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Chapter 9

Future perspectives
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190 CHAPTER 9. FUTURE PERSPECTIVES

Simulation

Throughout this thesis, several methods were applied to estimate

new model impact on the LT waiting list. We used reclassification

tables, new-to-old score differences, or estimated changes in waiting

list priority. These methods were used because reviewers and poli-

cymakers requested evidence of possible model impact on current

waiting list outcomes. Although understandable, it is difficult and

likely impossible to reliably estimate the impact of a new model on

the allocation system. The best way to evaluate the effects of a new

model is to implement it. The next best option is evaluation through

simulation. For the Eurotransplant region, a simulation program

is currently missing. An important future direction of research

could therefore be the construction of what could be called the

Simulation of the Eurotransplant Liver Allocation System (SELAS).

SELAS would improve both Eurotransplant allocation research and

policy. It would also help Eurotransplant regain its leading role in

organ allocation and development. Realization of SELAS seems

feasible given the existing collaboration between Eurotransplant

International Foundation and the Technical University Eindhoven,

as the latter has considerable experience with simulation models.

The longstanding cooperation between Eurotransplant and the

Leiden University Medical Center would then ensure integration of

allocation, statistical methodology, and clinical knowledge.

In the U.S.A., a liver simulation program is available, that is the

Liver Simulated Allocation Model (LSAM). LSAM lets users change

existing allocation rules and simulate the effects in historical US data.

Indeed, US allocation research is often complemented by simulation

evidence. Still, simulated results should be interpreted with care.

Evaluation of LSAM showed that although trends were adequately

estimated, exact numbers of waiting list deaths and transplants

were over- and underestimated, respectively.68 Also, simulation
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performance was significantly w orse for p ediatric p atients,69 which 

indicates that simulations might be unreliable for yet undefined 

subgroups.

Even simulation programs have limitations. Therefore, researchers 

should rely on their methodology and clinical experience. Consider 
for example the refit coefficients in Chapter 3. We presented signi-

ficant improvements in fit, discrimination, and accuracy. 

Although these metrics are important evidence, improvement was 

most intu-itively shown through visual representation of new and 

old coefficients Figure 3.3. These clearly showed that reMELD(-Na) 

better represents the Eurotransplant population and therefore will 

likely better predict risk in future LT candidates. Simulation of 

evidence therefore has a role in the path of implementation, but 

sound methods and reasoning should be considered most important.

New model implementation

Possibilities are investigated to alleviate the shortage of available 

donor organs, such as more liberal donor criteria, living donation, 

machine perfusion, organoids, and xenotransplantation. Whatever 

improvements might be made, survival prediction will remain 

paramount to decide which patient should be treated. For example, 

with machine perfusion techniques, a larger number of liver grafts 

will likely become available and will be preserved longer outside the 

donor. This could imply more widespread allocation of organs to find 

the best match with the recipient. Also, with more time available, 

more complex calculations could be done to estimate outcomes of 

possible donor-recipient combinations. These calculations could be 

based on causal inference models, JMs, or ideally a combination of 

both.

For now, the shortage of donor organs persists. As mentioned, cur-

rently the principle of urgency is used for liver allocation, by prioritiz-
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ing the sickest patients first. Eurotransplant has maintained this basis

since 2006. In this thesis, we showed that significant improvements

in survival prediction are possible. Understandably, reasons beyond

clinical relevance and statistical significance determine model im-

plementation. Because of (inter)national interests within Eurotrans-

plant, changes in allocation are not easily implemented. Still, in our

view, refit MELD (reMELD) would be relatively easy to implement, as

no changes in the data structure of Eurotransplant would be required.

We therefore urge Eurotransplant policy makers to consider that the

refit models were a significantly better fit to the current Eurotrans-

plant population, that ranking patients from most to least ill (discrim-

ination) was significantly improved, and that refit model mortality

risk estimates were more accurate. Implementation of (refit) MELD-

Na would also not be very difficult, since sodium is a readily available

laboratory measurement, that is almost always assessed in combina-

tion with creatinine. Again, the significant prediction improvements

should form sufficient rationale for further allocation improvements.

Other additions to MELD could also be considered, such as serum

albumin, von Willebrand factor and C-reactive protein.18,20,70 A prob-

lem is that these variables are not collected within Eurotransplant.

Several aspects of MELD, that are not evidence based, can however be

improved without changing existing data registries.19 Arguably one

of the most important and counter-intuitive aspects is MELD’s up-

per bound of 40, which means that patients with MELD>40 receive a

score of 40. Therefore, allocation stops considering disease severity

in the sickest patients. Already in the first validation study of MELD,

MELD’s relation to 90-day risk of death was plotted and showed an

increasing waiting list mortality above MELD 40.7 Recent evaluation

confirmed this finding, without increased post-transplant mortality

for recipients with MELD>40.71 It therefore makes clinical sense to

remove the upper border of MELD in order to improve allocation for

the sickest patients. Other suggestions to improve MELD were men-
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tioned previously in this thesis, like removing arbitrary lower and up-

per bounds and using survival probabilities as primary metric.

The implementation of JMs for allocation would require more effort.

Eurotransplant would need to ensure that longitudinal data of each

listed patient is available every time a liver graft is offered. However,

if using one measurement per patient is possible, it should also be

possible to use multiple, as these longitudinal data are stored by Eu-

rotransplant. The computation of JM survival predictions would re-

quire notably more time than calculating MELD, as simulations are

done for each patient. However, we believe that the advantages of

correctly specified JMs are convincing. Also, although the JMs were

trained in large patient cohorts, their practical application for the Eu-

rotransplant waiting list would mean calculating survival for several

hundred patients, which is done within minutes. Considering previ-

ous and current data for each patient on the waiting list would be a

major improvement.

From urgency to benefit

Deciding how to allocate scarce medical interventions is relevant, as

the recent COVID pandemic has shown for vaccines and ICU beds.

The COVID pandemic also showed that with increasing resource

scarcity, a shift in allocation principle could be warranted, that is

from a ‘first come first served’ to a benefit-based approach.72

In the field of LT, organ demand persistently exceeds supply, which

argues against sickest-first allocation.67 This is because prioritizing

the sickest ignores currently less ill patients that might gain more

from treatment or who could be worse off in the future as disease

progresses. Therefore, sickest-first allocation can only be just if

the scarcity is temporary, which is not the case. This does evoke

questions on how to handle high-urgency patients, as these patients

are the pinnacle of urgency-based allocation and receive priority
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over other patients that have higher waiting list mortality.31,49,73 

Another extreme of urgency are multi-organ transplants. These 

possibly save only one life, whereas each of the organs could have 

saved a patient. Saving more lives is arguably more just. Finally, 

re-transplantations would require similar reconsideration of urgency 

and benefit,73 as the highest priority is given to patients who might 

gain little and, perhaps more importantly, the liver is then denied 

to another recipient. Although benefit will not resolve all allocation 

issues, it is an inherently more just and therefore a better principle 

than urgency alone.67

We devised methods that predict survival benefit from LT. This opens 

the possibility for the change from urgency- to benefit-based alloca-

tion. It is however important to recognize that US data were used 

for the calculation of benefit. These US data encompass more LT 

candidate variables, that allow better estimation of future waiting list 
survival. Currently, Eurotransplant registers fewer LT candidate va-

riables. It is easy to see that this will cause delay in allocation 

development, especially compared to other regions. This is arguably 

already the case, as the Eurotransplant liver allocation was 

last majorly revised in 2006. During this period, survival 

prediction models in US liver graft allocation were investigated and 

significantly improved. In our view, Eurotransplant should strive for a 

data registry structured much like UNOS, which allows researchers 

easy access to anonymized data. This in turn generates evidence 

upon which policy can be based. In our view, Eurotransplant 

should also provide a central platform where professionals and 

patients can gain insight in allocation policy and evidence. 

Transparency created through inter-active statistics and accessible 

prediction models would greatly improve Eurotransplant’s scientific 

basis and would perhaps place more trust in the organization. Most 

importantly, patients deserve to know their estimated prognosis of 

waiting for or accepting an organ. 
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To this end, in this thesis, we provided several prediction models in 

interactive online applications. The aim was to increase insight for 

both clinicians and patients.

Another possible solution for the advancement of liver allocation, 

despite the missing data across Eurotransplant, could be detailed 

national allocation based on more detailed hospital data. This alloca-

tion could be either benefit- or urgency-based, as long as one model 

is used to calculate future waiting list survival, preferably corrected 

for dependent censoring. Most organs are allocated nationally, that 

is 83.4% of MELD-allocated liver grafts in Belgium, Germany, and 

The Netherlands ( data not published ), which also ignores possibly 

sicker recipients abroad. Therefore, it seems feasible to abandon the 

sickest-first principle and to implement benefit-based allocation on 

a national level. This way, each country would be responsible for 

the method and accuracy of its survival prediction and subsequent 

allocation. International organ exchange would then be based on 

Eurotransplant standards.

Conclusion

In conclusion, this thesis investigated survival prediction models in 

the setting of LT, where organ scarcity and allocation necessitates 

continuous development of such methods. Statistically signifi-

cant and clinically relevant advancements were demonstrated that 

could improve liver allocation through better survival prediction for 

patients on the waiting list.
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