that only buildings 

constructed before 2000 might have been refurbished. The number of refurbished 

buildings for each type of envelope component (𝑁𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ) is determined as 

follows: 

𝑁𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑁𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 × 𝑅𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡     (9) 

Where 𝑁𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔  denotes the total number of buildings; 𝑅𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡  is the 

cumulative refurbishment rate for a specific type of envelope component. 

As the refurbishment rates are not differentiated by the construction period and 

building type, we randomly choose 𝑁𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 BAG buildings constructed before 

2000 and assume that the components of these buildings have experienced 

conventional refurbishment. Then the U-values of their envelope components are 

updated. 

2.2.2.4 Occupant behavior 

According to TABULA, the internal room temperature, air change rate related to the 

utilization of the building, and the internal heat gains from human metabolism and 

appliances, are 20 °C (𝑇𝑖𝑛𝑡) and 0.4 1/h (𝑛𝑣𝑒,𝑢𝑠𝑒) and 3 W/m2 (𝑞𝑖𝑛𝑡), respectively 

[68]. The above values are the same for S1-4 while the occupant schedule is only 

considered in S4. The average time that occupants stay at home differs across studies 

(e.g. 12 [180] or 16 [181] hours per day). Occupants are assumed present at home 

from 7:00 pm to 7:00 am (+1 day, 12 hours) [180], and the heating supply systems 

are assumed to only operate during this period. 

2.2.3 Calculation of energy consumption 

While the purpose of the study is to develop models for simulating the energy 

consumption for space heating, the validation data, apart from the energy 

consumption for space heating, also includes the energy for DHW. In order to ensure 

comparability, we thus additionally simulate the energy consumption for DHW 

generation. The energy demand for space heating and DHW is calculated based on 

EN ISO 13790 [180] and the TABULA method [176]. S1 is a seasonal model 

(seasonal calculation timesteps), while S2-4 are hourly models. Then the energy 

demand is converted into energy consumption based on the TABULA supply system 

simulation method [176]. The detailed calculation process can be found in section 

7.1.4 and the simulation is performed with Python. 

2.2.4 Case study 

The residential building stock of Leiden, a city in the Netherlands is selected as a 
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case study to demonstrate the developed model. Leiden is a typical Dutch city that 

has various kinds of residential buildings (29030 in total based on BAG). Its 

residential building stock characters can be found in Table S7.1.3 and Table S7.1.4 

in Appendix. Almost half of the buildings are built before 1964 while the 1975-1991 

period seems a high tide of construction. Terraced houses account for approximately 

52% of the total conditioned floor area in Leiden. As there is no weather station in 

Leiden, we use the weather data (2016) of Voorschoten, the closest weather station 

to Leiden. 

2.2.5 Spatial validation 

The Central Bureau of Statistics (CBS) holds the measured natural gas consumption 

data at the household level [182] but the data is only publicly available in an 

aggregated form at the postcode level. We use the natural gas consumption data in 

2016 to validate the modeled natural gas consumption (aggregated to 2950 postcodes, 

see the distribution of buildings per postcode in Figure S7.1.1 in Appendix). In this 

study, the heating value of natural gas is used to convert the unit of measured natural 

gas (m3) into kWh (1kWh=3.6MJ) and its value (35.2 MJ/m3) is from the literature 

[183]. The physical properties of buildings’ envelope elements vary with ages, so the 

“age” of the postcode is regarded as the average building construction year weighted 

by conditioned floor area. 

The measured natural gas does not distinguish between end-use energy purposes 

(mainly including space heating, DHW, and cooking), but the proportion of cooking 

is quite small (on average only 3.9% [183]). Therefore, we subtract 3.9% of the 

measured natural gas from each postcode and thus the remaining natural gas is 

mainly related to space heating and DHW. 

Then the modeled natural gas consumption and conditioned floor area aggregated at 

postcode level are spatially linked to the measured natural gas consumption based 

on postcodes (see Figure 2.2). The overlap ratio, defined as the ratio of the footprint 

area of dissolved buildings by postcode (BAG) to the footprint area of dissolved 

buildings by postcode (CBS) and vice versa, is used to guarantee that the same 

buildings are selected for validation. Only postcode pairs whose overlap ratios are 

within the 90-110% interval are selected (1,241 postcodes excluded and 1709 

postcodes left). 

When the measured natural gas consumption is normalized by the conditioned floor 

area, outliers (the measured natural gas consumptions that are below 20 kWh/m2a 

and above 500 kWh/m2a [184]) are found, which is mainly caused by the following 

reasons: 

(1) There might be some data errors caused by limited data coverage or occupants’ 

delayed registration. 

(2) While the majority of buildings use natural gas for space heating and DHW in 

the Netherlands, some buildings are heated by other energy sources, such as 

electricity, CHP (combined heat and power), and geothermal heating [170]. In the 
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heat transition atlas [185], we find that two CHP plants exist in Leiden and many 

buildings are connected with the heat distribution networks, for example, the 

buildings in Stevenshof (see Figure 2.2). 

(3) An extreme case is that the building’s areas are only partly used by occupants and 

thus the natural gas consumption per conditioned floor area is very small. 

(4) Some houses might have mix-use purposes. For example, ground floors are for 

business while the upper floors are for the living. 

Therefore, the postcodes with outliers are excluded from the comparison. Finally, 44% 

of postcodes and 49% of modeled buildings are left (see Figure 2.2). 

 

Figure 2.2 Mapping the modeled results with measured data from CBS. The green polygons 

are BAG buildings and the red are the CBS buildings dissolved by postcode. The natural gas 

consumption is expressed in kWh/m2a. In Stevenshof, the buildings are connected to district 

heating networks, so it is filtered. 

2.3 Results 

2.3.1 Cumulative results 

Figure 2.3 shows the cumulative natural gas consumption for all the steps as well as 

validation data. S4 fits best with the measured data (overestimated by about 6% in 

total) and thus indicates that including all influencing factors yields the most realistic 

results. In contrast, S1-3 overestimate natural gas consumption. While there is hardly 

any difference between S1 and S2, suggesting that the additional weather model 

detail has little effect, the largest reduction arises from including refurbishment (S3) 

and then the second largest reduction from including occupant schedule (S4). 
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Figure 2.3 Modeled and measured natural gas consumption cumulated for all 1292 postcodes. 

S is the abbreviations for step (both here and below). 

2.3.2 Influence of building age 

 

Figure 2.4 The measured and modeled annual natural gas consumption of different 

construction periods. The solid line in the box is the median value. 

From Figure 2.4 we can see that both the simulated and measured natural gas 

consumptions decrease with the increasing construction periods (except for S3-4 in 

the 2006-2014 period). There is no great difference between the measured natural 

gas consumption of different periods, but the measured natural gas consumption of 

the 2006-2014 period declines significantly. 

The natural gas consumption modeled by S2 is only slightly larger than S1. The 

modeled natural gas consumption plunges after refurbishment and occupant 

schedules are taken into account. S4 fits best with the measured natural gas 
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consumption, but it slightly overestimates the natural gas consumption of buildings 

in the 1992-2005 period and overestimates the energy consumption of buildings after 

2006. 

It is found that the measured natural gas consumption has a broader range than the 

modeled consumption. The reason is that the diversity of the real world is higher 

than what our models can capture. For example, the building geometries and thermal 

properties are derived from a limited number of representative buildings in TABULA, 

and occupant-related parameters are from TABULA and educated assumptions, 

which narrows the spectrum of modeled natural gas consumption. 

2.3.3 Accuracy analysis 

Figure 2.5 maps the modeled and measured natural gas consumption of each 

postcode. Comparing Figure 2.5a and Figure 2.5b, we can find that the natural gas 

consumptions are quite large for certain spatially clustered postcodes, but the 

extreme natural gas consumption of validation data is more obvious than that of S4. 

It is also found in Figure 2.5c that the deviations between S4 and validation data are 

in general very small, although the natural gas consumption modeled by S4 is not 

very consistent with the measured natural gas consumption for some postcodes. 

From Figure 2.5d we can see that older buildings tend to consume more natural gas, 

but it is not always the case. 

Figure 2.6 shows the distribution of absolute deviations between S4 and validation 

data. The average absolute difference is -0.4 kWh/m2a, which means that S4 slightly 

underestimates the natural gas consumption. Nearly 83% of the absolute deviations 

are in the ± interval while 98% are in the ±2 interval. The mean bias error (MBE) 

is -0.35 kWh/m2a, and the coefficient of variation of root mean square error 

(CVRSME) is 31% [186]. Overestimations and underestimations almost 

symmetrically distribute on both sides of zero, which is one of the main reasons why 

underestimations and overestimations level off and the modeled natural gas 

consumption is in good agreement with the measured natural gas consumption on 

the Leiden building stock scale. 

2.4 Discussion 

2.4.1 Key factors for modeling the energy consumption for space heating 

The validation reveals that S1-2 do not consider refurbishment and occupant 

schedule and fail in accurately simulating the natural gas consumption, while the 

modeled natural gas consumption becomes increasingly close to the measured 

natural gas consumption after refurbishment and occupant schedule are included in 

S3-4. Therefore, refurbishment and occupant schedule are important factors 

affecting the modeled natural gas consumption, which is in line with other studies 

[167]. 



Chapter 2 

27 

 

Figure 2.5 Leiden maps of modeled and measured annual natural gas consumption of 44% 

postcodes for space heating. Figure 2.5a shows the natural gas consumption modeled by S4. 

The measured natural gas consumption is shown in Figure 2.5b. The absolute deviations 

between S4 and the measured natural gas consumption are shown in Figure 2.5c. Figure 2.5d 

shows the age distribution. 

In terms of the accuracy of weather data, the difference between the simple average 
weather data for the heating season (S1) and the hourly weather data (S2) does not 

make a significant difference to the modeled annual natural gas consumption (Figure 

2.4). However, the natural gas consumptions modeled by S1-2 are obviously higher 

than measured natural gas consumption. One of the main reasons is that S1-2 

inherently oversimplify the heating process by assuming that the buildings are heated 
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all the time during the heating season [187]. Therefore, the seasonal heat demand 

model (S1) is not suitable for accurately estimating the energy reduction effect of 

specific energy-efficiency measures, while the hourly model (S2) can take hourly 

weather differences into account and has more potential for accuracy improvement 

by including more detailed occupant schedule (e.g. S4). 

 

Figure 2.6 Absolute deviations between S4 and measured natural gas consumption.  is the 

mean absolute deviation and  is the standard deviation of absolute deviation. 

In Figure 2.4, we find that including refurbishment increases more accuracy for 

older buildings than including occupant schedule while the opposite seems to apply 

for newer buildings. The reason is that newer buildings have better thermal 

properties and refurbishment only has a limited impact on reducing the modeled 

natural gas consumption, which indirectly demonstrates that refurbishing the 

buildings constructed before 1964 can lead to the highest natural gas reduction 

potential. It is also found that for S3 and S4, the modeled natural gas consumption 

of the 1992-2005 period is even lower than the modeled natural gas consumption 

after 2006. It is partially because the original thermal properties of the buildings of 

1992-2005 period are only moderately worse than that of buildings after 2006, but 

refurbishment makes the envelope components of buildings in 1992-2005 period 

have even better thermal properties than the buildings after 2006 (for which no 

refurbishment is simulated). 

S4 overestimates the natural gas consumption of almost all the buildings of the 2006-

2014 period (Figure 2.4). One of the main reasons may be that the U-values in 

TABULA only meet the national minimum requirement and these values cannot 

represent the thermal properties of these buildings [68]. In reality, more efficient 

heating or ventilation systems and renewable energy sources have been applied, but 

S4 does not account for such increasingly applied technologies. For example, in the 
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Netherlands, some heat boilers using natural gas are replaced by district heating or 

heating pumps, and their gas stoves are replaced by electric cooking stoves [179]. 

Figure 2.5 suggests that the actual natural gas consumption is not only affected by 

the building age but also other factors such as refurbishment records and occupant 

schedules. Building age, as a key classification standard for TABULA archetypes 

applied in characterizing the Leiden residential building stock, can partially represent 

the energy efficiency of the current building stock, while the past refurbishment 

measures, in reality, have changed the energy performance of original buildings. 

Therefore, the refurbishment rate can be regarded as supplementary for the limited 

representation of TABULA archetypes. 

As increasing the sophistication from S1 to S4, some assumed data are introduced 

(e.g. refurbishment and occupant schedule), for which no spatial information is 

available. While S4 is the most complete among the four steps and produces the best 

results at a spatially aggregated scale (neighborhood or city level), it thus comes with 

the trade-off of decreased spatial accuracy, at least at a single-building level (see the 

schematic representation in Figure S7.1.2 and Figure S7.1.3 in Appendix). This is a 

common dilemma in building stock modeling [87] and cannot be resolved unless 

spatially explicit data for factors such as refurbishment is available. 

2.4.2 Limitations and research opportunities 

The building information of TABULA archetypes is allocated to individual BAG 

buildings based on construction periods and the identified building types, which 

provides an opportunity to automatically characterize building information at large 

scales with limited data. However, the archetypes are unable to completely represent 

all the real buildings, such as geometries (e.g. window-to-façade ratio and door-to-

façade ratio), physical properties, and supply systems, which is a systematical limit 

of the archetype-based method. In addition, sometimes the identified building types 

might be wrong. For example, the end-terraced houses and mid-terraced houses are 

assumed to respectively have one and two shared walls, but multi-family houses may 

also have one and two shared walls. This would cause some variations for the 

estimated envelope component areas (including windows, walls, and doors), while 

the differences between the U-values of different building types for the same period 

are almost negligible according to the TABULA database [68]. Moreover, the 

buildings are simplified as cubes, which ignore the roof types and may cause some 

errors for the estimation of envelope component areas. 

Due to a lack of supply system information and the corresponding energy sources 

for individual buildings, all the buildings are assumed to use gas-fired boilers from 

TABULA. Although most residential buildings are heated by natural gas in the 

Netherlands, there are increasing exceptions. For example, some more recent houses 

have been installed with gas-free heating systems (e.g. heat pumps or connecting to 

district heating networks). 

The national refurbishment rates [174] of envelope components and the usual 

refurbishment from the TABULA database are employed to reflect the physical 
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properties of the current residential building stock. However, this can cause spatial 

uncertainty for the Leiden residential buildings stock, so more attention should be 

paid to reducing the uncertainties caused by unknown HVAC systems and 

refurbishment records (e.g. refurbishment year and insulation technologies) at 

postcode or even individual building level. 

The presented model uses standard occupant parameters from other literature and 

reasonable assumptions (e.g. occupant’s schedule) to fill in the data gaps and 

calculates the energy consumption from a demand perspective (quantify the energy 

required to maintain a given room temperature), while it omits the diversity of 

individual occupant behavior. Previous studies [51] have revealed that occupants can 

impose a critical impact on building energy consumption and sometimes even reach 

the same extent of technical interventions. For example, internal room temperature 

setting, ventilation (time of leaving windows and doors open), schedules, and DHW 

consumption highly depends on the specific occupants (e.g. living habits, number, 

age, income, and job) [188]. However, it is difficult to collect so much detailed 

occupant information on building scale especially for a city-scale energy model, and 

future research should pay more attention to this. 

The internal room temperature of a given building varies in space and time (named 

as “non-uniform heating” [176]). The use status of various rooms (e.g. living rooms, 

bedrooms, and kitchens) can be quite different. The areas like the staircase, attics, 

and garages are typically unheated. Additionally, intermittent heating or reduced 

setting-point temperature may occur during different periods (e.g. night and 

weekend). However, in this study, the internal room temperature is set as a fixed 

value (20 °C [180]) in the whole space of buildings. 

For validation, due to lacking measured energy consumption data for individual 

buildings, the weighted average ages rather than the pure age of individual buildings 

are employed to represent the construction periods of postcodes, although the 

buildings with the same postcode are likely to have similar ages. 

2.4.3 Model applicability and transferability 

Due to a lack of refurbishment records at the level of individual buildings, its 

accuracy for individual buildings is limited. However, the presented model qualifies 

to offer a good overview of the energy consumption characteristics at the 

neighborhood and city scales, for which validation is possible. It can also reflect the 

energy efficiency of buildings belonging to different age groups. 

The presented model makes a compromise between sophistication and accuracy 

through making full use of public data sources (geometries in GIS data and TABULA 

archetype building information). It gathers the input data as matrices (building 

information) or time series (weather data and occupant behavior) and calculates 

energy consumption based on public energy simulation algorithm, which allows for 

analyzing largescale building stock (neighborhood, city, or nation) and realizing 

transferability to other countries. 
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Due to a lack of spatial data on individual buildings as well as the diverse occupant 

behavior, building stock energy models previously developed applied diverse input 

data [96]. Especially the model proposed by Buffat et al. [98] applied high-resolution 

spatial data available in Switzerland that is not available for many other countries. 

In contrast, the data required for the presented model mainly involves the GIS data 

(including building registration), archetype buildings, weather data, refurbishment 

records, and occupants, which are available and public in many countries. Below is 

a summary of the availability of input data: 

(1) The GIS data of buildings is available in many EU members and the 

OpenStreetMap can be an alternative data source [98]. The availability and detail 

level of individual building attributes (e.g. construction year, building types, heating 

systems, energy sources, refurbishment records, occupant characteristics) differ 

significantly in each country, such as the Danish BBR [189] and the Swiss FRBD 

[112]. However, the building type identification method developed in this study 

based on building morphologies in GIS data provides opportunities for filling in 

these data gaps with archetypes or sample buildings. 

(2) The archetype buildings are available for many countries [190] and it is also 

worth mentioning that the TABULA project currently contains the representative 

buildings of 21 European countries [68]. However, for larger countries, the archetype 

system might be quite complex due to various climate regions and construction 

technologies. 

(3) The weather data is almost available for every country while its spatial and 

temporal resolution might be quite diverse. 

(4) The detailed refurbishment records for individual buildings are very rare in most 

countries but can be managed by the local authorities. In some EU countries, the 

EPC (Energy Performance Certificate) databases contain buildings’ past 

refurbishment or suggested energy efficiency measures as well as energy labels (A-

G), actual energy use, physical properties, and HVAC systems, but the building 

information types in these databases differ from country to country and not every 

building has an energy label at present [191]. Alternatively, the refurbishment rates 

of building elements can be collected from the published reports (local or from other 

countries/regions). 

(5) The occupant data (e.g. household age structure, the number of occupants, 

income, and education level) that is quite related to human behavior is available in 

some developed countries, such as the SHAERE database of the Netherlands [192] 

and the property register of Sweden [193], but it is usually not public and spatialized 

for privacy protection reasons. However, reasonable assumptions can be made to fill 

in the data gaps in the absence of better data (e.g. room temperature, internal heat 

gains, and occupant schedule). 

2.5 Conclusion 

This study presents a GIS-archetype-based bottom-up building stock model for 
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energy consumption for space heating. In order to allocate the typical geometries, 

thermal properties, and heating systems of archetype buildings to the individual 

buildings, this paper develops a method to identify the types of individual buildings 

according to building size and the number of shared walls. Then different input data 

(e.g. average weather data, hourly weather data, refurbishment, and occupant 

behavior data) and calculation methods are gradually included to explore the key 

factors affecting the model accuracy. The main conclusions are: 

(1) The spatial validation shows that the most sophisticated step can well reflect the 

energy consumption at the city scale while other steps are completely off reality. 

However, due to lacking heating systems, refurbishment records, and occupant 

behavior for individual buildings, the modeled energy consumption is moderately 

acceptable at the postcode level but likely inaccurate for individual buildings. This 

demonstrates that including more factors can increase the model accuracy at the city 

scale, but simultaneously increase the uncertainty for single buildings. Additionally, 

as more than half of the postcodes are filtered (only 44% postcodes left), the 

validation data of higher quality would be valuable to assess the developed model. 

(2) The comparison between steps demonstrates that the seasonal model fails in 

accurately simulating the energy consumption for space heating. It is found that 

including past refurbishment in building stock energy models is necessary for 

achieving reliable results. Taking the assumed occupant schedule into account can 

narrow the gap between the modeled and measured energy consumption though the 

occupant behavior data in this study is quite rough. 

(3) The model is valuable for city planners to understand the current energy 

efficiency status in space, determine the priority of implementing retrofit measures, 

and assess the energy-saving potentials of refurbishment technologies. Local 

authorities need to spatialize detailed information for individual buildings if more 

specific energy-efficiency suggestions are required. Furthermore, the presented 

model probably is transferable for other countries as long as the input data such as 

GIS building datasets and archetype buildings, is available. 

 


