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� We made reference values for nerve conduction studies with mixture model clustering.
� Precise, individual reference values were based on age, sex, height and temperature.
� Z-scores can be calculated to quantify the (ab)normality of a test result.

a b s t r a c t

Objective: to obtain locally valid reference values (RVs) from existing nerve conduction study (NCS) data.
Methods: we used age, sex, height and limb temperature-based mixture model clustering (MMC) to

identify normal and abnormal measurements on NCS data from two university hospitals. We compared
MMC-derived RVs to published data; examined the effect of using different variables; validated MMC-
derived RVs using independent data from 26 healthy control subjects and investigated their clinical
applicability for the diagnosis of polyneuropathy.
Results:MMC-derived RVs were similar to published RVs. Clustering can be achieved using only sex and

age as variables. MMC is likely to yield reliable results with fewer abnormal than normal measurements
and when the total number of measurements is at least 300. Measurements from healthy controls fell
within the 95% MMC-derived prediction interval in 97.4% of cases.
Conclusions: MMC can be used to obtain RVs from existing data, providing a locally valid, accurate

reflection of the (ab)normality of an NCS result.
Significance: MMC can be used to generate locally valid RVs for any test for which sufficient data are

available.1

� 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction
Reference values (RVs) are of major importance for proper
interpretation of clinical neurophysiological measurements, espe-
cially nerve conduction studies (NCS). Considerable debate
remains about the use of RVs available in the literature and RVs
collected in individual clinical neurophysiology departments. Pub-
licly available RVs for NCS are rare: a recent systematic review only
found one set of RVs of sufficient quality for a small number of
measurements (Chen et al., 2016). In addition, universal applica-
tion of publicly available RVs is hampered by the fact that they
are likely to differ between clinical neurophysiology departments
(Litchy et al., 2014; Brown et al., 2017), as they are influenced by
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factors such as electrode placement and size, filter settings and
temperature. Therefore, several guidelines recommend that clinics
develop their own RVs (Dillingham et al., 2016; Stålberg et al.,
2019). However, as RVs are influenced by patient-related factors
including age, body height and sex (Salerno et al., 1998; Dinesh
Kumbhare et al., 2015), such an approach requires an exhaustive
battery of NCSs on a large number of healthy subjects. To our
knowledge, very few clinical neurophysiology departments actu-
ally create locally valid RVs.

Of note, a large number of measurements taken during routine
clinical practice are likely to be normal and could be used to
develop RVs, if they can be identified as such. Here, we assumed
that any large enough set of NCS measurements consists of a mix-
ture of two populations: a population of ‘‘normal” measurements
belonging to healthy nerves and a population of ‘‘abnormal” mea-
surements. These populations can be separated by a statistical
technique called mixture model clustering (MMC). Here we used
supervised MMC with statistical models, which combines cluster-
ing and linear regression models. MMC separates the data and cre-
ates a model for both populations that is based on factors that are
known to affect the measured value, such as age, sex, height and
temperature. The use of linear regression models in MMC has three
advantages: 1) it improves clustering precision, 2) the model rep-
resenting ‘‘normal” measurements can be used to calculate indi-
vidual RVs (or ‘‘MMC predicted values”) that are corrected for all
relevant factors affecting the measurement and 3) the actual mea-
sured value can be compared to the MMC-predicted value based on
these specific characteristics, which allows for the calculation of a
z-score giving a precise quantification of the (ab)normality of a
particular test result.
2. Methods

2.1. Patient data acquisition

All NCS were performed at Leiden University Medical Center
(LUMC) and the Amsterdam University Medical Center (AUMC),
location AMC. Both are tertiary referral centers for neuromuscular
diseases. Details on stimulus and filter settings and electrode
placement are provided as supplementary data (Appendix A). At
the LUMC, all NCS and patient data from 1/1/2011–2/31//2017
were retrieved from reports. At the AUMC, all NCS data from
7/23/2008–11/18/2019 were retrieved directly from the EMG soft-
ware using a custom-made script and anonymized. Recorded
patient data included: patient age, sex, height and limb tempera-
ture. For motor conduction studies, we extracted distal motor
latency (DML), negative peak compound muscle action potential
(CMAP) amplitude, negative peak CMAP area, negative peak CMAP
duration, nerve conduction velocity (NCV) of the most distal nerve
segment in the arm and leg and minimal F-wave latency. In addi-
tion, we recorded the reason for referral and the conclusion from
the report from LUMC data. At the AUMC, patient height was rou-
tinely recorded, but at the LUMC, this was usually only done when
F-waves of leg nerves were recorded, as these were corrected for
height (Buschbacher, 1999c, 1999b).

According to Dutch law, formal approval by a local ethics com-
mittee and individual informed consent is not required for retro-
spective research on anonymized data gathered exclusively for
patient care. We focused on a set of commonly used motor nerve
conduction measurements, for which widely accepted RVs have
been published: DML, CMAP amplitude, CMAP area, CMAP dura-
tion, NCV and minimal F-wave latency of median, ulnar, tibial
and peroneal nerves (Dinesh Kumbhare et al., 2015). Results for
the peroneal nerve will be shown throughout the manuscript as
an example.
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2.2. Log transformation of NCS data

Prior to clustering analysis, CMAP amplitude and area data were
transformed to a logarithmic scale, as histograms were not consis-
tent with two normal distributions (Fig. 1A). Logarithmic transfor-
mation is not possible on measurements with a value of 0. To
determine the effects of leaving out these measurements, we per-
formed the clustering analysis twice on log-transformed LUMC
data: once after removing all measurements with value 0, and once
after replacing 0 with 0.01.

2.3. Mixture model clustering (MMC)

A mixture model is a probabilistic model to determine the pres-
ence of a predefined number of clusters. MMC has previously been
used successfully to classify Alzheimer Disease patients based on
cerebrospinal fluid biomarkers (De Meyer et al., 2010; Toledo
et al., 2015). Model-based mixture models allow for the simultane-
ous probabilistic classification into clusters and estimation of
regression models in each cluster. Here, we used the flexmix pack-
age (Leisch, 2004; Grün and Leisch, 2008) for the programming
language R (R Core Team, 2019), using a linear iterative
expectation–maximization model (Dempster et al., 1977). In
the expectation step, cluster memberships are estimated using
regression models resulting in each measurement having a
cluster-specific probability. In a subsequent maximization step,
unknown model parameters (intercept, slope, and variance) for
each of the clusters are estimated by maximizing the cluster-
specific log-likelihood and using the probabilities calculated in
the expectation step as weights. This process is iterated, until the
values converge (the video in Appendix B provides an animation
visualizing a simulation of expectation and maximization steps
performed during mixture model clustering). The result of the iter-
ative process is a matrix where each column represents the num-
ber of clusters and the rows represent each of the measurements.
This matrix specifies the probability that the measurement of a
subject belongs to each of the clusters. As the predefined number
of clusters was two, a probability of more than fifty percent
assigned the measurement to that cluster.

Based on the literature and availability of data, we used the fol-
lowing variables as independent variables (Buschbacher, 1999b,
1999c): for measurements from the AUMC and measurements on
leg nerves from the LUMC, we used sex, age, body height, temper-
ature, interaction between sex and age and interaction between
sex and body height. For measurements of arm nerves from the
LUMC, we used sex, age, temperature and the interaction between
sex and age, because height data were missing relatively fre-
quently from these measurements.

After clustering, we designated clusters with higher values for
CMAP amplitude, CMAP area and NCV and lower values for DML,
CMAP duration and minimal F-wave latency as the normal cluster.

2.4. Comparison of MMC results with published RVs

For comparison with published RVs, we stratified normal clus-
ters according to the sex, height, and age categories used by Busch-
bacher (Dinesh Kumbhare et al., 2015). We then calculated mean,
third percentile, standard deviation (SD) and mean ± 2SD (MN2SD)
cut-off values of the normal cluster. Groups with fewer than 10
measurements were excluded from analysis.

2.5. Exploring robustness of MMC

We explored the effects of using multiple combinations of sex,
age, height, and temperature and all possible interactions between
these parameters in the clustering step of MMC for peroneal nerve
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Fig. 1. Visual representation of the mixture model and stratification steps to create reference values. (A) raw data plotted in a frequency histogram, (B) data after log
transformation and clustering, (C) stratification on the log scale based on age groups previously used by Buschbacher and (D) transformation of the data back to the normal
scale. Importantly, mean values and mean-2SD cut-off values are calculated on log transformed data. Vertical dashed lines indicate the mean-2SD reference values. CMAP:
Compound Muscle Action Potential.
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CMAP amplitude data using AUMC data. Several linear models
were tested. The most complicated model had main effect for
sex, age, body height and temperature and interaction affect for
sex and age and sex and body height. For each combination, we cal-
culated the mean, SD, adjusted R2 of the normal cluster and the
percentage of abnormal measurements.

Next, we determined the robustness of MMC by adding increas-
ing number of simulated abnormal data to existing peroneal nerve
CMAP amplitude data from the LUMC. Simulated data were gener-
ated by creating a linear mixed model of the abnormal values and
generating and adding values by running a simulation of this model
using the simstudy package (Goldfeld, 2019), increasing the abnor-
mal population two- and fourfold and calculating the effect on size,
average, and standard deviation of the normal cluster.
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Finally, we aimed to explore the effect of sample size on relia-
bility of the obtained RV by performing a second simulation of
1500 normal and abnormal CMAP amplitude measurements of
the peroneal nerve in a 4:1 ratio. We then calculated the MN2SD
cut-off value at the lower end of the normal cluster. By performing
this simulation 30 times, we calculated the mean and the cut-off
value for a sample size of 1500 measurements. We then iteratively
reduced the number of measurements by 100 and recalculated
mean and SD of the MN2SD each time.
2.6. External validation

The AUMC possesses NCS RVs, derived from 26 healthy individ-
uals as described previously (Verhamme et al., 2009). These mea-
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surements are not part of the larger database used for MMC. We
used this independent control dataset to validate MMC-derived
RVs. For this aim, MMC was used to generate statistical models
for each measurement. We modelled the interaction between sex
and age and between sex and body height. MMC-based predictions
with a 90% prediction interval were made of each measurement
and compared with the actual measured values. Because measure-
ments are expected to only have a lower or upper bound (i.e. all
data are expected to be abnormal in only one direction: lower than
normal for CMAP amplitudes, CMAP areas and NCVs, and higher
than normal for CMAP duration, DMLs, minimal F-wave latency),
95% of measured values from healthy controls are expected to fall
in the MMC-predicted range.

2.7. Data availability

Data are available in a public, open access repository. We have
placed all R code and a test dataset online as open source data
(gitlab.com/lumc/clinicalneurophysiology/ReferenceValues).

3. Results

3.1. Demographics

Baseline data can be found in Table 1. In general, age and sex
data were complete, temperature data were missing in 30% (LUMC)
and 45% (AUMC). Height data was missing in 49% of NCSs at the
LUMC.

3.2. Clustering and creating RVs

For all measurements, MMC resulted in two clear clusters
(Fig. 1). In all cases, the normal clusters contained the highest
number of values, showed a normal distribution and had a higher
adjusted R2, suggesting that these were indeed representative of
‘‘normal” measurements. In the normal cluster, significant effects
of age, height, sex and temperature were present as expected from
literature: e.g., CMAP decreased with age (data not shown).

There was a small mean difference of 0.6 mV between distribu-
tions of the normal clusters of peroneal nerve CMAP amplitudes of
the LUMC and Amsterdam UMC (p < 0.001; Kolgomorov-Smirnov
test) (Fig. 2).

After stratification according to the age and height classes used
by Buschbacher (Dinesh Kumbhare et al., 2015), MMC-derived data
from both hospitals were similar (Tables 2 and 3). Of note, MMC
derived mean and cut-off value (MN2SD) for CMAP amplitudes
were generally lower than those published by Buschbacher.
MMC-derived 3rd percentile and MN2SD values for CMAP ampli-
tudes were closer to each other than those published by Buschba-
cher. Replacing measurements with value 0 with 0.01 prior to log
transformation did not affect the number, mean and SD of the nor-
mal cluster as all low measurements were grouped in the abnor-
mal cluster (data not shown).

Appendix C provides estimates of the independent variables
and other statistical results of the linear models for the normal
clusters after MMC.
Table 1
Baseline characteristics. Values indicate mean ± standard deviation, unless stated otherw

AUMC Missing (n)

Number of studies (n) 7546
Body height (cm) 173 ± 10 0
Female sex, n (%) 3992 (53%) 0
Age (years) 55.7 ± 14.6 0
Temperature (�C) 33.2 ± 1.8 3405
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3.3. Effect of different variables and changing cluster sizes

MMC of the peroneal nerve CMAP using only sex and age as
variables resulted in two clear clusters in the AUMC data (Fig. 3).
The addition of temperature and height as independent variables
had limited effects on size, mean and fit of the normal cluster
(e.g. adjusted R2 was 0.17 using main effect for sex and age and
interaction effect for sex and age, and 0.18 when data were clus-
tered using main effect for sex, age, body height and temperature
and interaction effect for sex and age and sex and body height).

We explored the effect of the number of abnormal measure-
ments on the normal cluster by performing MMC on the peroneal
nerve CMAP amplitude after adding simulated abnormal data to
LUMC data (Fig. 4). Doubling the number of abnormal measure-
ments had limited effects on size, mean and MN2SD of the normal
cluster: MN2SD was 1.2 mV using the actual data set, 1.2 mV after
doubling the abnormal cluster. However, increasing the abnormal
cluster fourfold (resulting in clusters of approximately equal size)
led to a change in the MN2SD of the normal cluster to 0.9 mV.

Finally, we explored the effect of sample size on reliability of
the obtained value by iteratively reducing the number of measure-
ments in a simulation from 1500 measurement to 200 measure-
ments (Fig. 5). In this analysis, the mean cut-off was 1.3 mV and
the SD was less than 0.1 mV. As expected, the SD of the obtained
cut-off value gradually increases as the number of measurements
used for MMC decreases, with a further increase in SD when the
total number of measurements was lower than 300.
ise. #Student’s t-test assuming unequal variances; §chi-square test of independence.

LUMC Missing (n) p-value

5550
174 ± 10 2699 0.001#

3051 (55%) 0 0.020§

56.3 ± 15.0 0 0.013#

31.6 ± 1.4 1641 < 0.001#



Table 2
Buschbacher’s RVs and MMC- derived RVs from the Amsterdam UMC and LUMC for arm nerves. Bb: Buschbacher, SD; standard deviation, DML: distal motor latency, NCV: nerve
conduction velocity, AUMC: Amsterdam University Medical Center. LUMC: Leiden University Medical Center, N: number of measurements. Amplitude data expressed in mV, Area
in mV�ms, DML, duration and F-wave latency in ms. Details with regards to settings and recording sites can be found in Appendix A. Mean ± 2SD and 3rd percentile columns:
mean-2SD and 3rd percentile for CMAP amplitudes, CMAP areas and NCVs, mean + 2SD and the 97th percentile for CMAP duration, DML and minimal F-wave latency. Empty
fields: insufficient data for MMC.

Mean Mean ± 2SD 3rd percentile N

Nerve Units of measure Age (years) sex height (cm) Bb AUMC LUMC Bb AUMC LUMC Bb AUMC LUMC AUMC LUMC

Median Amplitude (mV) 19–39 11.9 6.1 5.3 4.7 3.1 2.4 5.9 3.2 2.5 382 48
40–59 9.8 5.2 4.9 4.2 2.4 2.2 4.2 2.5 2.1 1483 116
60–79 7.0 4.3 3.9 1.8 1.9 1.6 3.9 2.0 1.6 1457 123

Area (mV.ms) 19–49 37.4 18.4 17.9 11.6 8.8 8.1 14.6 8.7 7.9 914 84
50–59 30.9 15.6 15.7 13.7 6.9 6.5 15.3 7.0 6.7 965 63
60–79 23.7 13.5 12.9 5.1 5.7 5.0 11.9 5.8 5.5 1465 109

DML (ms) 19–49 Female 3.5 3.3 2.8 4.3 4.4 3.7 4.4 4.6 3.9 489 38
Male 3.8 3.5 3.4 4.6 4.6 4.4 4.6 4.7 4.4 403 55

50–79 Female 3.8 3.6 3.3 4.6 4.8 4.4 4.4 5.0 4.5 1066 66
Male 4.0 3.9 3.7 4.8 5.1 4.7 4.7 5.2 4.7 1461 131

Duration (ms) 19–79 5.9 5.4 5.8 7.7 7.0 7.2 8.0 7.1 7.1 3549 252
NCV (m/s) 19–39 Female 60.0 58.2 58.0 54.0 49.9 50.4 53.0 50.9 51.3 114 21

Male 58.0 55.5 54.2 50.0 46.3 43.8 49.0 46.8 44.9 84 26
40–79 Female 57.0 54.9 54.1 47.0 45.4 44.5 51.0 46.0 45.2 746 78

Male 55.0 52.4 50.6 45.0 42.6 41.3 47.0 43.1 42.1 912 152
Minimal F-wave
latency (ms)

19–49 < 160 23.7 24.2 25.7 27.6 27.0 27
160–169 25.3 25.7 28.5 29.6 30.3 99
170–179 27.3 27.1 30.9 31.2 31.8 136
� 180 28.9 29.1 33.5 33.6 33.8 138

50–79 < 160 25.2 25.8 28.6 29.7 29.8 53
160–169 27.5 27.2 30.3 31.4 31.2 225
170–179 28.7 29.3 31.5 34.1 34.3 337
� 180 30.4 31.2 34.2 36.0 35.7 426

Ulnar Amplitude (mV) 19–79 11.6 6.3 7.0 7.4 3.7 3.4 7.9 3.6 3.4 3844 237
area (mV.ms) 35.9 19.1 22.4 21.7 10.9 13.0 23.9 10.7 13.4 3801 196
DML (ms) 3.0 2.9 2.6 3.6 3.8 3.3 3.7 3.8 3.3 4064 242
duration (ms) 6.0 5.4 5.3 7.8 8.0 6.7 7.7 7.5 6.4 4284 201
NCV (m/s) 61.0 56.6 56.4 51.0 44.3 43.0 52.0 45.2 43.8 2188 241
Minimal F-wave
latency (ms)

19–49 < 160 23.5 24.6 26.1 27.6 27.4 25
160–179 26.2 27.1 27.6 30.2 31.6 31.0 31.8 30.3 253 20
� 180 29.2 30.1 32.3 32.8 35.6 40.1 35.5 38.2 170 11

50–79 < 160 25.0 26.2 28.8 30.6 31.9 71
160–179 28.1 28.9 30.9 30.9 34.0 37.5 34.7 37.3 701 30
� 180 30.4 32.0 32.8 33.8 37.3 37.3 37.2 37.0 503 18
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3.4. External validation

We calculated MMC-derived predicted values and their 95%
prediction intervals for 21 measurements of an external, previ-
ously published set of 26 healthy subjects from the Amsterdam
UMC (Verhamme et al., 2009). Of all measurements, 97.4% fell
within the MMC derived 95% prediction interval.
4. Discussion

Here, we show that normal measurements can be extracted
from existing NCSs using MMC. The derived cluster of normal
measurements can be used to calculate a department-specific
predicted value and z-score based on age, height, sex and tem-
perature. This provides a more precise, individual estimate of
the (ab)normality of a test result than the use of published
RVs, because: 1) the estimation is based on very large data sets,
2) MMC-derived values incorporate all relevant patient charac-
teristics and 3) values have been obtained using local equipment,
settings and patient populations. In addition, this approach
allows the user to attach a z-score to each measurement relative
to the expected value of that patient, rather than merely stating
that a measurement is within normal limits or not, as is cur-
rently common practice in most clinical neurophysiology
departments.
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4.1. External validation of MMC

MMC can be used in the absence of a formal gold standard, but
we used several methods to show that the obtained values are
indeed representative of normal measurements. First, MMC
resulted in two clear clusters for each measurement, with the nor-
mal cluster following all expectations with regard to size, normal
distribution and fit of the model. Second, MMC performed on
two large independent datasets from different hospitals yielded
values similar to each other and previously published RVs. Third,
97.4% of all measurements from an independent dataset of healthy
controls fell within MMC-derived expected values, close to the
expected value of 95%.

4.2. Comparison with published RVs

MMC-derived RVs were highly similar to previously published
values (Dinesh Kumbhare et al., 2015). However, MMC-derived
mean values for CMAP amplitudes and areas, while highly similar
between LUMC and AUMC, were generally lower than those
obtained by Buschbacher. This is probably because we calculated
these values on the logarithmic scale, e.g., the mean tibial nerve
CMAP amplitude would have been 7.2 mV instead of 6.3 mV when
calculated on the natural scale. However, mean and SD should not
be derived from skewed data (Fig. 1). This was previously noted by
Buschbacher (Dinesh Kumbhare et al., 2015), although it appears
that his published RVs were not based on log-transformed data.



Table 3
Buschbacher’s RVs and MMC- derived RVs from the Amsterdam UMC and LUMC for leg nerves. Bb: Buschbacher, SD; standard deviation, DML: distal motor latency, NCV:
nerve conduction velocity, AUMC: Amsterdam University Medical Center. LUMC: Leiden University Medical Center, N: number of measurements. Amplitude data expressed in
mV, Area in mV�ms, DML, duration and F-wave latency in ms. Details with regards to settings and recording sites can be found in Appendix A. Mean ± 2SD and 3rd percentile
columns: mean-2SD and 3rd percentile for CMAP amplitudes, CMAP areas and NCVs, mean + 2SD and the 97th percentile for CMAP duration, DML and minimal F-wave latency.
Empty field: insufficient data for MMC.

Mean Mean ± 2SD 3rd percentile N

Nerve Units of measure Age (years) Height (cm) Bb AUMC LUMC Bb AUMC LUMC Bb AUMC LUMC AUMC LUMC

Peroneal Amplitude (mV) 19–39 6.8 4.2 4.9 1.8 1.9 2.3 2.6 2.0 2.4 360 92
40–79 5.1 2.9 3.5 0.1 1.1 1.5 1.1 1.2 1.7 2273 553

Area (mV.ms) 19–49 20.2 11.1 14.7 4.2 4.7 6.5 6.8 5.0 6.6 769 172
50–79 14.9 7.8 9.9 �0.3 2.9 4.3 3.6 3.2 4.8 1800 439

DML (ms) 19–79 4.8 4.9 3.8 6.4 6.6 5.1 6.4 6.6 5.0 3306 881
Duration (ms) 5.7 5.0 5.6 7.7 6.9 7.8 7.7 6.9 7.7 3504 841
NCV (m/s) 19–39 < 170 49.0 50.1 41.0 45.5 43.0 46.8 22

� 170 46.0 47.4 38.0 40.3 37.0 41.6 65
40–79 < 170 47.0 45.2 37.0 38.9 39.0 39.9 233

� 170 44.0 43.0 36.0 35.8 36.0 36.7 398
Minimal F-wave
latency (ms)

19–39 < 160 45.7 41.1 51.5 47.2 45.5 12
160–169 48.8 45.1 45.8 56.6 54.6 50.8 53.7 49.5 29 12
� 170 53.2 51.0 52.7 61.4 61.6 60.9 61.8 59.8 127 26

40–79 < 160 46.8 44.2 48.7 55.8 53.9 56.9 54.6 57.6 54 29
160–169 51.2 48.8 51.5 60.4 57.2 59.6 57.2 59.5 255 66
� 170 56.5 55.0 57.1 65.9 66.0 67.9 66.1 66.1 591 166

Tibial Amplitude (mV) 19–29 15.3 11.6 10.5 6.3 6.0 5.3 5.8 6.3 6.4 101 50
30–59 12.9 8.3 7.4 3.9 3.3 2.9 5.3 3.3 3.0 1206 540
60–79 9.8 5.7 5.5 1.4 2.0 2.1 1.1 2.2 2.2 984 422

Area (mV.ms) 19–49 38.9 21.3 18.2 10.3 9.0 7.6 14.2 8.6 8.1 672 266
50–79 29.2 13.8 13.0 2.6 4.6 5.0 5.0 4.9 5.1 1746 692

DML (ms) 19–79 4.5 4.6 4.0 6.1 6.4 5.4 6.1 6.4 5.4 2883 1186
duration (ms) 6.3 5.4 5.5 8.7 9.8 8.1 8.7 8.2 7.8 3157 1211
NCV (m/s) 19–49 < 160 51.0 45.7 45.4 43.0 37.4 39.0 44.0 40.1 40.9 14 10

160–169 49.0 46.6 46.1 37.0 38.7 38.2 42.0 41.0 39.2 71 74
� 170 47.0 43.3 44.8 37.0 34.5 36.2 37.0 34.8 37.4 280 204

50–79 < 160 49.0 43.3 44.2 39.0 35.9 35.6 40.0 36.6 37.9 61 68
160–169 45.0 42.8 43.5 35.0 35.1 35.8 37.0 35.6 37.1 259 233
� 170 44.0 40.3 40.9 34.0 31.5 32.5 34.0 31.9 33.3 794 600

Minimal F-wave
latency (ms)

19–39 < 160 43.2 41.1 47.6 46.1 46.1 15
160–169 47.2 46.7 47.7 53.2 54.3 53.3 55.2 52.1 27 24
170–179 52.0 50.7 52.9 60.0 59.3 60.5 58.7 60.2 52 41
� 180 53.1 55.4 56.7 61.9 65.0 65.0 65.3 62.8 56 23

40–79 < 160 46.8 46.5 50.2 56.0 53.8 58.6 53.5 58.3 54 51
160–169 50.5 50.4 53.1 57.5 59.0 60.7 60.2 60.0 248 177
170–179 53.9 54.6 56.5 61.1 63.8 65.2 63.6 64.9 310 230
� 180 57.9 60.5 60.7 68.5 71.4 70.0 70.7 68.6 345 167
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This is supported by the observation that the MN2SD and 3rd per-
centile values were highly similar in MMC-derived data, but not in
Buschbacher’s. In addition, differences may have been caused by
differences in population, methods of data acquisition, such as fil-
ter settings, electrode size and electrode placement. Although
equipment, electrode placement and filter settings are similar in
our centers we observed small but significant differences between
the datasets from both hospitals. We did not formally test whether
all measurements differed significantly, but this is likely the case,
underlining the importance of generating locally valid RVs (Tjon-
A-Tsien et al., 1996; Van Dijk et al., 1999) We stratified data to cre-
ate RV tables in accordance with groups used by Buschbacher to
enable a comparison. However, we recommend using individual
predicted values as this will yield more precise results than strat-
ified data.

4.3. Comparison with other methods

Several other methods to derive RVs from existing data have
been published. The Extrapolated Norms (E-Norms) procedure is
based on the assumption that a cumulative distribution function
(CDF) of values derived from biological measurements, will show
an S-shaped curve, with a middle, linear segment representing
the values of normal measurements (Jabre et al., 2015). RVs are
derived by drawing a straight line through this middle segment
and visually determining where it diverges from the S-curve. This
1825
method has recently been refined using the extrapolated reference
method (E-Ref), which calculates the inflection point by measuring
the angle between adjacent points on the CDF plot (Nandedkar
et al., 2018).

A drawback of both methods is that they require a relatively
homogeneous data set as they do not allow correction for
patient-related factors within the model (Stålberg et al., 2019).
Multiple models are therefore needed based on different subsets
of factors (e.g. age, height, sex), meaning that very large numbers
of patients are required to obtain accurate RVs. Whereas MMC will
result in a precise, tailored RV for each individual measurement, E-
norms derived RVs are based on stratified group data, where large
strata will lead to less precise results and smaller strata will
require increasing large data sets. Furthermore, additional poten-
tially relevant variables (e.g., height or body weight) can easily
be added to MMC to increase precision. Finally, MMC enables the
calculation of a z-score (in other words, a continuous value on
the degree of abnormality), whereas E-norms will only yield a
dichotomous outcome (i.e. normal or abnormal) that cannot be
used for further statistical analysis.

4.4. Robustness of MMC

We show that clustering can be achieved with MMC for many
measurements using only age and sex as independent variables.
This is an advantage for common use, as these data will always
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Fig. 3. Effect of different models on clustering of peroneal nerve CMAP amplitudes. Clustering is already fairly robust using sex and age. The ‘‘*” sign in the formulas
means interaction: the most complicated model had main effects for sex, age, height and temperature and interaction effects for sex and age and sex and height. Calculations
are based on those measurements for which all these variables were known (n = 3343); Amsterdam UMC data. CMAP: Compound Muscle Action Potential. abn: values in the
abnormal cluster, percentage of total. R2: adjusted R2. SD: standard deviation.
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be available. Nonetheless, we recommend including temperature
and height data when performing MMC if possible. These vari-
ables have significant effects in the obtained regression model,
and models including these variables will therefore yield more
precise RVs. Doubling the size of the abnormal cluster with sim-
ulated values based on existing peroneal nerve CMAP amplitude
data had a limited effect on the final cut-off value of the normal
value, but a further simulated increase of the abnormal cluster
appeared to affect the SD and 3rd percentile cut-off of the nor-
1826
mal cluster. Although this simulation is useful to show the limits
of MMC, it should be noted that the abnormal cluster was far
smaller for every actual measurement on which we performed
MMC. An additional simulation reducing the amount of measure-
ments showed that the reliability of MMC decreases noticeably
when fewer than 300 measurements are used. These data are
in line with the observation that a minimum of 300 measure-
ments appears to be necessary to obtain relatively consistent
results.
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4.5. Limitations

Height and temperature data were frequently missing. In addi-
tion, precision of MMC can probably be improved by adding addi-
tional independent variables. Ethnicity (Shivji et al., 2019) and
Body mass index (Salerno et al., 1998; Buschbacher, 1999a,
1999d) have been reported to affect NCS values. We found indica-
tions that the side of the measurement affected modelling for NCS
measurements of the arms (data not shown). Indeed, NCS values
may differ between the dominant and non-dominant arm
(Werner and Franzblau, 1996; Kommalage and Gunawardena,
2013). As we did not record which limb was the dominant side,
we decided not to use side as a factor in the current analysis.

MMC assumes that both clusters have a normal distribution,
which was usually not the case for the abnormal cluster. We do
not expect that this affected the properties of the normal clusters,
as these always showed a normal distribution.
5. Conclusions

We provide a method that enables all clinical neurophysiology
departments to generate locally valid RVs. To facilitate adoption
of this method we have placed all R code and a test dataset online
(gitlab.com/lumc/clinicalneurophysiology/ReferenceValues).

Future studies comparing data sets from more neurophysiology
departments could shed light on the effects of local variations in
NCS practice and allow the creation of RVs for NCS measurements
for which reference data currently do not exist. MMC may also be
useful to obtain optimal cut-off data for entrapment neuropathies,
jitter values from single fiber EMG or NCS data from children (Pitt
and Jabre, 2018). In addition, MMC is likely to be useful for any
kind of neurophysiological data, including measurements such as
nerve cross sectional areas obtained with ultrasound, quantitative
EEG parameters and evoked potentials.
1828
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