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Abstract 

Purpose: The amount of stroma within the primary tumor is a prognostic parameter for 
colon cancer patients. This phenomenon can be assessed using the tumor-stroma ratio 
(TSR), which classifies tumors in stroma-low (≤50% stroma) and stroma-high (>50% stroma). 
Although the reproducibility for TSR determination is good, improvement might be expected 
from automation. The aim of this study was to investigate whether the scoring of the TSR in 
a semi- and fully automated method using deep learning algorithms is feasible. 

Methods: A series of 75 colon cancer slides were selected from a trial series of the UNITED 
study. For the standard determination of the TSR, three observers scored the histological 
slides. Next, the slides were digitized, color normalized and the stroma percentages were 
scored using semi- and fully automated deep learning algorithms. Correlations were 
determined using intraclass correlation coefficients (ICC) and Spearman rank correlations. 

Results: 37 (49%) cases were classified as stroma-low and 38 (51%) as stroma-high by visual 
estimation. A high level of concordance between the three observers was reached, with 
ICCs of 0.91, 0.89, and 0.94 (all p<0.001). Between visual and semi-automated assessment 
the ICC was 0.78 (95% CI 0.23-0.91, p-value 0.005), with a Spearman correlation of 0.88 
(p<0.001). Spearman correlation coefficients above 0.70 (N=3) were observed for visual 
estimation versus the fully automated scoring procedures. 

Conclusion: Good correlations were observed between standard visual TSR determination 
and semi- and fully automated TSR scores. At this point visual examination has the highest 
observer agreement, but semi-automated scoring could be helpful to support pathologists.
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Introduction

The tumor-stroma ratio (TSR) has been shown to be an independent prognosticator in various 
forms of cancer and is scored by a pathologist using a conventional microscope, in relatively 
short time (<2 min) (1,2). The parameter has been validated in multiple epithelial cancer 
types by research groups worldwide, including colon cancer (2-4). In general, patients with a 
large amount of stroma within the tumor (>50%; so-called ‘stroma-high’ tumor) indicate an 
unfavorable phenotype, having an increased probability of disease recurrence or death by 
disease. Although the observer variation is good with Kappa values above 0.70 (1) the visual 
estimation of the stroma percentage is subjective, and may impact the TSR classification, 
especially for tumors in which assignment to TSR status is relatively difficult (i.e. stroma 
percentage around the cut-off point of 50%).

For wide-scale introduction of the TSR in the decision making process, reproducible and 
accurate assessment is mandatory. In this context, artificial intelligence has the potential 
to make assessment of the exact stroma percentage more objective and reproducible, 
especially in cases with a TSR around the 50% cut-off point. Since histopathology is 
becoming more and more digitalized, techniques as artificial intelligence now enter the 
field of cancer diagnostics. Artificial intelligence using deep learning approaches has been 
shown to perform at the level of experienced pathologists for tasks such as prostate cancer 
(5) and breast cancer metastasis (6) detection. Deep learning algorithms are also capable of 
distinguishing between tumor cells, tumor stroma and other tissue components in scanned 
hematoxylin & eosin (H&E) stained sections of rectal cancer, as shown by Geessink et al. (7). 
They used digital images to score the TSR and validated the prognostic value when scored 
with a semi-automated deep learning algorithm. A next step for automation would be a fully 
automated algorithm to score the TSR.

In the present study, the correlation between visual estimation of the TSR, semi-automated 
and fully automated TSR scoring using deep learning was investigated in colon cancer. The 
final goal is to add scoring TSR to current computational pathology procedures to support 
the pathologist in routinely scoring TSR. 

Materials and methods

Case selection
The cases selected for this study were based on the E-learning module of the UNITED study 
(8). These cases were chosen for training purposes by limiting the number of stroma-low 
cases (e.g., 10% or 20% stroma cases), in order to increase the number of cases that are 
difficult to score for pathologists. All patients underwent surgical treatment at the Leiden 
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University Medical Center (LUMC), had stage II or stage III colon cancer, and no patients 
received neo-adjuvant treatment. The slides were anonymized and scanned with the 
Panoramic 250 scanner (3DHistech, Hungary) (tissue level pixel size ~0.33 µm/pixel), or with 
the IntelliSite Digital pathology slide scanner (Philips, the Netherlands) (tissue level pixel size 
~0.25-0.26 µm/pixel).

Visual estimation of the tumor-stroma ratio
The TSR was scored on H&E stained sections, as described in detail by van Pelt et al. (1). 
In brief, in the general procedure for visual TSR assessment, the region within the tumor 
with the highest relative amount of stroma is selected using a conventional microscope at 
low magnification. The region is subsequently zoomed to 100x magnification, and a field 
of view is selected in which tumor cells are visible on all opposite sides of the field. Areas 
with abundant necrosis, muscle tissue and fatty tissue are not taken into account. Next, the 
percentage of stroma occupying the field of view is visually estimated using increments of 
10%. In the present study, visual TSR scoring was performed using scanned slides, requiring 
a slight modification to the above described procedure (9). A visual annotation was placed in 
the scanned image, mimicking the surface area of a field of view of a 100x magnification of 
a microscope. The annotations were placed by two experienced TSR researchers (MS placed 
the annotations, GvP checked the position of the annotations) in the area with the highest 
amount of stroma by eye (TSR hot spot). Thereafter, the stroma percentage was scored by 
three observers (HvK, GvP and MS) within this annotation.

Semi-automated scoring of the tumor-stroma ratio
The semi-automated TSR was scored using a deep learning algorithm in the hot-spot 
regions selected for the visual TSR scoring. A deep learning algorithm based on fully-
convolutional neural networks (FCN) (10) was used to process all whole-slide images 
(WSI) at 20X magnification (0.5 µm/pixel), in order to segment multiple tissue types in 
each slide, i.e. predict the label of each pixel in the WSI. The FCN was built and trained 
as described by Geessink et al. (7). A training dataset of manually annotated regions of 
colon tissue samples from Radboud University Medical Center, Nijmegen (Netherlands) 
was used for model development (11). In order to compensate for the difference in H&E 
staining between the single-center training set and the research population in this study, a 
recently developed stain normalization algorithm was adopted, based on cycleGAN model 
(12), capable of transferring the style (i.e., the H&E staining) from one image to another, 
based on a pre-defined template (i.e., the H&E staining of the training set). As a result, the 
FCN could label each pixel as one of the following classes: tumor glands, tumor-associated 
stroma, necrosis, lymphocytes, erythrocytes, muscle, healthy stroma, fatty tissue, mucus, 
nerve, stroma lamina propria, healthy glands, where “healthy stroma” indicates connective 
tissue not associated with the tumor. The FCN was used to classify all pixels in the manually-
selected regions of interest, and the semi-automated TSR was computed as the percentage 
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of stromal pixels within the whole hot-spot area minus mucus, necrosis and/or background. 
For determination of the TRS, all tumor-associated stroma, lymphocytes, erythrocytes, 
muscle, healthy stroma, nerve and stroma lamina propria pixels were defined as stromal 
pixels. See Figure 1 for the output of the semi-automated deep learning algorithm.

Figure 1. An example of the workflow output for semi-automated scoring algorithm. In A) H&E stained sections 
in the spot chosen by microscopic assessment. B) the first step was making an segmentation output, before in 
C) the class labels can be displayed.

Fully automated scoring of the tumor-stroma ratio
The fully automated TSR was computed by extending the application of the same FCN 
model used in the semi-automated approach to the entire WSI. For this purpose, three 
main components had to be defined, to cope with challenges that emerge when the TSR 
analysis is not restricted to human-provided hot-spots but rather to the entire WSI: 1) define 
the tumor-associated area of the WSI where TSR can be computed, 2) define the type and 
proportion of tissues involved in the computation, and 3) define the statistics to use to 
compute TSR. All the aspects are described in this section.
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Figure 2. The output from the full automated workflow. In A) the tumor bulk is annotated. In B) the heatmap is 
created. The biggest dot corresponds with the highest stroma-percentage (TSR-1), the second biggest with the 
second highest (TSR-2), etcetera. In C) the class output of the highest spot (TSR-1), in D) the second highest spot 
(TSR-2) and in E) the third highest spot (TSR-3).

1.	 Tumor-associated area. Mimicking the visual estimation method, the fully  
	 automated TSR deep learning score should be determined on tissue likewise scored  
	 as the manual procedure. Based on a circular region of interest, equivalent to the  
	 one used for microscopic assessment, the TSR should then be computed by  
	 automated analysis. These points were addressed as follows. First, the analyses  
	 were limited to the “tumor bulk” region, defined as the area of the WSI that  
	 completely encloses all tumor glands predicted by the FCN (Figure 2). In practice, the  
	 tumor map was extracted from the predicted segmentation and it was post- 
	 processed by running a “concave hull” algorithm, to get rid of small false positives  
	 and to identify the bulk of colon carcinoma. Second, the tumor bulk regions were  
	 considered valid when it was possible to completely fit the circular field of view  
	 of diameter d=2.0mm, and where those fields of view did not contain any  
	 background regions (i.e., lack of tissue) or tissue tears. In practice, this resulted in  
	 an erosion of the tumor bulk area using the field of view as a structuring element. 

2.	 Tissue types. Within the valid tumor bulk area, a set of tissue types was considered  
	 to compute the TSR score. Driven by good practices learned during visual  
	 assessment, rules were added to consider regions of interest as valid: area of fatty  
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	 tissue should be <5% of the field of view; presence of erythrocytes should be <10%  
	 of the area of the field of view; the area of necrosis should be <30% of the field of  
	 view. Additionally, the “tumor” area was defined as the combination of tumor  
	 glands and healthy glands. Healthy glands within the tumor bulk as assigned by the  
	 algorithm appeared on visual inspection to be well differentiated tumor glands and  
	 thus were included as tumor in determination of the TSR. The “stroma” was defined  
	 as the combination of tumor-associated stroma, lymphocytes, nerves and  
	 erythrocytes.

3.	 Computing TSR. Based on the semi-automated approach, for each circular input  
	 region of interest, a TSR score can be computed in the valid tumor bulk area  
	 considering the tissue types previously defined. Therefore, simply sliding this  
	 circular area over the entire WSI image would produce a TSR prediction at every  
	 location, eventually producing a “TSR heatmap” (Figure 2). In practice, to make this  
	 operation efficient, the circular area was treated as a binary filter and computed  
	 the TSR map via convolution of the predicted classes of interest in the segmentation  
	 map and the circle itself in the Fourier domain. Driven by the definition of TSR  
	 hot-spot, the location was considered with the maximum value of stroma in the  
	 TSR heatmap as the best candidate for automated TSR, which was reported as TSR- 
	 1. However, due to misclassified regions within the tumor bulk, a rank of hot regions  
	 was considered. Starting from TSR-1, to include additional TSR values in the  
	 analysis. For this purpose, the top-3 TSR values were taken, namely TSR-1, TSR-2  
	 and TSR-3 (Figure 2), each computed as the maximum value of the TSR heatmap after  
	 zeroing the previous hot-spot using a region as large as the field of vision.

Statistical analysis
The visual estimation percentage was based on the scores of the three observers. When 
all observers or 2 out of 3 scored the same percentage, this percentage was seen as the 
consensus percentage for visual estimation. For the other cases a consensus meeting was 
set up to determine the percentage. These categorical percentages were used for intraclass 
correlation analysis. For interobserver analysis the cases were classified as stroma-low 
(≤50% stroma) or stroma-high (>50% stroma) (1, 2) and Cohen’s kappa coefficient was used 
as method. The semi- and fully automated deep learning algorithm data were classified in 
the same categories as the visual estimation and were dichotomized in the same groups as 
described above (≤50% stroma or >50% stroma). The intraclass correlation coefficient (ICC) 
with corresponding 95% confidence interval (95% CI) was used to study the relationship 
between the three observers, and between the visual TSR assessment and semi-automated 
TSR deep learning algorithm. In addition, as the visual TSR assessment uses a slightly 
different definition of TSR compared to the automated assessments, the visual and deep 
learning TSR values (semi-automated as well as fully automated) were compared using 
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Spearman rank correlations. Bubble plots were used for data visualization. In addition, 
Bland-Altman plots were created to study differences between measurement methods 
(data not shown). T-tests were used for hypothesis testing. P-values <0.05 were considered 
significant. Statistical analyses were performed using IBM SPSS software version 25.0 (SPSS, 
Inc. an IBM Company Chicago, IL, USA).

Results

Visual estimation results
In total 75 cases were analyzed in this study. In 32 cases (43%) all three observers scored the 
same percentage, and in 37 cases (49%) 2 out of 3 observers scored the same percentage. 
In 6 cases (8%), all observers scored a different percentage, impeding a consensus based 
on majority vote. These were discussed in a consensus meeting with the three observers, 
resulting in a consensus stroma percentage for all cases. Of the 75 cases, 37 (49%) were 
classified as stroma-low and 38 (51%) were classified as stroma-high by visual estimation. 
Twenty cases (27%) had a TSR score directly adjacent to the cut-off, being either 50% or 
60% stroma. The observer agreements were good, with kappa scores of 0.68, 0.70 and 0.89 
between pairs of observers. The associated ICCs confirm the high level of concordance, with 
values of 0.91, 0.89, and 0.94 (all p<0.001; see Table 1).

Table 1. Overview of the interobserver agreements and correlations between the three observers.

Observers Kappa ICC 95% CI p-value
1 vs 2 0.68 0.91 0.85-0.94 <0.001*

1 vs 3 0.70 0.89 0.83-0.93 <0.001*

2 vs 3 0.86 0.94 0.91-0.96 <0.001*

* Significant results.

ICC = intraclass correlation coefficient, 95% CI = 95% confidence interval

Results of the semi-automated assessment of the TSR
The semi-automated algorithm analyzed the identical tissue regions as used for visual 
assessment. Applying the 50% cut-off, 19 cases (25%) were classified as stroma-low and 
56 (75%) cases as stroma-high. In total 29 (39%) cases were adjacent to the 50% cut-off 
value (either 50% or 60%) for the semi-automated assessment. The ICC between visual and 
semi-automated assessment was 0.78 (95% CI 0.23-0.91, p-value 0.005), with Spearman 
rank correlation of 0.88 (p<0.001). The relationship between visual and semi-automated 
assessment is shown in Figure 3.
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Figure 3. Bubble plot of assessed stroma percentage of the 75 cases. In A) for the visual (consensus) scores 
plotted against the semi-automated scores. The lines indicate the cut-off between stroma-low and stroma-high. 
Green dots indicate cases where agreement was reached and dots in red indicate disagreement. In B) the visual 
scores plotted against the highest fully automated scores (TSR-1), and in C) the semi-automated scores plotted 
against the highest fully automated scores (TSR-1).

  
Results of the fully automated assessment of the TSR
Results from fully automated assessment, applying the cut-off value of 50%, showed 9 (12%) 
stroma-low cases and 65 (88%) stroma-high cases. One case could not be assessed because 
the tumor area detected by the algorithm was too narrow to fit the circular measurement 
region with 2.0mm diameter as used for fully automated deep learning assessment. 
Given the systematic difference between visual TSR assessment and fully automated TSR 
assessment, Spearman correlation coefficients were calculated to study concordance 
between the two methods. Spearman correlation coefficients of respectively 0.72, 0.77, 
and 0.75 between the three fully automated highest TSR spots (TSR-1, TRS-2, and TSR-3) 
and the consensus visual TSR were observed (all p<0.001; see Table 2). Comparing semi- 
and the three fully automated assessments, a significant positive correlation was observed, 
with Spearman correlation coefficients of respectively 0.76, 0.83, and 0.80 (all p<0.001; see 
Table 2). Figure 3 shows plots comparing fully automated assessment with both visual and 
semi-automated assessment. 

The correlation between the visual assessment and semi- or fully automated assessment 
was generally good, but a number of large discrepancies were observed. In Figure 4, 
examples are shown with agreement on stroma-low and on stroma-high status, as well as a 
discrepancy between visual TSR assessment and semi-automated deep learning assessment. 
Supplementary Figure 1 shows two examples of a suboptimal selection of the measurement 
region by the fully automated deep learning algorithm.
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Table 2. Overview of the correlations between the different methods.

Methods Spearman correlation p-value
Visual estimation vs fully automated 1 (TSR-1) 0.72 <0.001*
Visual estimation vs fully automated 2 (TSR-2) 0.77 <0.001*
Visual estimation vs fully automated 3 (TSR-3) 0.75 <0.001*
Semi-automated vs fully automated 1 (TSR-1) 0.76 <0.001*
Semi-automated vs fully automated 2 (TSR-2) 0.83 <0.001*
Semi-automated vs fully automated 3 (TSR-3) 0.80 <0.001*

* Significant results.

Figure 4. Three examples for the semi-automated output. A) agreement between visual estimation and semi-
automated score (20% stroma), B) agreement between visual estimation and semi-automated score (60% 
stroma), C) by visual estimation 50% stroma was scored, 80% stroma was the semi-automated outcome due to 
not always recognized tumor cells.
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Discussion

This study focused on the use of computational pathology for scoring the TSR. The 
standard approach of scoring consisted of human visual estimation, In the current study we 
investigated whether a automated analysis using artificial intelligence (more specifically: 
deep learning algorithms), applied in either a fully- or semi-automated manner could reach 
comparable results, especially for cases that are difficult to score, i.e. with a TSR score 
within 10 % of the commonly applied 50% cut-off point. The cases used in this study were 
chosen for training purposes (8), and therefore did not follow the normal TSR stroma-low/-
high percentage distribution as would be expected in a cohort study. To the best of our 
knowledge, this is the first study in which these three methods are compared. 

The TSR is easy to score by visual inspection of H&E stained slides during routine pathology, 
taking only 1-2 minutes. The interobserver agreement was shown to be substantial to 
good (1). Most common discrepancies between observers are the cases around the cut-off 
value of 50%. Scoring these, more difficult, cases with deep learning algorithms could be 
supportive to the pathologist. 

With three experienced observers scoring the visual stroma percentage and using all scores 
together as the consensus agreement, this measurement can be seen as a solid visual 
estimation and a good basis for a comparison with the two computer based methods. In this 
study the annotations were placed upfront by one of the observers, to reach a consensus for 
the stroma percentage for the annotation.

The semi-automated deep learning algorithm can be seen as a fourth observer or as a new 
scorings method. When handling the semi-automated method as an observer the ICC can be 
used. The ICC of 0.77 between the visual estimation and the semi-automated deep learning 
algorithm output was good. If the semi-automated score is handled as a new scoring method, 
the Spearman correlation showed an even better correlation between the visual estimation 
and the semi-automated output (0.88). These results are comparable with earlier research 
in rectal cancer (7), where TSR was scored semi-automated by deep learning. Another semi-
automated method recently used is point-counting. This is a comparable method, using a 
grid placed as layover and each point representing a tissue type which is visually assigned by 
a pathologist. After point classification, the stroma percentage is measured (13, 14). Point-
counting is useful to quantify the exact stroma percentage and showed good Kappa values 
within this method (13), but is time consuming and more subjective because all points 
have to be classified manually compared to a semi-automated deep learning algorithm. 
The results in the study from West et al. showed that semi-automated TSR assessment by 
point-counting is a good method to measure the prognostic value of the TSR. In this study 
no comparison with visual TSR assessment has been made (13). Zhao et al. (15) scored the 
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TSR fully automated on whole slide images, using the whole tumor area. No hotspot was 
chosen, therefore, their results are not comparable with microscopic results.

The second highest hot spot (TSR-2) determined by the fully automated deep learning 
algorithm corresponds best with the visual TSR assessment. Upon reviewing the cases the 
suggestion is that in the highest spot more tissue types are classified, which are not taken 
into account when determining the stroma percentage visually. So, the highest spot has 
more “noise” than the second highest spot calculated by the fully automated deep learning 
algorithm. 

One of the challenges in developing deep learning algorithms for histopathology is the large 
variability between slides, largely caused by variations in the H&E staining. Unless standardized 
protocols for H&E staining are strictly followed, there is a considerable variability in staining 
characteristics among and even within laboratories. While a pathologist will easily adapt 
to such differences, the performance of a deep learning algorithm may be very sensitive to 
variations not encountered in the slides used for training. Several techniques, such as stain 
normalization and augmentation, exist to make deep learning algorithms more robust for 
use in histopathology (16). The cases in the current study were stained in another laboratory 
than where the original deep learning algorithms were developed. Before the slides could 
be analyzed for TSR, stain normalization and augmentation took place (Supplementary 
Figure 2 shows an example). The cycleGAN method was necessary for optimal functioning 
of the semi- and fully automated deep learning algorithms. Another challenge, was that the 
protocol for visual scoring TSR cannot be easily transferred to an algorithm. In stroma-high 
cases it is of importance when scoring TSR by microscope that on four sides of the vision 
field tumor cells are present. Translating visual interaction into an algorithm is difficult. 
Therefore for the fully automated algorithm all stroma within the tumor bulk was used 
for calculation of TSR (TSR-1, TSR-2 and TSR-3). We conclude that, before the algorithms 
can be used in daily practice, a validation study should be performed using the in house 
H&E staining procedure, and including the adjusted stain normalization steps. In this case, 
it would also be of interest to (re-)investigate the cut-off value of the TSR, especially when 
using the (semi-)automated method (both binary and numerically). Also because of the fact 
that in earlier research about quantifying the percentage of malignant nuclei, it appeared 
that humans score systematically higher compared to a computer algorithm (17, 18).

However, with current digitization of the pathology workflow, more and more routine 
histology and new biomarkers become applicable using artificial intelligence methods 
offering standardization and robustness, both most valuable standards in strategies 
for personalized treatment for the patient with colon cancer. To easily improve artificial 
intelligence workflows, pathology images and patient data should be connected at the 
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source (19). When all laboratories are able to connect this way, data (including pathology 
images) can be easily shared and used.

To conclude, this study showed good correlations between the TSR scored by microscope 
and using deep learning algorithms. No conclusions however can be drawn for the method 
of preference, because no survival data were available. The UNITED study (8) will provide 
answers to these remaining questions, as within this European validation study, including 
1500 colon cancer patients, the TSR will be scored microscopically and by deep learning 
algorithms.
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Supplementary Material

Supplementary Figure 1. Examples of cases where the fully automated spot is not ideal chosen because in A) not 
on all sides are tumor cells so by eye one would say it is not possible to tell whether it is normal stroma or tumor 
stroma, the spot in B) is not optimal because of the amount of necrosis. 

Light blue is tumor, light green is tumor-stroma, dark green is mucus, yellow is necrosis, purple is muscle.

 

Supplementary Figure 2. In A) an example of the output of the stain normalization procedure, in B) the stain 
augmentation process is visualized.
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