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Abstract

Background & Aims: The United Network for Organ Sharing’s Model for

End- Stage Liver Disease (UNOS-MELD) score is the basis of liver allocation

in the Eurotransplant region. It was constructed 20 years ago in a small US

cohort and has remained unchanged ever since. The best boundaries and

coefficients were never calculated for any region outside the United States.

Therefore, this study refits the MELD (reMELD) for the Eurotransplant re-

gion.

Methods: All adult patients listed for a first LT between 01.01.2007-

31.12.2018 were included. Data was randomly split in a training (70%)

and validation (30%) set. In the training data, generalized additive models

(GAMs) with splines were plotted for each MELD parameter. The lower

and upper bound combinations with the maximum log-likelihood were

chosen for the final models. The refit models were tested in the validation

data with c-indices and Brier scores. Through likelihood ratio tests the refit

models were compared to UNOS-MELD. The correlation between scores

and survival of prioritized patients was calculated.

Results: A total of 6,684 patients were included. Based on training data,

refit parameters were capped at creatinine 0.7-2.5 (mg/dL), bilirubin 0.3-27

(mg/dL), INR 0.1-2.6 and sodium 120-139 (mmol/L). ReMELD and reMELD-

Na showed c-indices of 0.866 and 0.869 respectively. ReMELD-Na priori-

tized patients with 1.6 times higher 90-day mortality probabilities as com-

pared to UNOS-MELD.

Conclusion: Refitting MELD resulted in new lower and upper bounds for

each parameter. The predictive power of reMELD-Na was significantly

higher than UNOS-MELD. Refit MELD prioritized patients with higher

90-day mortality rates. Thus, reMELD(-Na) should replace UNOS-MELD

for liver graft allocation in the ET region.
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Introduction

The number of patients in need of a liver transplantation (LT) in the

Eurotransplant region exceeds the available donor grafts.1 Therefore,

patients with end-stage liver disease are placed on a waiting list (WL)

which prioritizes the patients with the most severe liver disease,

i.e. most in need of transplantation. The Model of End-stage Liver

Disease (MELD) estimates disease severity in LT candidates, based on

three parameters: serum creatinine, bilirubin and the international

normalized ratio (INR) for prothrombin time.2 Since 2016, the UNOS

regions also added serum sodium through the MELD-Na score,3 but

the Eurotransplant region remains MELD-based. The MELD was

weighed, i.e. the relative importance of each parameter, based on a

cohort from 1991-1995.4 For clinical use, the lower boundaries for

the parameters were set to one, to prevent negative MELD scores

after natural logarithm (ln) transformation. Creatinine levels were

capped at four mg/dL for patients not receiving dialysis. According

to some of the proposers of MELD, these boundaries were “based

entirely on the clinical intuition of the policy-making body when the

MELD score was implemented.”5 Others also noted that “arbitrary

changes not based on mortality risk evidence were incorporated into

the form of MELD” and that these lower and upper limits were “set

without any particular objective rationale.”6

On another continent and almost 20 years later, the original UNOS-

MELD equation is still being used for the allocation of liver grafts

in the Eurotransplant region and elsewhere. Due to changing pop-

ulation characteristics, the predictive power of UNOS MELD has

declined significantly in the last years.7 However, an update of the

MELD coefficients in UNOS data showed that performance could

still be further improved.5 As the Eurotransplant population differs

from the original MELD cohort,4,8 improvement of the Eurotrans-

plant liver allocation is very well possible by refitting MELD to the
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Eurotransplant population. Refitting is the reweighing of predictors

and establishment of lower and upper bounds of each parameter,

based on the best fit to the current data. It was hypothesized that

the UNOS-MELD is not optimally fit for the Eurotransplant patients,

as it was fit on the UNOS population. This could diminish MELDs

predictive power and discrimination ability between survival and

death. It is the optimization of this discrimination that gives the most

effective sickest-first allocation.

Therefore, this study constructs a refit MELD score for the Eurotrans-

plant region, by reweighing the MELD coefficients and re-evaluating

the boundaries for the three parameters based on recent Eurotrans-

plant data. The refitting methods presented here could be used to im-

prove prediction models for any region. Also, the added value of the

serum sodium (Na) levels at listing in an Eurotransplant refit MELD-

Na score will be evaluated. The performance of the constructed refit

Eurotransplant models will be compared to the UNOS-MELD.

Methods

Patient data

The TRIPOD statement was used to report the development of the

multivariate prediction models in this study.9 Data was requested

from the Eurotransplant Database. All adult patients actively listed

for a first liver transplantation between January 1st, 2007 - December

31st, 2018 were included. The starting point of inclusion was chosen

after the start of MELD-based allocation in 2006. Patients were

excluded if they received (non)standard exception points (NSE), a

high urgency (HU) status (i.e. UNOS status 1), living donor grafts or

multi-organ transplantations (other than kidney).10 Patient data was

collected from the date of active listing until delisting or the end of

90-day follow-up. Reasons for delisting were death, transplantation,
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removal because of clinical condition or other reasons. The primary

outcome was death within 90 days of first active listing. The pre-

dictors used for the multivariate models were both the bound and

continuous levels of serum creatinine, bilirubin, INR and sodium at

first active listing. For the survival analysis, patients were censored at

transplantation, removal from the list, end of follow-up at 31.12.2018

or after receiving NSE points or a HU status during active waiting.

The sample size for this study was set by the retrospective design.

Missing data (in <0.01%) was not imputed.

Statistical methods

The data was randomly split into a training (70%) and validation

(30%) set. For each recipient, the UNOS-MELD and MELD-Na score

at first active listing were calculated.11,12 Then, the ET refit MELD

(reMELD) score was constructed in the training data. For each MELD

parameter, a multivariate generalized additive Cox model (GAM)

with smoothing splines was plotted. The GAM showed the (non-

)linear effect of the specific parameter on 90-day mortality, corrected

for the other uncapped MELD parameters. By visual inspection it

was assessed whether upper and lower boundaries for the parameter

were necessary, i.e. if there was any violation of the linearity relation

between studied parameter and the 90-day mortality and at which

point. Then, the best boundaries for the parameter were sought

within the visually apparent range by calculating the maximum log-

likelihood and the concordance statistic (c-index) for each possible

combination of upper and lower bounds. The combination with

the maximum log-likelihood was chosen as the lower and upper

bound for that MELD parameter. The impact of deviations from

the maximum log-likelihood and c-index were visualized through

heatmaps to facilitate discussion of weighing the maximum calcu-

lated values against clinically relevant cut-offs. After establishing
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the best boundaries for the parameter, a multivariate Cox model

with the capped parameter was compared to a Cox model with

the unbounded values through likelihood ratio tests. To visualize

the fit of the studied reMELD parameter, the obtained bounds and

coefficient were plotted in the training data. The abovementioned

steps were repeated for all three MELD parameters.

The three obtained capped parameters were then combined into a

multivariate Cox model, thus forming the Eurotransplant refit MELD.

To ensure equal distributions of the traditional UNOS-MELD and

ET refit MELD scores in our data, the 25th and 75th quantiles were

matched. Also, reMELD scores below 6 and above 40 were set to

that value. Then, the addition of serum sodium to the reMELD was

investigated in the training set as described above for the MELD

parameters. In short: based on the GAM inspection, the optimal

Na bounds were sought, i.e. calculating log-likelihood values and

c-indices, and compared with likelihood ratio tests to uncapped

Na levels. Interactions between Na and each refit MELD param-

eter were assessed and deemed relevant if p<0.01. Thus, the final

reMELD-Na model comprised of reMELD parameters, newly bound

sodium and relevant interactions between the terms. Again, the

25th and 75th quantiles were matched and the final scores of the

refit MELD-Na were set between 6 to 40. Finally, the refit ET models

were compared with likelihood ratio tests to UNOS-MELD. For each

model, the c-index was calculated to calculate discriminative ability

in the validation data. Brier scores were calculated as a measure

of error reduction in prediction estimates.13 The fit of the models

to the validation data was visualized by plotting the coefficients

for each MELD parameter. The correlation between the currently

used UNOS-MELD and constructed reMELD-Na was investigated

by plotting both scores. To assess whether reMELD-Na would give

more effective sickest-first allocation, survival estimates were calcu-

lated for patients prioritized by UNOS-MELD and reMELD-Na. All
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statistical analyses were performed using R v3.6.1(R Foundation for 
Statistical Computing, Vienna, Austria).

Results

In this study, 6,944 patients were included, see Table 3.1. More male 
(68%) than female patients were included, and alcohol induced 
cirrhosis was the most frequent cause of liver disease. The median 
UNOS-MELD and serum sodium at listing were 14 (IQR 10-20) and 
138 (IQR 134-140) respectively. After 90 days of follow-up, 35.7%

of the patients were still waiting for LT, 23.8% were censored due 
to HU status or (N)SE points, 18.0% were transplanted, 12.6% were 
removed from the WL and 9.8% died on the WL. There were no 
relevant differences between the training and validation data.

Model development

The GAM plots for each parameter are shown below. For creatinine, 
the S-shaped curve displayed clear lower and upper boundaries 
in Figure 3.1A, the maximum log-likelihood was calculated for the 
bounds of 0.7 and 2.5 mg/dL. Clinically, it seemed logical to include 
values of creatinine below 1.0 mg/dL, mainly because many patients 
(55%) had creatinine levels <=1 mg/dL. Through refitting, the serum 
creatinine was decreased in weight and its upper bound was lowered. 
Therefore, the influence o f r enal f ailure o n t he c hances f or LT was 
reduced.

For bilirubin, in Figure 3.1B, the lower bound was found at 0.3 and 
the upper at 27 mg/dL. Varying of the lower bound between 0.1 and 
0.5 did not alter the log-likelihood significantly, i.e. would still be an 
acceptable fit t o t he d ata. A lso, 2 3.7% o f o ur p opulation w ould no 
longer be capped at listing. The upper bound of 27 mg/dL could be



56 CHAPTER 3. REFIT MELD

Table 3.1: Characteristics of training and validation data

characteristics Training set Validation set p

n 4860 2084

Age (median (IQR)) 56 (49-62) 55 (49-62) 0.022

Gender female (%) 1563 ( 32.2) 659 ( 31.6) 0.680

Disease (%)

Cirrhosis, Alcoholic 1361 ( 28.0) 600 ( 28.8)

Cirrhosis, HCV 352 ( 7.2) 123 ( 5.9)

Cirrhosis, other causes 825 (17.0) 353 (16.9)

Cholestatic disease 652 (13.4) 295 (14.1)

HCC and cirrhosis 953 ( 19.6) 421 ( 20.2)

Other 717 (14.8) 292 (14.0)

Status after 90 days

Censored because of HU or NSE 1171 ( 24.2) 476 ( 22.9)

Deceased 452 (9.30) 226 ( 10.8)

Removed from the waiting list 624 ( 12.8) 257 ( 12.3)

Still waiting on waiting list 1734 ( 35.8) 739 ( 35.5)

Transplanted 867 ( 17.9) 381 ( 18.3)

Days follow-up (mean (SD)) 44.22 (39.48) 44.06 (39.27) 0.875

Serum measurement at listing (mean (SD))

Creatinine in mg/dL 1.40 (3.73) 1.46 (4.16) 0.563

Bilirubin in mg/dL 5.74 (8.79) 5.84 (9.34) 0.669

INR 1.51 (0.72) 1.52 (0.72) 0.510

Sodium in mmol/L 137.02 (4.99) 136.94 (4.88) 0.526

UNOS MELD at listing (median (IQR)) 14 (10-20) 14 (10-20)

Note:

IQR: inter quartile range, HCV: hepatitis C induced cirrhosis, HCC: hepa-

tocellular carcinoma, HU: high urgency, NSE: (non)standard exception, SD:

standard deviation, INR: international normalized ratio, UNOS: united net-

work for organ sharing
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Figure 3.1: For each parameter, the relation to 90-day mortality is shown

based on the training data
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altered to a clinically more relevant value, roughly between 20 and 40,

without affecting the optimal fit to the data too much (supplement

heatmap bilirubin).

The INR had no lower bound and was capped at a maximum of 2.6,

see Figure 3.1C. However, assessment of the log-likelihoods values

showed that a range between 0.1 and 1.0 would be acceptable as

lower bound (supplement heatmap INR) and would affect few pa-

tients (2.7%). For the INR an upper bound of 2.6 was chosen, which

still acknowledged, i.e. did not cap, 93% of the patients. Although it

may seem controversial to cap the INR, this meant that if patients

reached 2.6, they would receive the maximum refit points for INR, of

which the weight was increased in the refit models.

Overall, the reMELD and reMELD-Na models capped less patients at

assumed values than UNOS-MELD. In Figure 3.2, lines were plotted

for respectively creatinine, bilirubin, and the INR to represent the re-

fit coefficient (slope of the diagonal) and the boundaries (horizontal

lines).

The heatmaps of the calculated log-likelihoods and c-indices per

combination of boundaries are attached in the (online) supplement.

After checking for interactions and matching the 25th and 75th

quantiles of the reMELD to the UNOS-MELD in the training data, the

reMELD equation was:

7.728∗ ln(creatinine)+3.446∗ ln(bilirubin)+10.597∗ ln(INR)+8.422

In this equation the abovementioned boundaries were used for the

parameters. The maximum log-likelihood for Na levels was found be-

tween 120 and 139 mmol/L. Combining the reMELD and Na showed a

significant interaction between Na and creatinine. Thus, after quan-

tile matching in the training data, the reMELD-Na formula was:

9.025× ln(creatinine) + 2.969× ln(bilirubin) + 9.518× ln(INR)−

0.392× (139−Na)− 0.351× ln(139−Na)× ln(creatinine)
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ments) in refit MELD
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Table 3.2: Parameter bounds and number of patient measurements in-

cluded in UNOS and refit models

UNOS MELD(-Na) refit MELD(-Na)

bounds capped (%) included (%) bounds capped (%) included (%)

Creatinine lower 1 55.0 41.9 0.7 20.1 73

upper 4 3.1 2.5 6.9

Bilirubin lower 1 23.7 76.3 0.3 2.0 93.5

upper NA 26.9 4.5

INR lower 1 9.8 91.2 0.1 NA 94.8

upper NA 2.6 5.2

Sodium lower 125 2.7 72.9 120 0.7 56.3

upper 140 24.4 138.6 43

Note:

For each parameter the lower and upper bounds are shown. ’capped’ shows the percentage of

the cohort that either lies under or above the chosen bounds. ’included’ shows the percentage of

patients whose measurements are included in the model.

For the parameters in the reMELD-Na score, the abovementioned

boundaries were used. Compared to the UNOS-MELD, re-MELD

and reMELD-Na used respectively 149% (n=4815) and 42% (n=2748)

more patient measurements, i.e. less true patient measurements

were capped, at listing with the boundaries as shown in Table 3.2.

Model performance

Figure 3.3 shows the effect of each MELD parameter, corrected for the

others, on 90-day mortality in the validation data. The red and blue

lines represent the coefficients of the reMELD and UNOS-MELD re-

spectively. It was visually apparent that refit MELD showed a better

fit to the data for all three parameters. The calculated chi-square val-

ues confirmed significant (p<0.001) improvements in the refit models

compared to the UNOS-MELD, shown in Table 3.3. The reMELD and

reMELD-Na models showed c-indices of 0.866 and 0.869 respectively,

which were significantly (p<0.001) higher than 0.849 of the UNOS-

MELD, see Table 3.3. Furthermore, the reMELD-Na showed a 8% re-
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Table 3.2: Parameter bounds and number of patient measurements in-

cluded in UNOS and refit models

UNOS MELD(-Na) refit MELD(-Na)

bounds capped (%) included (%) bounds capped (%) included (%)

Creatinine lower 1 55.0 41.9 0.7 20.1 73

upper 4 3.1 2.5 6.9

Bilirubin lower 1 23.7 76.3 0.3 2.0 93.5

upper NA 26.9 4.5

INR lower 1 9.8 91.2 0.1 NA 94.8

upper NA 2.6 5.2

Sodium lower 125 2.7 72.9 120 0.7 56.3

upper 140 24.4 138.6 43

Note:

For each parameter the lower and upper bounds are shown. ’capped’ shows the percentage of

the cohort that either lies under or above the chosen bounds. ’included’ shows the percentage of

patients whose measurements are included in the model.

For the parameters in the reMELD-Na score, the abovementioned

boundaries were used. Compared to the UNOS-MELD, re-MELD

and reMELD-Na used respectively 149% (n=4815) and 42% (n=2748)

more patient measurements, i.e. less true patient measurements

were capped, at listing with the boundaries as shown in Table 3.2.

Model performance

Figure 3.3 shows the effect of each MELD parameter, corrected for the

others, on 90-day mortality in the validation data. The red and blue

lines represent the coefficients of the reMELD and UNOS-MELD re-

spectively. It was visually apparent that refit MELD showed a better

fit to the data for all three parameters. The calculated chi-square val-

ues confirmed significant (p<0.001) improvements in the refit models

compared to the UNOS-MELD, shown in Table 3.3. The reMELD and

reMELD-Na models showed c-indices of 0.866 and 0.869 respectively,

which were significantly (p<0.001) higher than 0.849 of the UNOS-

MELD, see Table 3.3. Furthermore, the reMELD-Na showed a 8% re-

61

0.3

1.0

3.0

10.0

1 3 10
Serum creatinine (mg/dL)

R
el

at
ive

 R
is

k 
of

 9
0−

da
y 

de
at

h

(a) Creatinine

0.3

1.0

3.0

10.0

1 10 100
Serum bilirubin (mg/dL)

R
el

at
ive

 R
is

k 
of

 9
0−

da
y 

de
at

h

(b) Bilirubin

1

10

100

1 3 10
Serum INR

R
el

at
ive

 R
is

k 
of

 9
0−

da
y 

de
at

h

(c) INR

Figure 3.3: In the validation data, the relation with 90-day mortality is

shown. The coefficients and boundaries of creatinine in reMELD (red) and

UNOS-MELD (blue) illustrate model fit.
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Table 3.3: Comparison of models in validation data

Model C-index Max log-likelihood Chisq p

UNOS MELD 0.849 (se = 0.012 ) -1376.6

UNOS MELD-Na 0.860 (se = 0.010 ) -1362.8 27.660 < 2.2e-16

reMELD 0.866 (se = 0.011 ) -1347.1 58.966 < 2.2e-16

reMELD-Na 0.869 (se = 0.010 ) -1347.1 59.066 < 2.2e-16

Note:

For each model the C- index and maximum log- likelihood are calculated in

the validation data. The likelihood ratio comparisons of the models to UNOS-

MELD are shown by chi- squared and P values.

duction in prediction error as compared to UNOS-MELD with Brier

scores of 0.053 (reMELD-Na) and 0.057 (UNOS-MELD) respectively.

Impact on the waiting list

After 90 days of follow-up, 1,248 patients of our cohort were trans-

planted. By using the reMELD-Na compared to the UNOS-MELD to

allocate the 1,248 available liver grafts, 134/1,248 (11.5%) of the trans-

planted patients would have been within the top 1,248 candidates

under one of these models but not under the other; i.e., prioritiza-

tion would differ. Table 3.4 shows the characteristics of these differ-

ently prioritized patients. Most notably, reMELD-Na-prioritized pa-

tients were slightly older, were more often male, and had a higher

prevalence of cirrhosis. Unsurprisingly, these patients had signifi-

cantly lower serum sodium levels (138 vs. 127 mmol/L). As hypona-

tremia is most often seen in alcohol-associated cirrhosis,14 the sex

and age differences are largely explained. The correlation plot Fig-

ure 3.4 shows which patients would be prioritized according to either

UNOS-MELD or re-MELD-Na allocation.
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Figure 3.4: Correlation plot of UNOS- MELD and reMELD- Na. Based on 
the number of transplanted patients after the first 90 days (n = 1,248), the 
highest-ranked patients according to both scores separately were assigned 
a liver graft, as represented by the horizontal (graft granted by reMELD-

Na) and vertical (by UNOS-MELD) lines. Patients in the top left quadrant 
(reMELD-Na-prioritized) had a 1.58 times higher risk of 90- day death com-

pared to patients in the lower right quadrant (UNOS-MELD-prioritized).

The patients in the top left quadrant would have been prioritized by 

reMELD-Na allocation but not by UNOS-MELD. They had estimated 

90-day survival probabilities of 52.4% (95CI 41.3 – 66.5), as compared 

to 70.0% (95CI 58.9 – 83.1) for patients prioritized by UNOS-MELD, 

but not by reMELD-Na (bottom right quadrant), Thus, re-MELD-Na 

would have prioritized patients with a 90-day WL mortality HR of 

1.6 as compared to currently prioritized patients. Figure 3.4 also il-

lustrated that after refitting, no scores above 40 were calculated and 

thus that all high MELD scores were acknowledged correctly. By using 

more recent data and the true 90-day mortality rates of our popula-

tion, reMELD-Na showed that very few patients actually approached
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lustrated that after refitting, no scores above 40 were calculated and
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more recent data and the true 90-day mortality rates of our popula-

tion, reMELD-Na showed that very few patients actually approached
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100% 90-day WL mortality, i.e. MELD 40. Thus, the refit models re-

stored the clinical meaning of the 6-40-point range.

Discussion

In this study, for the first time the MELD score was refitted to the Eu-

rotransplant data. By establishing new and evidence-based lower and

upper bounds for each MELD parameter, the role of each MELD com-

ponent was reweighed. The reweighed coefficients performed signif-

icantly better than the currently used UNOS-MELD in the indepen-

dent validation dataset. The reMELD and reMELD-Na gave convinc-

ingly higher c-indices than UNOS-MELD and were based on the best

fit to the current Eurotransplant data. The reMELD-Na prioritized pa-

tients with 1.6 times higher 90-day mortality rates than the currently

prioritized patients. Thus, refitting MELD results in more accurate,

effective and just mortality prediction and subsequent sickest-first al-

location.

The UNOS-MELD has remained unchanged ever since it was con-

structed 20 years ago in a cohort of 231 patients.4 Its parameter

bounds were chosen arbitrarily.5,6,11 Thus, UNOS-MELD is not fit

for the changing LT candidate population, which showed through a

decline in predictive power.7 Refitting, i.e. re-establishing parameter

bounds and weights, enables prediction models to change along with

the population they serve. Indeed, the principle of refitting could be

applied to any model used for survival prediction.

Lower bounds

By refitting, the lower border of creatinine was set to 0.7. A creatinine

of 1.0 mg/dL might already indicate disease in LT candidates, as mea-

sured creatinine overestimates kidney function in e.g. sarcopenia,



66 CHAPTER 3. REFIT MELD

females and patients with high bilirubin.15 Evaluation of the lower

bounds of bilirubin and the INR showed that multiple combinations

of bounds provided a good fit to the data, while preserving the

predictive power of the model. Thus, the exact lower bounds should

be determined through expert-based discussion. By acknowledging

more low values (which most patients had at listing), the higher

values were placed in a more appropriate context than with the

UNOS lower bounds of 1.0.

Upper bounds

The upper bounds found in this study were perhaps more controver-

sial, as UNOS-MELD uses none for bilirubin and INR. However, the

new bounds resulted in better-performing models. Through refitting,

serum creatinine became less important. Under UNOS-MELD, the

number of transplanted patients with renal failure increased signif-

icantly, possibly due to overweighed creatinine in UNOS-MELD.6,16

As these patients have increased morbidity and mortality both before

and after LT, the principle of the sickest-first system was to prioritize

them. However, one could question the prioritization of renal failure

above liver failure, through the high weight of creatinine in UNOS-

MELD, when allocating scarce liver grafts. High bilirubin levels led

to unreliable measurements of UNOS-MELD due to interaction

with creatinine, which influenced scores because of the weight of

creatinine in UNOS-MELD.17 Therefore, decreasing the weight of

creatinine and establishing an upper bound for bilirubin should

give more reliable reMELD scores. Of the three MELD parameters,

INR is the most unreliable. This is in part because the INR varies

significantly depending on the method of laboratory measurement.18

Also, medical treatment (or non-treatment) can decrease or increase

the INR. Therefore, an upper bound for the INR would also be an

improvement, as it would reduce the influence of outliers in INR

measurements.5
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Sodium addition

The UNOS regions have used MELD-Na for liver allocation since

2016.3 Despite the proven impact of serum sodium levels on LT

candidate survival,12,14 Na is not used (yet) for the Eurotransplant

liver allocation. The addition of Na to the reMELD gave a small but

significant improvement in discriminative ability (c-index 0.866 to

0.869). Although the largest improvement in c-index was achieved

by reMELD alone (0.849 to 0.866), the additional smaller gain still

represented important changes for hyponatremic patients. The

c-index measures the proportion of patient pairs whose ranking is

correctly ordered. Hence, a difference in c-index can be thought

of as the proportion of patients whose ranking change. It however

does not measure the degree of change within ranks, i.e. for each

patient. Thus, a small difference for many patients will give a high

c-index increase, whereas a large change for a smaller number of

(hyponatremic) patients gives little improvement.12,14 Based on the

current findings, reMELD-Na performed slightly but significantly

better than reMELD. Also, it seems just to consider the proven effect

of Na levels on mortality. Therefore, use of reMELD-Na is preferred.

Impact on the WL

Despite the seemingly small performance differences between UNOS

and refit models, the refit models were very different at their bases,

which was the goal of this study. Refitting established new param-

eter bounds, notably different coefficients and a superior fit to the

data, see Figure 3.3 and Table 3.3. This improved both model discrim-

ination (c-index) and calibration (prediction errors). The increase in

c-index from 0.849 to 0.869 may seem small, but is both statistically
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and clinically very significant. Recent study showed that switching

from UNOS MELD to MELD-Na would significantly reduce waiting

list mortality in the Eurotransplant region, although the difference in

c-index was 0.015 (0.832 vs 0.847).14 The study that formed the ba-

sis of the US switch from MELD to MELD-Na, showed a similar in-

crease in c-index (i.e. 0.868 to 0.883),12 which was considered an im-

portant increase and convincing evidence for possible MELD-Na im-

plementation. Another large UNOS cohort study on improving MELD

showed a c-index increase from 0.75 to 0.77.16 This illustrates that

improving an already-high c-index is very difficult, as it increases in

an asymptotic fashion when approaching its maximum. The highest

obtainable baseline c-index is probably around 0.9 or lower because

of possible imperfections and biological variation in the data.5,12,14

Moreover, compared to respectively UNOS MELD and MELD-Na, re-

fitting reduced prediction errors by 8% and 5%, which is a major im-

provement considering the already-high accuracy of the scores.

To estimate the possible clinical impact of refitting, differences in

prioritization were assessed, see Table 3.4. As the 90-day mortality

of the reMELD-Na-prioritized patients (Figure 3.4 ) was 1.6 times

higher than the currently prioritized patients, reMELD-Na could

possibly better effectuate the sickest-first principle. Figure 3.4 also

shows patients with MELD>=40, which were rescaled below 40 after

refitting. An UNOS-MELD score of 40 originally corresponded to a

100% 90-day WL mortality.11 However, over the past decades, the

waitlist population and the risks of death per MELD score have

changed,7 which also shows through the increasing number and

survival of MELD>=40 patients.19 This has important implications

for the Eurotransplant exception point system, which is based on

MELD mortality rates dating from 2006 (supplement 3) and allocates

25-30% of the LT candidates.10,20 Regardless of possible refit score

implementation, the Eurotransplant exception point system would

benefit from an accurate rescaling. Still, by quantile matching and
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of the reMELD-Na-prioritized patients (Figure 3.4 ) was 1.6 times

higher than the currently prioritized patients, reMELD-Na could

possibly better effectuate the sickest-first principle. Figure 3.4 also

shows patients with MELD>=40, which were rescaled below 40 after

refitting. An UNOS-MELD score of 40 originally corresponded to a

100% 90-day WL mortality.11 However, over the past decades, the

waitlist population and the risks of death per MELD score have

changed,7 which also shows through the increasing number and

survival of MELD>=40 patients.19 This has important implications

for the Eurotransplant exception point system, which is based on

MELD mortality rates dating from 2006 (supplement 3) and allocates

25-30% of the LT candidates.10,20 Regardless of possible refit score

implementation, the Eurotransplant exception point system would

benefit from an accurate rescaling. Still, by quantile matching and
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refitting specifically in the 6 to 40 range, the refit scores restored their

old mortality equivalents, i.e. MELD 40 represented a 100% 90-day

mortality risk.

Limitations

Estimating the impact of a new allocation system based on another

system’s data inadequately reflects the possible effects of new al-

location. Before implementation, one aims to answer important

questions concerning counterfactual outcomes in causal inference,

e.g. what would have happened to patients had they not been trans-

planted. The best way to evaluate a new allocation system is to bring

it in practice and measure the difference. Evaluating a new system

through simulation is probably the next best option. One should

be aware, however, that assessment through simulation is based on

intrinsically unverifiable assumptions, namely that with changing

the allocation priorities nothing else in the system will change. The

Eurotransplant region does not yet have a simulation model of its

liver allocation, like the Liver Simulation Allocation Model (LSAM) in

the UNOS. Therefore, new allocation systems, e.g. refit models, can-

not be formally evaluated before possible implementation. Instead,

only a rough estimate of possible impact could be given by assessing

differences in prioritized patients. Still, this was likely a less-biased

method compared to proposed UNOS MELD-Na estimations of

impact.12

Finally, the role of clinical intuition and logic of reasoning should not

be underestimated. Optimizing MELD for our region makes clini-

cal sense and the log-likelihood-based approach is statistically solid

and logical. Regions without simulation programs cannot know for

certain what the effect of new allocation systems will be. Still, evi-

dence can form a strong suggestion of improvement, which can be

confirmed after possible implementation.
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Conclusion

This study showed that updating the boundaries and coefficients on

more recent region-specific data increased the predictive power of

MELD again. The discussion on the establishment of refit models

should consider at least three aspects: the parameter boundaries,

fit of the model to the data and the prediction performance of the

model. With the increasing interest in more advanced computational

possibilities, the transplant community should investigate alterna-

tive models to the current allocation system.21 However, as the MELD

still is the basis of liver allocation in many regions, efforts should

be made to keep the model as relevant as possible, and we believe

the current study serves this purpose. In conclusion, refitting MELD

acknowledged more patient measurements at listing and prioritized

patients with higher 90-day mortality. The discriminative ability and

accuracy of refit models was a significant and relevant improvement

compared to the currently used UNOS-MELD.
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