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Part II: Disease over time

It is tempting, if the only tool you have is a hammer, to treat

everything as if it were a nail.

— Abraham Maslow
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Chapter 4

Joint modelling of liver
transplant candidates
outperforms the model for
end-stage liver disease: the
effect of disease
development over time on
patient outcome

Goudsmit BFJ, Braat AE, Tushuizen ME, et al. Joint modeling of liver

transplant candidates outperforms the model for end-stage liver dis-

ease: The effect of disease development over time on patient out-

come. American Journal of Transplantation. 2021; doi:10.1111/ajt.

16730
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Abstract

Background & Aims: Liver function is measured regularly in liver transplan-
tation (LT) candidates. Currently, these previous disease development data
are not used for survival prediction. By constructing and validating joint
models (JMs), we aimed to predict outcome based on all available data, us-
ing both disease severity and its rate of change over time.

Methods: Adult LT candidates listed in Eurotransplant between 2007-2018
(n=16,283) and UNOS between 2016-2019 (n=30,533) were included.
Patients with acute liver failure, exception points or priority status were
excluded. Longitudinal MELD(-Na) data was modeled using spline-based
mixed effects. Waiting list survival was modeled with Cox proportional
hazards models. The JMs combined the longitudinal and survival analysis.
JM 90-day mortality prediction performance was compared to MELD(-Na)
in the validation cohorts.

Results: MELD(-Na) score and its rate of change over time significantly
influenced patient survival. The JMs significantly outperformed the
MELD(-Na) score at baseline and during follow-up. Baseline MELD-JM
AUC was 0.94 (0.92-0.95) versus MELD AUC 0.87 (0.85-0.89). MELDNa-JM
AUC was 0.91 (0.89-0.93) and MELD-Na AUC was 0.84 (0.81-0.87). The
JMs were significantly (p<0.001) more accurate than MELD(-Na). After 90
days, we ranked patients for LT based on their MELD-Na and MELDNa-JM
survival rates, showing that MELDNa-JM-prioritized patients had 3x higher
waiting list mortality.

Conclusion: The MELD(Na)-JM significantly outperformed current models
that drive liver allocation. Thus, patient survival can be dynamically pre-
dicted based on past and current disease. These predictions could more
accurately direct treatment to those most in need.
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Introduction

The shortage of available donor livers creates waiting lists of liver

transplant (LT) candidates with end-stage liver disease.1 In many

countries, candidates with the lowest expected survival are ranked

highest and thus usually treated first.2 In the Eurotransplant and

United Network for Organ Sharing (UNOS) regions, the survival

prediction and subsequent ranking of LT candidates is based on

the Model for End-stage Liver Disease (MELD) or MELD sodium

(MELD-Na) score.2 The MELD(-Na) score estimates 90-day mortality

based on the last known measurement of serum creatinine, bilirubin

and the INR (and sodium).3–5 For patients awaiting LT, MELD(-Na)

scores are repeatedly and regularly measured. These data are valu-

able for outcome prediction as they show the patient-specific disease

development over time.6,7 Clinically, it also makes sense to account

for past disease and its severity when estimating prognosis. However,

currently only the last available MELD(-Na) measurement is used for

survival prediction and subsequent LT allocation. Previous data is

ignored.

Joint models (JMs) are a recent statistical development that join

longitudinal and survival analysis.8 JMs can handle complex

follow-up data, i.e. irregularity in number, interval and missing of

measurements.9 Also, JMs can use both the disease severity and its

rate of change for survival prediction. This approximates disease as

a dynamic process, whereas MELD(-Na) is static and underestimates

fast-changing disease severity.10,11 Previous work has shown that

JMs can outperform Cox models.12–14 JMs have however never been

used to model patients with end-stage liver disease or any other large

cohort data. The LT setting is interesting for evaluating JMs because

statistical models, i.e. currently the MELD(-Na) score, determine who

is offered transplantation first.
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of waiting list mortality, by considering disease severity and its rate

of change over time. Therefore, this study develops and validates

JMs for LT waiting list survival prediction based on repeated MELD(-

Na) measurements. We constructed and validated JMs both in the

Eurotransplant and the United Network for Organ Sharing (UNOS)

regions. Online survival prediction tools of the resulting MELD-JM

and MELDNa-JM were created to allow predictions based on single-

patient data.

Methods

The analyses were done separately for the Eurotransplant and UNOS

regions, MELD- and MELD-Na based JMs were constructed and vali-

dated respectively.

Study population

For this study, waiting list data was used from Eurotransplant and

the UNOS regions. For the Eurotransplant region, patients were

followed between January 1st, 2007 until December 31st, 2018. For

the UNOS, the study interval was from January 16th 2016 (MELD-Na

implementation) to December 31st, 2019. Patients with acute liver

failure, exception points or priority status at registration and listing

for multiple organs were excluded. All other adult patients listed

for a first LT were included. Longitudinal exception points were not

modeled, as they do not reflect disease severity within the patient.

Separate training (67% of the patients) and testing (33%) sets were

constructed through random sampling. The longitudinal data of the

waiting list contained repeated measurements of the MELD(-Na)

score.4 Data from first active listing until delisting were used. Rea-

sons for delisting were death, transplantation, removal or the end

The goal of this study is to use joint models to improve prediction
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of study. Patients who were removed due to deteriorating clinical

condition or who died within 30 days of removal were also counted as

deceased. “Removal” comprised of removal from the waiting list due

to improved clinical condition and censoring for exception points

or priority status acquired during follow-up. The primary outcome

of survival analysis was the overall waiting list mortality. Predictors

were (repeated) MELD(-Na) scores. In table S7, results are shown of

an additional model that also considers e.g. age, region and sex. For

the longitudinal analysis, patients were censored at the end of the

study follow-up. Also, patients receiving priority status or exception

points during waiting were censored from that date, as transplant

and thus death chances would change from that time point on. The

sample size was set by the retrospective study design. Complete-case

analysis was done.

Statistical analysis

Study variables following normal distributions are presented as

mean±SD (standard deviation) and non-normal variables as me-

dian±IQR (interquartile range). Categorical variables are reported as

counts and percentages.

Longitudinal analysis

The longitudinal MELD(-Na) data were modeled with mixed effect

models. These calculate both the average (population) and individ-

ual (deviation of each patient from the average) MELD(-Na) develop-

ment over time. Importantly, they model developments as continu-

ous trajectories, which can also be non-linear, e.g. hyperbolical. This

gives a natural approximation of disease over time, which contrasts

the last measurement carried-on-forward approach of Cox models

(figure S4). The fixed effects included: intercept (representation of
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disease severity at baseline) and time on the waiting list which were

modeled with natural cubic splines (3 degrees of freedom). The ran-

dom effect components, which varied to randomly deviate from the

average for each individual, were intercept (baseline disease severity)

and follow-up time on the waiting list.

Combining longitudinal and survival analysis

Next, the abovementioned mixed effects model was combined with a

Cox model. The latter was fit to the outcome of waiting list mortality,

censoring for all other outcomes, with MELD(-Na) as predictor. Thus,

the MELD(-Na) joint models (MELD-JM and MELDNa-JM) were con-

structed using the R package “JMbayes.”15 The JMs predicted survival

using both the value of the MELD(-Na) score and its rate of change

at each moment in time (i.e. time-dependent slope). By considering

time-dependent slopes, a more nuanced definition of disease sever-

ity is used for survival prediction, see Figure 4.1. Also, predictions are

updated for each newly-available measurement, i.e. the model is dy-

namic.

Prediction performance

The JMs ability to predict 90-day mortality was assessed by calculat-

ing the area under the receiver operator curve (AUC) and prediction

errors (Brier scores). Model performance was assessed at baseline

(start of waiting list follow-up) and 3-monthly during follow-up of two

years through bootstrap cross validation with 100 repetitions. To clar-

ify, patients were censored if they did not die, but their data up un-

til censoring would still be used when calculating performance. For

comparison to currently-used models, MELD(-Na) prediction perfor-

mance was also calculated at these time points.
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Figure 4.1: Two hypothetical patient trajectories on the LT waiting list are

shown. Patient A initially increases and then stabilizes in disease severity.

B is initially stable and later deteriorates. Under the current MELD(-Na) al-

location, patient A would be prioritized over patient B in liver allocation,

because the most recent MELD(-Na) is used. However, the JM uses both the

past and current disease severity (value) and the rate of change at each mo-

ment in time (slope). At any given time, the JM combines the hazard ratio’s

for value and slope to calculate the risk of death. Thus, the JM would cal-

culate a higher mortality risk and thus LT priority for patient B, because the

disease is increasing fast.
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Impact on the waiting list

Next, we estimated the possible impact of using the JMs instead

of MELD(-Na) for waiting list prioritization. To do this, data from

baseline to 90 days was used. At day 90, patients still on the wait-

ing list were ranked highest-to-lowest based on their predicted

90-day mortality probability. This created a different ranking for the

MELD(Na)-JM and MELD(-Na) models. The number of available

donor livers in the first 90 days was then assigned to the highest

ranking patients. This created a rough estimate who would have

been offered LT first.16,17 To further explain the possible differences

in prioritization, baseline characteristics and the MELD(-Na) de-

velopments over time were compared between patients prioritized

either by the MELD(Na)-JM or MELD(-Na).

Online LT-JM prediction tool

Lastly, online prediction tools of the MELD-JM (https://predictionmodels.

shinyapps.io/meld-jm/) and MELDNa-JM (https://predictionmodels.

shinyapps.io/MELDNa-JM/) were created. This allows interested

readers to predict survival probabilities based on individual patient

data. For the instruction manual, see supplement page 3. All

the analyses were done with R v4.0.0 (R Foundation for Statistical

Computing, Vienna, Austria).

Results

Population characteristics

Table 4.1 shows the baseline characteristics for the Eurotransplant

and UNOS populations. The 16,283 Eurotransplant LT candidates

had a median age of 55 (48-61) at listing. Most (66.3%) patients
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were male and the most common liver diseases were (post)alcoholic

(39.5%), cholestatic (11.7%) and hepatitis-C (10.7%) induced cir-

rhosis. At the end of follow-up, 50.2% were transplanted, 20.9%

deceased, 20.2% were removed either due to improved clinical con-

dition, priority status or exception points and 8.7% were censored

at the end of study. The 30,533 UNOS patients had a median age

of 58 (50-64) years and were mostly (63.3%) male. Alcohol- (30.5%)

and NASH (20.7%) related liver cirrhosis were most common. The

median MELD at listing was 18 (13-26), which was higher than the

MELD 15 (11-21) for the Eurotransplant region. Median MELD-Na

at listing was 19 (12-27) points in the UNOS cohort. At the end

of follow-up, 52.2% was transplanted, 13% had died while waiting

or was removed because of worsening clinical condition 31% was

removed due to improved condition, exception point or status 1

approval during follow-up and 3.8% was censored at the end of study.

JM properties

The JMs calculates hazard ratios at a specific time (HRt) through the

following equations, for MELD-JM:

HRt =
(
1.29MELDvalue

)
∗
(
8.12MELDslope

)

and MELDNa-JM:

HRt =
(
1.24MELDNavalue

)
∗
(
8.02MELDNaslope

)

The MELD-JM coefficient for MELD values is 1.29, with 95% CI

(1.28-1.31). The MELD-JM slope coefficient is 8.12 (95% CI 1.27-

50.38). For the MELDNa-JM these are 1.23 (95% CI 1.24-1.26)

and 8.02 (95% CI 3.65-17.1) respectively. This means that at a

given moment in time, a 1-point increase in MELD value will

increase mortality risk by a factor 1.29, and a 1-point faster or

slower change gives a factor 8.12 difference. These equations,
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Table 4.1: Baseline characteristics for the Eurotransplant and UNOS regions

Region Eurotransplant UNOS

study interval 2007-2018 2016-2019
n 16283 30533
Age (median (IQR)) 55.0 [48.0, 61.0] 58.0 [50.0, 64.0]
Gender male (%) 10796 (66.3) 19334 (63.3)
BMI (median (IQR)) 25.6 [22.9, 29.2] 29.0 [25.0, 33.0]

Disease (%)
Cirrhosis, Alcoholic 6432 (39.5) 9309 (30.5)
Cirrhosis, HCV 1742 (10.7) 4001 (13.1)
Cirrhosis, NASH NA 6328 (20.7)
Cirrhosis, other causes 3794 (23.3) 4754 (15.6)
Cholestatic disease 1905 (11.7) 2422 (7.9)
Other 2410 (14.8) 3725 (12.2)

Serum measurement at listing (mean (SD))
Creatinine in mg/dL 1.3 (3.0) 1.5 (1.4)
Bilirubin in mg/dL 6.0 (10.6) 7.0 (9.4)
INR 1.5 (0.6) 1.8 (0.9)
Sodium in mmol/L NA 136 (5.0)

Dialysis dependency (%) 937 (5.8) 3223 (10.6)
MELD at listing (median(IQR)) 15.0 [11.0, 21.0] 18.0 [13.0, 26.0]
MELD-Na at listing (median(IQR)) NA 19.0 [12.0, 27.0]

Status at delisting (%)
Transplanted 8174 (50.2) 15928 (52.2)
Deceased 3404 (20.9) 3974 (13.0)
Removed from the waiting list 3289 (20.2) 9460 (31.0)
Censored at study end 1417 (8.7) 1171 (3.8)

Note:
NA: Eurotransplant has no complete data regarding this item, HCV:
hepatitis-C induced, HCC: hepatocellular carcinoma,HU: high urgent
status, NSE: (non)standard exception points, MELD: Model of End-
stage Liver Disease
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combined with the baseline risks, can be used to calculate spe-

cific risks. However, the JM is needed to calculate the MELD(-Na)

value and slope at a given time point. To enable easy access to

JM predictions, we developed online applications of the MELD-JM

(https://predictionmodels.shinyapps.io/meld-jm/) and MELDNa-

JM (https://predictionmodels.shinyapps.io/MELDNa-JM/). Inter-

ested readers can upload repeated MELD(-Na) measurements of

individual patients into these applications, to generate personalized

predictions. See supplement page 3 for an instruction manual. The

performance of these JMs is tested below.

JM performance

The JM performance was assessed in the independent validation data

at baseline (Figure 4.2 and figure S1) and during follow-up (Table 4.2:

UNOS, table S1: Eurotransplant).

At baseline, MELDNa-JM AUC was 0.91 (0.89-0.93) and MELD-Na

AUC was 0.84 (0.81-0.87). In Eurotransplant, MELD-JM AUC was 0.94

(95% CI 0.92-0.95) compared to 0.87 (0.85-0.89) for MELD (figures

S1 and S2). For both the MELD(Na)-JM and MELD(-Na), predic-

tion performance was best in the first months of follow-up. The

MELD(Na)-JMs AUCs were significantly (p<0.001) better than the

MELD(-Na) for the first 12 months of follow-up. During this period,

the majority of transplantations was done, i.e. 94% (UNOS) and 84%

(Eurotransplant). After 12 months, JMs AUCs were still notably but

not significantly better than MELD(-Na). Over time, MELD(-Na)

might be less representative of disease severity in LT candidates,

which could explain the decrease in AUC over time for both models.

MELD(Na)-JM prediction errors were always significantly lower than

the MELD(-Na) (figure 2B, figure S2, tables S1 and S2). In other

words, the JMs predictions were more accurate and thus better

resembled the observed risks in the population. Subset analysis of



88 CHAPTER 4. JOINT MODELS

1−Specificity

Se
ns

iti
vi

ty

0 % 25 % 50 % 75 % 100 %

0 %

25 %

50 %

75 %

100 %

MELDNa−JM
MELD−Na

AUC Brier
91.1 [89.6;92.6] 5.9 [5.1;6.7]
82.0 [80.0;83.9] 8.6 [7.7;9.5]

(a) 90-day mortality ROC plot of the MELDNa-JM and MELD-Na.

Predicted risk

Es
tim

at
ed

 a
ct

ua
l r

is
k

MELDNa−JM
MELD−Na

AUC Brier
91.1 [89.6;92.6] 5.9 [5.1;6.7]
82.0 [80.0;83.9] 8.6 [7.7;9.5]

0 % 25 % 50 % 75 % 100 %

0 %

25 %

50 %

75 %

100 %

(b) Calibration plot of the MELDNa-JM and MELD-Na score. Each dot represents 10
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Table 4.2: 90-day mortality AUCs of the MELDNa-JM versus the MELD-Na,

at baseline and during waiting list follow-up in the validation cohort.

MELDNa-JM MELD-Na

Time (months) AUC low95 upp95 AUC low95 upp95 p

0 0.91 0.89 0.93 0.84 0.81 0.87 <0.001

3 0.79 0.75 0.82 0.67 0.62 0.73 <0.001

6 0.80 0.76 0.84 0.69 0.61 0.75 <0.001

9 0.81 0.75 0.86 0.75 0.69 0.81 <0.001

12 0.74 0.66 0.81 0.69 0.58 0.79 NS

15 0.76 0.67 0.84 0.70 0.54 0.83 <0.001

18 0.78 0.69 0.86 0.76 0.62 0.87 NS

21 0.88 0.78 0.97 0.83 0.62 0.96 NS

24 0.72 0.60 0.85 0.68 0.42 0.86 NS

Note:

AUC: area under receiver operator curve, JM: joint model, MELD-Na:

model for end-stage liver disease sodium score
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prior (2007-2012) versus recent (2013-2018) years showed slightly

better performance in the 2007-2012 cohort (table S4). Excluding

HCV patients as sensitivity analysis increased AUCs (table S5).

MELDNa-JM performed better in males (Figure S5), possibly because

MELD-Na tends to underestimate female disease severity through

lower creatinine levels.18 Performance was comparable for most

diseases and worst in HCV disease (Figure S6). The implications for

LT candidates might be limited, as the number of listed HCV patients

is decreasing.19 Performance for non-black candidates was slightly

better than for black candidates (Figure S7).

JM impact on the waiting list

The possible differences in MELDNa-JM and MELD-Na prioritization

were assessed. Table 4.3 shows the baseline characteristics of patients

that would have been prioritized both by MELDNa-JM and MELD-

Na, by one of the models or by neither (table S6: MELD and MELD-JM

comparison).
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Compared to MELD-Na, the MELDNa-JM prioritized slightly younger

(56 vs 58 years) and female (46.5% vs 35.4%) patients, who less often

had hepatitis-C-induced liver cirrhosis. Most importantly, MELDNa-

JM-prioritized patients had a 3.6 times higher 90-day mortality rate,

i.e. 15.4% versus 4.3%. For the Eurotransplant region, MELD-JM pri-

oritized patients with 5.0 times higher 90-day mortality compared to

MELD, i.e. 23.2% versus 4.6% (table S6). A possible cause of this dif-

ference in mortality is illustrated in Figure 4.3.

The JM prioritized patients with lower median MELD-Na scores, see

Table 4.3, but these patients had increasing disease severity at the

time of liver graft allocation. This illustrates how not only the MELD-

Na value, but also the rate of change is considered when estimating

survival (figure S3 for Eurotransplant plots). The MELDNa-JM could

therefore have prioritized patients with a higher waiting list mortality,

possibly not captured by MELD-Na.

Online prediction tools

To access MELD-JM or MELDNa-JM predictions for the individ-

ual patient, please visit respectively https://predictionmodels.

shinyapps.io/meld-jm/ or https://predictionmodels.shinyapps.

io/MELDNa-JM/. See page 3 of the supplement for instructions.

For clinical JM implementation in individual patients, repeated

measurements of MELD(-Na) can be loaded into the online app.

This essentially is the same data as uploaded to organ procurement

organizations. The JM app then calculates prognosis based on these

measurements and lets the user choose the moment in time and

prediction horizon, e.g. assess 90-day survival probabilities after five

months of waiting. These individual predictions can improve clinical

decision making.
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Figure 4.3: The MELDNa- JM and MELD- Na would prioritize different pa-

tients for liver transplantation. For these patients, we plotted the individ-

ual (black lines) and average (red line) MELD-Na score development dur-

ing 90 days. Although the MELD-Na-prioritized patients had a higher ini-

tial MELD-Na score (value), their average scores remained stable (slope). In

contrast, the JM-prioritized patients had lower MELD-Na (value) scores but

with faster increasing disease severity (slope). Interestingly, the JM- priori-

tized patients had a five times higher 90- day mortality rate. Indicating that

JM prioritization could possibly be more just.
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Discussion

This retrospective cohort analysis aimed to improve LT candidate

survival prediction by using longitudinal data. Therefore, we devel-

oped and validated the MELD-JM and MELDNa-JM for waiting list

mortality prediction in the Eurotransplant and UNOS regions. We

report several important findings. First, the JM-calculated MELD(-

Na) values and their time-dependent rate of change are significantly

associated with LT candidate waiting list mortality. Second, using

time-dependent value and slope, the JMs significantly outperformed

both MELD and MELD-Na when predicting mortality. Third, the

JMs would have prioritized patients with three to five times higher

mortality on the waiting list, who would not have been prioritized

under MELD(-Na).

Longitudinal analysis

The progression of liver disease changes within and between patients

over time. The current models that determine transplantation

priority for patients with end-stage liver disease, i.e. the MELD(-Na),

ignore previous disease development. However, for the clinician it

is evident that the history of disease is important when estimating

prognosis. Therefore, JMs were used to combine longitudinal and

survival analysis.8 The resulting MELD(Na)-JM estimate both the

value and slope - i.e. current disease severity and the current rate

of change- at each new measurement in time to predict survival,

while also considering all previous measurements, see Figure 4.1.

The resulting disease developments are a continuous and flexible

trajectory over time, whereas e.g. time-dependent Cox (TDC) models

carry the last measured value on forward.20 This can fail to ade-

quately model changing disease severity (figure S4) and can lead

to underestimation of mortality in severely-ill LT candidates.11 The
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idea of using MELD(-Na) rate of change for survival prediction is

not new. Previously, the MELD spike and delta-MELD have been

proposed.6,21 The MELD spike indicates a 30% or higher difference

between current MELD and the MELD score measured 7 days ago. It

is a binary parameter based on cut-offs (30% and 7 days). However,

through joint-modelling, we achieved a continuous representation

of disease based on all data (not only assessing 30% differences or

the past 7 days). MELD spike was intended as tiebreaker between

patients with the same MELD scores. The JMs could however prior-

itize patients even if their MELD-Na values are lower, as long as the

product of the value and slope is higher, see Figure 4.1 and 4.3. The

delta-MELD is the difference between lowest MELD in previous 30

days and current MELD. It averages the slope over a varying number

of previous days or measurements (depending on the date of lowest

MELD). In our view, this makes it an imprecise approximation of

current rate of change. Still, it is often considered as predictor in

LT analysis.22–26 However, Bambha et al. already showed that the

effect of delta-MELD depends on the frequency of measurements.27

In contrast, the estimated slope of the MELD(Na)-JM is updated

with each new measurement and is not altered by the frequency of

measurements.

Prediction performance

The MELD(Na)-JM prediction performance was significantly better

than MELD(-Na). The predictions also more accurately resembled

the actual survival rates on the waiting list. Models on which treat-

ment decisions are based should ascertain excellent accuracy.28

Using additional predictors in JMs, such as age and sex, slightly

improved AUCs after 12 months (table S7). However, this was a small

improvement, while using these predictors adds to complexity and

might be considered unethical. Therefore, MELD(-Na)-only JMs
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were primarily constructed. Others have also studied possible im-

provements to MELD(-Na). Recently, a machine-learning MELD-Na

alternative was constructed by Bertsimas et al., i.e. the optimized

prediction of mortality (OPOM) model.29 Although OPOM outper-

formed MELD-Na, it also considered more (n=25 or 28) variables.

Moreover, OPOM is based on classification analysis, i.e. is the patient

alive after 90 days yes/no, instead of survival analysis, i.e. how much

time passed until death or censoring. Other machine-learning

techniques, like random survival forests and neural networks, do not

seem to outperform Cox models, even in high-dimensional data.30

Previous work did show that JMs outperform time-dependent Cox

(TDC) models,12–14 which is interesting considering the frequent use

of TDC analysis for LT candidates.6,7,24,27,31–33 We believe that the

TDC last measurement carried-on-forward can give a suboptimal

representation of disease (supplement figure 4). With changing dis-

ease severity, the TDC model either underestimates or overestimates

disease severity. This is especially the case if few measurements are

available or data is missing, which often occurs in LT candidate data.

Impact on the waiting list

We investigated the prioritization differences between the MELDNa-

JM and MELD-Na, to give clinical meaning to the found statistical

improvements. Considering the rate of change in disease severity

helped to identify patients with worse prognosis, which illustrates the

concepts shown in Figure 4.1. To optimize the sickest-first allocation

and transplantation benefit, it could therefore be interesting to use

the JM-approximated course of disease for LT evaluation. Physicians

can use the MELD(Na)-JM as online tool (see above) to predict out-

come based on individual patient data. Also, on a center or waiting

list population level, JMs can be applied to predict survival of each

eligible patient every time a donor liver graft is offered. These predic-
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tions can be used alongside or eventually perhaps instead of MELD(-

Na), because JM performance is good compared to MELD-Na and the

same data is used. This is practical, because no changes would have

to be made in the centers’ routine of collecting and uploading data.

Limitations

A limitation is that data could be missing dependent on unobserved

values. Statistical methods, like the JM and Cox model, assume

missing at random (MAR) data. For the waiting list, this means that

MELD(-Na) missingness should not depend on unobserved values,

but it may depend on observed values. Because unobserved values

cannot be observed, MAR cannot be proven in this study or any

other Eurotransplant/UNOS registry analysis. We did however assess

the relation between MELD(-Na) value and reporting frequency

(supplement “missingness analysis”). Involuntary updates of low

MELD(-Na) scores were done in only a small part of the data. Also,

despite the fact that the most recent score was lower than the

previous one, centers still reported these values and often well in

time. The average time between measurements that were previously

higher or lower did not differ substantially. Dependent missingness

in low MELD(-Na) scores could lead to overestimation of waiting list

mortality. A solution to alleviate possible bias could be to increase

the mandatory update frequency of MELD(-Na) scores. Another lim-

itation is that patients with exception points were excluded, because

longitudinal modelling of arbitrarily assigned MELD points does

not reflect disease severity. However, JMs could be used to model

repeated AFP measurements, tumor characteristics and response to

therapy. Also, the difference in waiting list prioritization between the

MELD(-Na) and MELD(Na)-JM is a rough estimate, which depends

on the chosen interval, i.e. for a shorter follow-up, presumably

prioritization of the two indices would be more similar and vice



98 CHAPTER 4. JOINT MODELS

versa. Furthermore, we did not study postoperative survival if the

MELD(Na)-JM would have been used for allocation. This is because

the JMs were not used to drive allocation. We therefore only could

have assessed postoperative survival after MELD(-Na) allocation and

would not know how the JMs would have changed that. These ques-

tions concern counterfactual outcomes in causal inference, e.g. what

would have happened to patients had they not been transplanted.34

The best way to evaluate a new allocation system is to bring it in

practice and measure the difference. Evaluating a new allocation

system through simulation is probably the next best option. These

extensive simulations were beyond the scope of this study. One

should be aware, however, that assessment through simulation is

based on intrinsically unverifiable assumptions, namely that with

changing the allocation priorities nothing else in the system will

change. Lastly, JMs are statistically complex and can give biased

results if mis-specified. Therefore, construction should be done with

care. To aid clinicians, we made online versions of our models freely

available.

Conclusion

This study developed and validated the MELD-JM and MELDNa-JM

prediction models for respectively the Eurotransplant and UNOS re-

gions. The MELD(Na)-JM significantly outperformed current models

that drive liver allocation. Thus, patient survival can be dynamically

predicted based on past and current disease. These predictions could

more accurately direct treatment to those most in need.
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