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Chapter 1

General introduction

“Zij zag, zij zag, wat niemand zag.

Maar ach, voor haar kwam toch een dag

Dat zij het niet precies kon zien

Heeft u dat ook misschien”

— Heinz Hermann Polzer

3
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Research in context

This thesis focuses on survival prediction models in liver transplanta-

tion (LT). Predicting survival is important because it is used to priori-

tize patients in need of transplantation. Many patients are not trans-

planted in time, due to the shortage of donor liver grafts.1,2 Optimiz-

ing survival prediction models is therefore a matter of life and death.

A short history of liver transplantation

The shortage of donor liver grafts and the subsequent need for

survival prediction exist because of the success of LT as treatment.

Thomas Starzl was the first to perform a LT in 1963, trying to save

a severely ill child.3 In this first and later attempts, patients often

died shortly after transplantation. Only a laboratory pig managed

to survive many years without immunosuppression and therefore

became his favorite transplant mascot.4 Performing LT remained an

experimental treatment until further improvements in immunosup-

pression, operation and preservation techniques, diagnosis of liver

diseases, and postoperative management had been made.5,6 In the

late 70s the early LT programs started, in 1983 LT was declared not

experimental anymore, and only in the 90s many other LT centers

started. Five-year post-transplant survival probabilities increased

from 21% to 71% in 25 years.7

Through these improvements, an increasing diversity and number of

patients were eligible and could be treated.5 This created shortages

of donor livers, as the number of patients in need of LT (‘LT candi-

dates’) outnumbered the available donor livers. Even now, despite the

development of donation after circulatory death, living donor liver

transplantation, and machine perfusion for marginal organs, the im-

balance between available donor organs and number of candidates

persists, with an average waiting time for LT of five months in the Eu-
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rotransplant region and eight months in the United Network for Or-

gan Sharing (UNOS) regions.1,2 As a result, nowadays many patients

are still not transplanted in time and die on the waiting list. For the

Eurotransplant region in 2020, 25.3% (374/1481) of the LT candidates

died on the waiting list.1 In the US in 2019, LT came too late for 18.3%

(2405/13,093) of the waiting patients.2 Indeed, the mortality of pa-

tients on the liver waiting list is highest compared to all other trans-

plantable organs. Therefore, the development and improvement of

survival prediction for the LT waiting list is most important.

The start of liver allocation

Because of the plethora of indications and increasing number of pa-

tients listed for LT, donated liver grafts needed to be distributed in

a systematic and just way. Thus, the field of liver allocation came

into existence, where allocation can be defined as “the process of giv-

ing someone their part of a total amount of something to use in a

particular way.”8 Initially, liver grafts were assigned to patients with-

out applying uniform rules, because there were only a small num-

ber of patients and grafts involved. Then, following the field of kid-

ney allocation, LT was offered based on waiting time, i.e., first come

first served.5 With an increasing number of patients involved, waiting

times increased and therefore governmental regulation was initiated,

which gave rise to organ procurement organizations (OPO). Impor-

tantly, it was shown that waiting time did not correlate well with wait-

ing list mortality.9 Thus, consensus was reached that the most rele-

vant consideration was not how long a patient had waited, but what

the risk of death was while waiting. In other words, the principle of

transplanting the sickest first was employed.10 As a result, the OPO’s

effectuated policies that sought to incorporate measures of disease

severity into allocation. The rationale was that prioritizing patients

with the highest expected mortality without LT would reduce deaths
among waiting patients.
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Survival prediction

Because liver allocation aims to prioritize patients who will die soon-

est without transplantation, it is important to understand survival

prediction models.

Clinical information of a patient can relate to the true patient state 
that is either currently present (diagnosis) or will be present in the fu-

ture (prognosis).11 In the setting of survival prediction, future survival 
(prognosis) of a patient is estimated. Typically, only some patients 
will experience the event of interest (death) within the studied time. 
Therefore, survival times will be unknown for many patients, which is 
known as censoring of outcome.12 Right censoring can occur because 
(1) the patient did not die yet, (2) because the patient was lost dur-

ing study follow-up, or (3) another event took place which disabled 
further follow-up (e.g., transplantation prevented further follow-up 
for death on the waiting list). The fact that patients can be censored 
makes survival analysis difficult, as the aim is to use all the available 
information and to not discard follow-up times of patients without 
the event. In the setting of LT and this thesis, survival analysis will 
mostly be done for LT candidates on the waiting list. The survival 
probability on the waiting list is the chance that a patient survives 
from a specified t ime of origin ( e.g., first registration) until a future 
time point (e.g., 90 days). Post-transplant survival will also be used 
in chapter 6 of this thesis and is defined as the probability of survival 
from the moment of transplantation to the earliest of post-transplant 
death, loss to follow-up, or end of study.

When predicting survival, it is important to consider that patient

characteristics can affect survival and that these characteristics can

be differently distributed within the studied population. For exam-

ple, older patients might more frequently have more severe disease.



1

6 CHAPTER 1. GENERAL INTRODUCTION

Survival prediction

Because liver allocation aims to prioritize patients who will die soon-

est without transplantation, it is important to understand survival

prediction models.

Clinical information of a patient can relate to the true patient state 
that is either currently present (diagnosis) or will be present in the fu-

ture (prognosis).11 In the setting of survival prediction, future survival 
(prognosis) of a patient is estimated. Typically, only some patients 
will experience the event of interest (death) within the studied time. 
Therefore, survival times will be unknown for many patients, which is 
known as censoring of outcome.12 Right censoring can occur because 
(1) the patient did not die yet, (2) because the patient was lost dur-

ing study follow-up, or (3) another event took place which disabled 
further follow-up (e.g., transplantation prevented further follow-up 
for death on the waiting list). The fact that patients can be censored 
makes survival analysis difficult, as the aim is to use all the available 
information and to not discard follow-up times of patients without 
the event. In the setting of LT and this thesis, survival analysis will 
mostly be done for LT candidates on the waiting list. The survival 
probability on the waiting list is the chance that a patient survives 
from a specified t ime of origin ( e.g., first registration) until a future 
time point (e.g., 90 days). Post-transplant survival will also be used 
in chapter 6 of this thesis and is defined as the probability of survival 
from the moment of transplantation to the earliest of post-transplant 
death, loss to follow-up, or end of study.

When predicting survival, it is important to consider that patient

characteristics can affect survival and that these characteristics can

be differently distributed within the studied population. For exam-

ple, older patients might more frequently have more severe disease.

7

The Cox proportional hazards model is used to study the impact

of one variable, adjusted for the impact of other variables, and to

estimate the effect size of each variable.13 For the above mentioned

example, a Cox model could show that for two patients with the

disease severity, a higher age would increase the risk of death. The

probability that a patient on the waiting list dies at a given moment

is called the hazard h(t):

h(t) = h0(t)× eb1x1+b2x2+...

This formula shows that the hazard depends on the chosen time t,

which seems likely for the waiting list. It also depends on chosen

predictors (x1, x2, ..) that have a certain impact, which is expressed

through the size of the coefficients (b1, b2, ..). The baseline hazard h0

is the hazard if all predictors (x1, x2, ..) were set to zero. For example,

if age were used to predict survival, h0 would be the instantaneous

risk of death at age 0.

Measuring model prediction performance

The outcome of analysis is often binary (death or alive) and therefore

predictions of this outcome can be expressed as absolute risks (e.g.,

60% chance of dying in the next five years). Because the aim is to best

estimate the true future patient state, it is important to assess perfor-

mance of a prediction model. The first essential measure is discrimi-

nation, which assesses whether the model can discriminate between

patients based on their risks of the outcome (e.g., death). Patients

with the event should have higher risk estimates than patients with-

out the event. For allocation purposes, this means that patients with

a higher risk of death will be ranked above patients with lower risks.

Therefore, good model discrimination is essential for allocation. Dis-

crimination is often expressed through the concordance statistic (or

c-index). Imagine that the prediction model is offered information
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on two patients from the population and that it must decide which

patient has a higher risk of death than the other. The percentage of

correct decisions by the model corresponds to the c-index. A c-index

of 0.5 means that the model is as good as flipping a coin. A c-index

of 1 means that a model perfectly ranks patients, which in practice

is not possible. In real cohort data, a c-index above 0.8 is considered

excellent.

The next essential measure of model performance is calibration,

which measures model accuracy. In other words, calibration tells

how well the predicted risks match the observed risks in the studied

population. Discrimination indicates which patient has a higher

risk, but it tells nothing about the value of that risk (e.g., 10% or 90%

chance of death). Calibration assesses the absolute risks and there-

fore is essential for research and communication with patients.14

For example, clinicians and patients may make decisions based on

the expected risk for an event (e.g., decide to transplant a patient

based on an expected high risk of death without treatment). Strong

over- or underestimation of these risks are unacceptable for clinical

practice.15 Thus, survival prediction models aim to estimate future

survival, which is essential for allocation of scarce liver grafts.

The MELD score

Several survival prediction models have previously been applied in

liver allocation. Perhaps the most noteworthy is the Child-Turcotte-

Pugh (CTP) score, which was the first widespread model used to re-

flect patient disease severity for the LT waiting list.16 Although this

score was a well-established predictor of mortality in cirrhotic pa-

tients, it failed in effective sickest-first allocation for several reasons.

One important limitation was that patients were categorized in only

three groups. These groups still encompassed many patients with

varying disease severity and therefore risk stratification was not pre-
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cise. Also, within each group, waiting time was still used as main pri-

oritizing principle. Another important limitation of the CTP score was

the subjective grading of ascites and encephalopathy, which could

lead to inter-observer variability when scoring disease severity.17 To

reach a more reproducible and objective representation of disease,

the Model for End-stage Liver Disease (MELD) was considered.

The MELD score was developed in the Mayo Clinic to predict early

survival after transjugular intrahepatic portosystemic shunt (TIPS)

placement in 231 cirrhotic patients.18 These patients received TIPS to

prevent variceal rebleeding and to treat refractory ascites. The sem-

inal study by Malinchoc et al. found that three blood measurements

best predicted survival, i.e., serum bilirubin, creatinine, and the in-

ternational normalized ratio for prothrombin time (INR). After val-

idation in 71 Dutch patients, the original MELD equation was pro-

posed:

MELD = 9.57× ln(creatinine) + 3.78× ln(bilirubin)+

11.2× ln(INR) + 6.43× (causeofcirrhosis)

Because survival after TIPS mainly depended on the severity of liver

disease, it was hypothesized that MELD was also suitable for survival

prediction in patients without TIPS. Thus, retrospective validation

was done to investigate whether MELD could also be applied to dif-

ferent etiologies and severities of liver disease.19 It was found that the

cause of cirrhosis could be excluded from the equation without low-

ering predictive performance. Thus, the final form became:

MELD = 9.57× ln(creatinine) + 3.78× ln(bilirubin)+

11.2× ln(INR) + 6.43

Then, because it was considered as potential allocation model,

MELD was prospectively evaluated by ranking patients on the wait-

ing list.20 In 2002, MELD was applied as the basis of liver allocation in

the United States (US). In 2006, the Eurotransplant region followed.
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In 2016, the US progressed to a newer form of MELD: the MELD

sodium (MELD-Na) score.21 However, MELD has remained un-

changed as the main driver for liver allocation in the Eurotransplant

region.

Justifying why research is needed: central argu-

ment

In the Eurotransplant region, the fundamental model that predicts

survival for liver allocation has remained unchanged since 2006. It is

therefore easy to see the gap this thesis aims to fill. The current LT

allocation system prioritizes the sickest patients, based on estimated

survival on the waiting list. Thus, the primary goal of this thesis is

to improve models that predict survival in LT candidates. These im-

proved models could help to distribute liver grafts in the best way

possible. To understand the possible improvements, some current

problems are outlined below.

Thesis layout: research questions and addressed

problems

Considering sodium

The MELD score uses three blood measurements, i.e., serum biliru-

bin, creatinine, and the INR. In cirrhotic patients, hyponatremia

indicates worse survival.22,23 This is because the kidneys fail to

compensate lowered splanchnic blood pressure caused by cirrhosis-

induced vasodilatation. As such, hyponatremia does not represent

kidney failure per se, but it indicates a decompensation of regulating

systems in a setting of portal hypertension. It was shown that sodium
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(Na) affected death risk corrected for MELD.24–26 Therefore, the

addition of sodium (Na) to MELD (MELD-Na) was investigated in the

US. Important advantages of serum sodium were that it was readily

available and could be measured reliably and objectively. Results

showed that MELD-Na better predicted survival on the waiting list

and therefore possibly enabled better sickest-first LT allocation.21 In

2016, the US implemented MELD-Na as the basis of LT allocation.

Subsequent evaluation indeed showed a reduction in waiting list

mortality.27 Thus, as a starting point for this thesis, it was suggested

to validate MELD-Na for the Eurotransplant region. Therefore, in

Chapter 2, we hypothesized that MELD-Na would also improve LT

candidate survival prediction in the Eurotransplant region.

Updating coefficients

After validating MELD-Na, the author questioned whether the

current forms of MELD and MELD-Na were suitable for the Eu-

rotransplant region. This question arose because a model best

represents the population it is fit in. As the MELD score was fit-

ted 20 years ago in 231 US patients,18 it was assumed to be a bad

representation of the current Eurotransplant population. There-

fore, in Chapter 3, the second question posed in this thesis was

whether refitting MELD for the Eurotransplant region would improve

survival prediction. To understand what refitting means and how

improvements could be made, consider the above-mentioned MELD

equation. It shows three parameters (bilirubin, creatinine, and

INR) and their coefficient (relative weight). The values of these

coefficients represent the relations of the variables to survival in

the studied population. However, MELD’s coefficients were set in a

small (n=231) and likely unrepresentative population.18 Population

changes (most notably disease incidence) have decreased MELD’s

predictive power over the years.28 Even in the US, updating MELD
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showed an improvement in survival prediction.29,30 We hypothesized

that in a different population, like the Eurotransplant region, MELD

variables relation to survival would be different. It is remarkable that

the Eurotransplant region has been using a MELD equation that is 20

years old. Thousands of patients have been prioritized based on an

unadjusted and possibly suboptimal model.

Past and current disease

When refitting MELD, the question arose why only one baseline mea-

surement was used to fit the model. The third problem addressed in

this thesis therefore was that current survival prediction for LT pri-

oritization is based on one moment in time, i.e., the last available

measurement of MELD. This is not the moment the model was fit for.

Previous measurements are also ignored. In the Eurotransplant re-

gion at the end of 2020, patients on the LT waiting list spent a median

time of 10 months waiting ( Eurotransplant public statistics library:

3085P_All ET ). During this time, disease develops and expected sur-

vival changes. This past course of disease encompasses valuable in-

formation for the future survival probability and thus patient priority

for LT. Although it is currently ignored by MELD, in clinical practice it

would be considered undesirable to ignore previous disease informa-

tion.

In Chapter 4 we hypothesized that using both previous and current

disease severity to predict survival would be an improvement. The

idea was to better mimic clinical survival prediction, as an experi-

enced clinician would consider both previous and current disease de-

velopment to estimate patient prognosis. To achieve this, joint mod-

els (JMs) were applied.31 The JM combines longitudinal and survival

analysis. This way, complex questions can be answered, such as: what

is the effect of a change in MELD over time on future patient survival?

Importantly, JMs yield predictions that are dynamic (updated based



1

12 CHAPTER 1. GENERAL INTRODUCTION

showed an improvement in survival prediction.29,30 We hypothesized

that in a different population, like the Eurotransplant region, MELD

variables relation to survival would be different. It is remarkable that

the Eurotransplant region has been using a MELD equation that is 20

years old. Thousands of patients have been prioritized based on an

unadjusted and possibly suboptimal model.

Past and current disease

When refitting MELD, the question arose why only one baseline mea-

surement was used to fit the model. The third problem addressed in

this thesis therefore was that current survival prediction for LT pri-

oritization is based on one moment in time, i.e., the last available

measurement of MELD. This is not the moment the model was fit for.

Previous measurements are also ignored. In the Eurotransplant re-

gion at the end of 2020, patients on the LT waiting list spent a median

time of 10 months waiting ( Eurotransplant public statistics library:

3085P_All ET ). During this time, disease develops and expected sur-

vival changes. This past course of disease encompasses valuable in-

formation for the future survival probability and thus patient priority

for LT. Although it is currently ignored by MELD, in clinical practice it

would be considered undesirable to ignore previous disease informa-

tion.

In Chapter 4 we hypothesized that using both previous and current

disease severity to predict survival would be an improvement. The

idea was to better mimic clinical survival prediction, as an experi-

enced clinician would consider both previous and current disease de-

velopment to estimate patient prognosis. To achieve this, joint mod-

els (JMs) were applied.31 The JM combines longitudinal and survival

analysis. This way, complex questions can be answered, such as: what

is the effect of a change in MELD over time on future patient survival?

Importantly, JMs yield predictions that are dynamic (updated based

13

on accumulating evidence) and personalized (for the population av-

erage and individual). However, JMs were never applied on a large

scale in medicine, also not in the field of LT.

Acute-on-chronic liver disease

Most patients on the LT waiting list have chronic liver disease,

which gradually worsens in severity. However, some patients can

develop acute-on-chronic liver failure (ACLF). ACLF is a syndrome

characterized by three major features: systemic inflammation,

relationship with precipitating events (e.g., infections or alcoholic

hepatitis), and an association with single- or multi-organ failure.32

As a result, in ACLF mortality is high and a proportion of these

patients urgently needs LT for treatment. However, the MELD score

underestimates mortality in ACLF, because it ‘only’ measures liver

and kidney failure.33 In Chapter 5, JMs were applied to model disease

and survival in patients with ACLF. We proposed that the dynamic

JMs would be valuable in ACLF, because ACLF disease severity and

mortality change rapidly over time.34 The JM can consider both the

value of disease severity and its rate of change at each moment in

time. Analogous to speed, one can measure a value (e.g., 15 m/s) and

a rate of change (e.g., an acceleration of 5 m/s2). The rate of change

indicates worsening, stable, or improving disease severity, which is

valuable prognostic information.

Benefit of transplantation: life years gained

The LT waiting list prioritizes the sickest patients to receive trans-

plantation offers first. It is based on the principle of urgency, to

prevent deaths on the waiting list. However, this ignores post-

transplant outcomes, which, in an extreme example, could result

in transplanting patients who die the next day. Also, patients could
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be transplanted even though it does more harm than good.35 An

alternative principle of allocation could be based on survival benefit,

or the life years gained from transplantation.36 Survival benefit is

calculated by comparing the estimated survival with and without LT.

For the clinician, it is intuitive to weigh the possible consequences

of (not) treating a patient. This is especially true for LT, because it is

a treatment with inherent increased risk of death due to surgery and

e.g. infections due to post-transplant immunosuppression.37 Also,

there are far more patients in need of transplantation than there are

available liver grafts,1,2 which further necessitates the prevention of

futile LT.38,39

Thus, it is relevant to investigate whether and to what extend patients

gain life years from LT. In Chapter 6, survival benefit of US LT candi-

dates is estimated. A survival benefit comparison is made between

patients with and without hepatocellular carcinoma (HCC). This

is done because survival with and without LT is different between

(non-)HCC patients.40,41 Allocation also differs between HCC and

non-HCC-patients, because MELD(-Na) fails to adequately predict

survival in patients with HCC. To compensate this inadequacy,

an alternative system of artificial exception points was devised.42

Although the aim of the exception point system was to equalize LT

access, in practice HCC patients have gained too much LT access.43–45

In the Eurotransplant exception system, eligible HCC patients receive

an initial MELD score that equals 10% (MELD 20) or 15% (MELD 22)

90-day mortality, depending on the country of listing. The initial

MELD score is then increased with 10% mortality every 90 days,

which intends to mimic tumor progression. It is however evident

that exception points fail to represent patient characteristics and

are arbitrary. Although the aim of the exception point system was

to equalize LT access, in practice HCC patients gained too much LT

access.43–45 Survival benefit, based on actual patient characteristics,

could therefore serve as equalizing principle for survival prediction
and allocation.
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In Part IV, this thesis will be summarized, discussed, and provided

with future perspectives. The appendix provides two supplementary

chapters. Lastly, a summary in Dutch will be given.



16 CHAPTER 1. REFERENCES

References

1. Eurotransplant International Foundation. Annual Report 2020.; 2020.
2. Kwong AJ, Kim WR, Lake JR, et al. OPTN/SRTR 2019 Annual Data Re-

port: Liver. Am J Transplant. 2021;21(S2):208-315. doi:10.1111/ajt.
16494

3. Starzl TE, Marchioro TL, Von Kaulla KN, Hermann G, Brittain
RS, Wadell WR. Transplantation of the liver. Surg Gynecol Obs.
1963;117(2):659-676. doi:10.1097/00000658-197808000-00001

4. Starzl TE. The Puzzle People: Memoirs of a Transplant Surgeon. Uni-
versity of Pittsburgh Press; 1992.

5. Merion RM, Sharma P, Mathur AK, Schaubel DE. Evidence-based de-
velopment of liver allocation: A review. Transpl Int. 2011;24(10):965-
972. doi:10.1111/j.1432-2277.2011.01274.x

6. Zarrinpar A, Busuttil RW. Liver transplantation: Past, present and fu-
ture. Nat Rev Gastroenterol Hepatol. 2013;10(7):434-440. doi:10.1038/
nrgastro.2013.88

7. Dutkowski P, De Rougemont O, Müllhaupt B, Clavien PA. Current and
Future Trends in Liver Transplantation in Europe. Gastroenterology.
2010;138(3):802-809.e4. doi:10.1053/j.gastro.2010.01.030

8. Cambridge Dictionary. https://dictionary.cambridge.org/dictionary/
english/

9. Freeman RB, Edwards EB. Liver transplant waiting time does not cor-
relate with waiting list mortality: Implications for liver allocation pol-
icy. Liver Transplant. 2000;6(5):543-552. doi:10.1053/jlts.2000.9744

10. Organ Procurement and Transplantation Network–HRSA. Final Rule
with Comment Period.; 1998.

11. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the per-
formance of prediction models: A framework for traditional
and novel measures. Epidemiology. 2010;21(1):128-138. doi:
10.1097/EDE.0b013e3181c30fb2

12. Clark TG, Bradburn MJ, Love SB, Altman DG. Survival Analysis Part
I: Basic concepts and first analyses. Br J Cancer. 2003;89(2):232-238.
doi:10.1038/sj.bjc.6601118

13. Cox DR. Regression Models and Life-Tables. J ofthe R Stat Soc.
1972;34(2):187-220. doi:10.1016/0006-8993(85)91540-9

14. Van Calster B, Nieboer D, Vergouwe Y, De Cock B, Pencina MJ, Steyer-
berg EW. A calibration hierarchy for risk models was defined: From
utopia to empirical data. J Clin Epidemiol. 2016;74:167-176. doi:
10.1016/j.jclinepi.2015.12.005

15. Van Calster B, McLernon DJ, Van Smeden M, et al. Calibration: The
Achilles heel of predictive analytics. BMC Med. 2019;17(1):1-7. doi:
10.1186/s12916-019-1466-7

16. Pugh R, Murray-Lyon I, Dawson JL, Pietroni MC, Williams R. Transec-



1

16 CHAPTER 1. REFERENCES

References

1. Eurotransplant International Foundation. Annual Report 2020.; 2020.
2. Kwong AJ, Kim WR, Lake JR, et al. OPTN/SRTR 2019 Annual Data Re-

port: Liver. Am J Transplant. 2021;21(S2):208-315. doi:10.1111/ajt.
16494

3. Starzl TE, Marchioro TL, Von Kaulla KN, Hermann G, Brittain
RS, Wadell WR. Transplantation of the liver. Surg Gynecol Obs.
1963;117(2):659-676. doi:10.1097/00000658-197808000-00001

4. Starzl TE. The Puzzle People: Memoirs of a Transplant Surgeon. Uni-
versity of Pittsburgh Press; 1992.

5. Merion RM, Sharma P, Mathur AK, Schaubel DE. Evidence-based de-
velopment of liver allocation: A review. Transpl Int. 2011;24(10):965-
972. doi:10.1111/j.1432-2277.2011.01274.x

6. Zarrinpar A, Busuttil RW. Liver transplantation: Past, present and fu-
ture. Nat Rev Gastroenterol Hepatol. 2013;10(7):434-440. doi:10.1038/
nrgastro.2013.88

7. Dutkowski P, De Rougemont O, Müllhaupt B, Clavien PA. Current and
Future Trends in Liver Transplantation in Europe. Gastroenterology.
2010;138(3):802-809.e4. doi:10.1053/j.gastro.2010.01.030

8. Cambridge Dictionary. https://dictionary.cambridge.org/dictionary/
english/

9. Freeman RB, Edwards EB. Liver transplant waiting time does not cor-
relate with waiting list mortality: Implications for liver allocation pol-
icy. Liver Transplant. 2000;6(5):543-552. doi:10.1053/jlts.2000.9744

10. Organ Procurement and Transplantation Network–HRSA. Final Rule
with Comment Period.; 1998.

11. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the per-
formance of prediction models: A framework for traditional
and novel measures. Epidemiology. 2010;21(1):128-138. doi:
10.1097/EDE.0b013e3181c30fb2

12. Clark TG, Bradburn MJ, Love SB, Altman DG. Survival Analysis Part
I: Basic concepts and first analyses. Br J Cancer. 2003;89(2):232-238.
doi:10.1038/sj.bjc.6601118

13. Cox DR. Regression Models and Life-Tables. J ofthe R Stat Soc.
1972;34(2):187-220. doi:10.1016/0006-8993(85)91540-9

14. Van Calster B, Nieboer D, Vergouwe Y, De Cock B, Pencina MJ, Steyer-
berg EW. A calibration hierarchy for risk models was defined: From
utopia to empirical data. J Clin Epidemiol. 2016;74:167-176. doi:
10.1016/j.jclinepi.2015.12.005

15. Van Calster B, McLernon DJ, Van Smeden M, et al. Calibration: The
Achilles heel of predictive analytics. BMC Med. 2019;17(1):1-7. doi:
10.1186/s12916-019-1466-7

16. Pugh R, Murray-Lyon I, Dawson JL, Pietroni MC, Williams R. Transec-

17

tion of the oesophagus for bleeding oesophageal varices. Br J Surg.
1973;60(8):646-649.

17. Durand F, Valla D. Assessment of the prognosis of cirrhosis: Child-
Pugh versus MELD. J Hepatol. 2005;42(SUPPL. 1):100-107. doi:10.
1016/j.jhep.2004.11.015

18. Malinchoc M, Kamath PS, Gordon FD, Peine CJ, Rank J, Ter Borg PCJ.
A model to predict poor survival in patients undergoing transjugular
intrahepatic portosystemic shunts. Hepatology. 2000;31(4):864-871.
doi:10.1053/he.2000.5852

19. Kamath PS, Wiesner RH, Malinchoc M, et al. A model to predict
survival in patients with end-stage liver disease. Hepatology.
2001;33(2):464-470. doi:10.1053/jhep.2001.22172

20. Wiesner R, Edwards E, Freeman R, et al. Model for end-stage liver
disease (MELD) and allocation of donor livers. Gastroenterology.
2003;124(1):91-96. doi:10.1053/gast.2003.50016

21. Kim WR, Biggins SW, Kremers WK, et al. Hyponatremia and Mortality
among Patients on the Liver-Transplant Waiting List. N Engl J Med.
2008;359(10):1018-1026. doi:10.1007/s11250-017-1262-3

22. Ginés P, Berl T, Bernardi M, et al. Hyponatremia in cirrhosis: From
pathogenesis to treatment. Hepatology. 1998;28(3):851-864. doi:10.
1002/hep.510280337

23. Angeli P, Wong F, Watson H, et al. Hyponatremia in cirrhosis: Results of
a patient population survey. Hepatology. 2006;44(6):1535-1542. doi:
10.1002/hep.21412

24. Biggins SW, Rodriguez HJ, Bacchetti P, Bass NM, Roberts JP, Terrault
NA. Serum sodium predicts mortality in patients listed for liver trans-
plantation. Hepatology. 2005;41(1):32-39. doi:10.1002/hep.20517

25. Biggins SW, Kim WR, Terrault NA, et al. Evidence-Based Incorpora-
tion of Serum Sodium Concentration Into MELD. Gastroenterology.
2006;130(6):1652-1660. doi:10.1053/j.gastro.2006.02.010

26. Ruf AE, Kremers WK, Chavez LL, Descalzi VI, Podesta LG, Villamil FG.
Addition of serum sodium into the MELD score predicts waiting list
mortality better than MELD alone. Liver Transplant. 2005;11(3):336-
343. doi:10.1002/lt.20329

27. Nagai S, Chau LC, Schilke RE, et al. Effects of Allocating Liv-
ers for Transplantation Based on Model for End-Stage Liver
Disease-Sodium Scores on Patient Outcomes. Gastroenterology.
2018;155(October):1451-1482. doi:10.1053/j.gastro.2018.07.025

28. Godfrey EL, Malik TH, Lai JC, et al. The decreasing predictive power of
MELD in an era of changing etiology of liver disease. Am J Transplant.
2019;19(12):3299-3307. doi:10.1111/ajt.15559

29. Leise MD, Kim WR, Kremers WK, Larson JJ, Benson JT, Therneau TM.
A revised model for end-stage liver disease optimizes prediction of
mortality among patients awaiting liver transplantation. Gastroen-



18 CHAPTER 1. REFERENCES

terology. 2011;140(7):1952-1960. doi:10.1053/j.gastro.2011.02.017
30. Sharma P, Schaubel DE, Sima CS, Merion RM, Lok ASF. Re-weighting

the Model for End-Stage Liver Disease Score Components. Gastroen-
terology. 2008;135(5):1575-1581. doi:10.1053/j.gastro.2008.08.004

31. Rizopoulos R. Joint Models for Longitudinal and Time-to-Event Data:
With Applications in R. 1st ed. Chapman and Hall/CRC; 2012.

32. Arroyo V, Moreau R, Jalan R. Acute-on-Chronic Liver Failure. N Engl J
Med. 2020;(382):2137-2145. doi:10.1056/NEJMra1914900

33. Hernaez R, Liu Y, Kramer JR, Rana A, El-Serag HB, Kanwal F. Model for
end-stage liver disease-sodium underestimates 90-day mortality risk
in patients with acute-on-chronic liver failure. J Hepatol. Published
online 2020:1-9. doi:10.1016/j.jhep.2020.06.005

34. Goudsmit BFJ, Tushuizen ME, Putter H, Braat AE, van Hoek B. The role
of the model for end-stage liver disease-sodium score and joint mod-
els for 90-day mortality prediction in patients with acute-on-chronic
liver failure. J Hepatol. 2021;74(2):475-476. doi:10.1016/j.jhep.2020.
08.032

35. Cillo U, Vitale A, Polacco M, Fasolo E. Liver transplantation for hepa-
tocellular carcinoma through the lens of transplant benefit. Hepatol-
ogy. 2017;65(5):1741-1748. doi:10.1002/hep.28998

36. Merion RM, Schaubel DE, Dykstra DM, Freeman RB, Port FK, Wolfe
RA. The survival benefit of liver transplantation. Am J Transplant.
2005;5(2):307-313. doi:10.1111/j.1600-6143.2004.00703.x

37. Martin P, Dimartini A, Feng S, Brown R, Fallon M. Evaluation for liver
transplantation in adults: 2013 practice guideline by the American As-
sociation for the Study of Liver Diseases and the American Society of
Transplantation. Hepatology. 2014;59(3):1144-1165. doi:10.1002/hep.
26972

38. Petrowsky H, Rana A, Kaldas FM, et al. Liver transplantation in high-
est acuity recipients: Identifying factors to avoid futility. Ann Surg.
2014;259(6):1186-1194. doi:10.1097/SLA.0000000000000265

39. Linecker M, Krones T, Berg T, et al. Potentially inappropriate
liver transplantation in the era of the “sickest first” policy –
A search for the upper limits. J Hepatol. 2018;68(4):798-813.
doi:10.1016/j.jhep.2017.11.008

40. Vitale A, Volk ML, De Feo TM, et al. A method for establishing
allocation equity among patients with and without hepatocellular
carcinoma on a common liver transplant waiting list. J Hepatol.
2014;60(2):290-297. doi:10.1016/j.jhep.2013.10.010

41. Berry K, Ioannou GN. Comparison of Liver Transplant-Related
Survival Benefit in Patients with Versus Without Hepatocellular Car-
cinoma in the United States. Gastroenterology. 2015;149(3):669-680.
doi:10.1053/j.gastro.2015.05.025

42. Freeman RB, Gish RG, Harper A, et al. Model for End-Stage Liver



1

18 CHAPTER 1. REFERENCES

terology. 2011;140(7):1952-1960. doi:10.1053/j.gastro.2011.02.017
30. Sharma P, Schaubel DE, Sima CS, Merion RM, Lok ASF. Re-weighting

the Model for End-Stage Liver Disease Score Components. Gastroen-
terology. 2008;135(5):1575-1581. doi:10.1053/j.gastro.2008.08.004

31. Rizopoulos R. Joint Models for Longitudinal and Time-to-Event Data:
With Applications in R. 1st ed. Chapman and Hall/CRC; 2012.

32. Arroyo V, Moreau R, Jalan R. Acute-on-Chronic Liver Failure. N Engl J
Med. 2020;(382):2137-2145. doi:10.1056/NEJMra1914900

33. Hernaez R, Liu Y, Kramer JR, Rana A, El-Serag HB, Kanwal F. Model for
end-stage liver disease-sodium underestimates 90-day mortality risk
in patients with acute-on-chronic liver failure. J Hepatol. Published
online 2020:1-9. doi:10.1016/j.jhep.2020.06.005

34. Goudsmit BFJ, Tushuizen ME, Putter H, Braat AE, van Hoek B. The role
of the model for end-stage liver disease-sodium score and joint mod-
els for 90-day mortality prediction in patients with acute-on-chronic
liver failure. J Hepatol. 2021;74(2):475-476. doi:10.1016/j.jhep.2020.
08.032

35. Cillo U, Vitale A, Polacco M, Fasolo E. Liver transplantation for hepa-
tocellular carcinoma through the lens of transplant benefit. Hepatol-
ogy. 2017;65(5):1741-1748. doi:10.1002/hep.28998

36. Merion RM, Schaubel DE, Dykstra DM, Freeman RB, Port FK, Wolfe
RA. The survival benefit of liver transplantation. Am J Transplant.
2005;5(2):307-313. doi:10.1111/j.1600-6143.2004.00703.x

37. Martin P, Dimartini A, Feng S, Brown R, Fallon M. Evaluation for liver
transplantation in adults: 2013 practice guideline by the American As-
sociation for the Study of Liver Diseases and the American Society of
Transplantation. Hepatology. 2014;59(3):1144-1165. doi:10.1002/hep.
26972

38. Petrowsky H, Rana A, Kaldas FM, et al. Liver transplantation in high-
est acuity recipients: Identifying factors to avoid futility. Ann Surg.
2014;259(6):1186-1194. doi:10.1097/SLA.0000000000000265

39. Linecker M, Krones T, Berg T, et al. Potentially inappropriate
liver transplantation in the era of the “sickest first” policy –
A search for the upper limits. J Hepatol. 2018;68(4):798-813.
doi:10.1016/j.jhep.2017.11.008

40. Vitale A, Volk ML, De Feo TM, et al. A method for establishing
allocation equity among patients with and without hepatocellular
carcinoma on a common liver transplant waiting list. J Hepatol.
2014;60(2):290-297. doi:10.1016/j.jhep.2013.10.010

41. Berry K, Ioannou GN. Comparison of Liver Transplant-Related
Survival Benefit in Patients with Versus Without Hepatocellular Car-
cinoma in the United States. Gastroenterology. 2015;149(3):669-680.
doi:10.1053/j.gastro.2015.05.025

42. Freeman RB, Gish RG, Harper A, et al. Model for End-Stage Liver

19

Disease (MELD) Exception Guidelines: Results and Recommen-
dations From the MELD Exception Study Group and Conference
(MESSAGE) for the Approval of Patients Who Need Liver Transplanta-
tion With Diseases Not Considered by the Standar. Liver Transplant.
2007;13(5):767-768. doi:10.1002/lt

43. Massie AB, Caffo B, Gentry SE, et al. MELD exceptions and rates of
waiting list outcomes. Am J Transplant. 2011;11(11):2362-2371. doi:
10.1111/j.1600-6143.2011.03735.x

44. Washburn K, Edwards E, Harper A, Freeman RB. Hepatocellular Car-
cinoma Patients Are Advantaged in the Current Liver Transplant Allo-
cation System. Am J Transplant. 2010;10(7):1652-1657. doi:10.1111/j.
1600-6143.2010.03127.x

45. Northup PG, Intagliata NM, Shah NL, Pelletier SJ, Berg CL, Argo CK.
Excess mortality on the liver transplant waiting list: Unintended pol-
icy consequences and model for End-Stage Liver Disease (MELD) in-
flation. Hepatology. 2015;61(1):285-291. doi:10.1002/hep.27283



20



20

Part I: Forms of MELD

“All models are wrong, but some are useful.”

— George Box
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Chapter 2

Validation of the Model for

End-stage Liver Disease

sodium (MELD-Na) score in

the Eurotransplant region

Goudsmit BFJ, Putter H, Tushuizen ME, de Boer J, Vogelaar S, Alwayn

IPJ, et al. American Journal of Transplantation. 2020; doi:10.1111/ajt.

16142.
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Abstract

Background & Aims: The MELD score is used in the Eurotransplant (ET)

region to allocate liver grafts. Hyponatremia in cirrhotic patients is an im-

portant predictor of death but is not incorporated in MELD. This study in-

vestigated the performance of the MELD-Na score for the ET region.

Methods:All adult patients with chronic liver disease on the ET liver trans-

plantation waiting list (WL) allocated through lab MELD scores were in-

cluded. The MELD-corrected effect of serum sodium (Na) concentration at

listing on the 90-day WL mortality was calculated using Cox regression. The

MELD-Na performance was assessed with c-indices, calibration per decile

and Brier scores. The reclassification from MELD to MELD-Na score was

calculated to estimate the impact of MELD-Na-based allocation in the ET

region.

Results: For the 5223 included patients, the risk of 90-day WL death was 2.9

times higher for hyponatremic patients. The MELD-Na had a significantly

higher c-index of 0.847 (SE 0.007) and more accurate 90-day mortality pre-

diction compared to MELD (Brier score of 0.059 versus 0.061). It was esti-

mated that using MELD-Na would reduce WL mortality by 4.9%.

Conclusion: The MELD-Na score yielded improved prediction of 90-day WL

mortality in the ET region and using MELD-Na for liver allocation will very

likely reduce WL mortality.
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listing on the 90-day WL mortality was calculated using Cox regression. The

MELD-Na performance was assessed with c-indices, calibration per decile

and Brier scores. The reclassification from MELD to MELD-Na score was

calculated to estimate the impact of MELD-Na-based allocation in the ET

region.

Results: For the 5223 included patients, the risk of 90-day WL death was 2.9

times higher for hyponatremic patients. The MELD-Na had a significantly

higher c-index of 0.847 (SE 0.007) and more accurate 90-day mortality pre-

diction compared to MELD (Brier score of 0.059 versus 0.061). It was esti-

mated that using MELD-Na would reduce WL mortality by 4.9%.

Conclusion: The MELD-Na score yielded improved prediction of 90-day WL

mortality in the ET region and using MELD-Na for liver allocation will very

likely reduce WL mortality.
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Introduction

Liver transplantation (LT) is the treatment of choice for end-stage

liver disease. However, the number of patients in need of LT ex-

ceeds the number of available donor grafts.1 Over the past years

the prevalence and disease load of end-stage liver disease has

been increasing2-4 and is estimated to triple in the next 10 years.5

Therefore, the limited supply of donated livers should be carefully

distributed.

For optimal matching and use of donor livers in the Eurotransplant

(ET) region, patients are placed on a waiting list (WL) for LT. Since

2006, the Model for End-stage Liver Disease (MELD) score has been

used to rank and prioritize LT candidates in the Eurotransplant

region.6 The MELD score estimates disease severity in LT candidates

based on serum creatinine, bilirubin, and the International Nor-

malized Ratio (INR) of the prothrombin time.7 Additionally, a high

urgency (HU), i.e. United Network for Organ Sharing (UNOS) status

1, and exception point system are used for those patients in which

MELD does not adequately reflect disease severity.6

To improve the survival prediction and allocation by the MELD score,

the addition of the serum sodium (Na) concentration was proposed,

as hyponatremia is an independent prognostic factor in patients with

cirrhosis.8-12 In cirrhosis, portal hypertension leads to systemic va-

sodilatation, secondary neurohormonal compensation and less renal

excretion of solute-free water.13,14 The severity of portal hypertension

is inversely related to the serum Na concentration.15,16 Clinically, Na

levels influence the outcomes of LT candidates before and possibly

even after LT.17-20 Interestingly, in the UNOS regions, MELD-Na has

been used for liver graft allocation since 2016.21

After the introduction of MELD-Na in the United States (US), re-

cent evaluation showed a decline in WL mortality.22 However, the

populations of the US and Eurotransplant differ.1,23 Recently, it was
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shown that differences in population characteristics influenced the

predictive power of MELD and MELD-Na.24 Therefore, MELD-Na-

based allocation needs to be investigated in Eurotransplant before

implementation. We hypothesized that the serum sodium levels at

listing were similar between the Eurotransplant and US regions. If

so, MELD-Na-based allocation could also lead to a reduction in WL

mortality in the Eurotransplant region.

Therefore, our aim was to validate the UNOS MELD-Na score for the

Eurotransplant region. For this, the prediction of 90-day WL mortality

by the MELD-Na score was investigated in the Eurotransplant popu-

lation. In addition, the potential effect of MELD-Na-based liver allo-

cation on the Eurotransplant waiting list mortality was estimated.

Methods

Study design and population

The TRIPOD statement was used to report this study.25 Data was

retrospectively gathered from the Eurotransplant Network Informa-

tion System (ENIS) and the Eurotransplant Liver Follow-up Registry

(ELFR). All patients with chronic liver disease, at least 18 years

old, and registered on the Eurotransplant waiting list for a first LT

between January 1st 2007 and December 31st 2018 were included.

Patients not allocated based on lab MELD, with HU status (i.e. UNOS

status 1) or (non-)standard exception ((N)SE) points, listings for

multiple organs (other than combined liver-kidney), grafts from

outside Eurotransplant, or missing data at listing were excluded. The

HU status is granted for acute liver failure. Exception points are given

when lab MELD does not reflect disease severity or risk of dying on

the waiting list (e.g. with HCC, hepatopulmonary syndrome, etc.).

A detailed description of the Eurotransplant adult liver allocation

is available elsewhere.6 Patients were followed from first active
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listing to death, first delisting, or until 90 days. Reasons for delisting

and censoring were transplantation, HU-status, (N)SE-points, and

removal due to clinical condition (improvement or decline without

90-day death) or other reasons. The outcome for the prediction

models was death within 90 days of listing. Removal within 90 days,

due to being too sick for transplantation and subsequent death

within 90 days, was also counted as 90-day mortality. Patients with a

serum sodium above 150 mmol/L were excluded from the analysis,

as the effects of hyponatremia were studied. The MELD score and

serum Na level (mmol/L) at listing were used as predictors for the

multivariate models. The sample size was set by the retrospective

design of the study.

Statistical analysis

For the complete-case analysis, continuous variables were reported

as mean (SD) or median (IQR). Categorical variables were reported

as counts (percentage). To investigate possible selection bias,

complete cases were compared to eligible patient with missing Na

at listing. The MELD score was calculated according to Wiesner

et al.26 Cumulative incidence plots, accounting for the competing

risks of transplantation, removal and death, were plotted for the

<=130, 131-134 and >=135 mmol/L sodium levels at listing. For these

groups, 90-day Kaplan-Meier survival curves were also plotted. A

multivariate Cox proportional hazards (PH) regression analyzed the

relation between the MELD score, Na, and 90-day mortality. The PH

assumptions were checked through Schoenfeld residuals methods. A

generalized additive model (GAM) with smoothing splines and fitted

Cox models were used to assess the linearity of the MELD-corrected

effect of Na on 90-day mortality. The upper and lower Na limits

were set between 125 and 140 mmol/L, in accordance to UNOS

MELD-Na.9 Within this range, PH models adjusted for MELD and
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Na assessed the interaction between the predictors and calculated

the hazard ratio (HR) for 90-day mortality per unit increase in MELD

or Na. Then, the MELD-Na score was calculated using the standard

formula.9 Concordance statistics (c-index) were used as a measure-

ment of discrimination between death and survival. An analysis of

c-index development over the years 2007-2018 was done to assess

a possible decline in c-index value for MELD and MELD-Na.24 For

the MELD-Na, a calibration plot was made of the observed and

expected risk estimate per decile, with detailed risks attached in a

supplementary table. As a measure of prediction error reduction,

Brier scores of MELD and MELD-Na were calculated. A heatmap was

constructed of the gained MELD-Na points at listing and of the differ-

ences in predicted 90-day death risk between MELD and MELD-Na

scores. Interactive versions of these heatmaps were published as

online supplement using the R plotly package.27 The reclassification

rate from MELD to MELD-Na score at listing was calculated. To

make comparison with UNOS data possible,9 the reclassification per

MELD and MELD-Na stratum was also calculated (supplement 3).

All statistical analyses were performed using SPSS v25.0 (IBM Corp,

Armonk, NY) and R v3.6.1(R Foundation for Statistical Computing,

Vienna, Austria).

Results

Study population

For this study, 14.396 patients were eligible. After excluding patients

with missing serum Na at listing, 5223 patients were included. See

Figure 2.1. The baseline characteristics of included patients at first

active listing are shown in Table 2.1. The median lab MELD score was

16 (IQR 11-21) and the median sodium concentration was 137 (IQR

134-140) mmol/L. Hyponatremia of <135, <130, and <125 mmol/L
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Table 2.1: Demographics of the patients at first active listing

Characteristics (n=5223)

Age at listing 56 (49-62)
Sex (Male) 3565 (68.3)
Height (cm) 174 (167-180)
Weight (kg) 78 (67-90)

ABO
A 2201 (42.1)
O 2081 (39.8)
B 702 (13.4)
AB 239 (4.6)

Lab-MELD at listing 16 (11-21)

MELD parameters
Bilirubin 2.75 (1.31-6.40)
Creatinine 1.0 (1.00-1.27)
INR 1.39 (1.20-1.70)

Serum sodium at listing 137 (134-140)

Grouped sodium
<125 136 (2.6)
<130 460 (8.8)
<135 1489 (28.5)
>=135 3734 (71.5)

MELD-Na at listing 18 (13-24)

Disease
Alcoholic cirrhosis 1873 (35.9)
Non-cholestatic cirrhosis 1510 (28.9)
Cholestatic cirrhosis 773 (14.8)
HCC and cirrhosis 709 (13.6)
Other 358 (6.8)

Waiting list outcome (90 days)
Still on the waiting list 2306 (44.2)
Transplanted 1114 (21.3)
Removed clinical condition 812 (15.6)
Removed other 380 (7.3)
Deceased after removal, within 90d 448 (8.6)
Deceased while listed 147 (2.8)

Note:
Median (25th-75th percentile)
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Exclusion

Waiting list population 

2007-2018

n=32.569

non-MELD-country* (n = 5253)
non-MELD-based allocation (n = 7191) 

Age < 18 (n = 2758)
Not first transplant (n = 1488)
Acute liver failure (n = 1483)

Eligible patients n=  14.396

Missing sodium at listing 
n = 9173

Study population n= 5223 

Missing

* Austria, Croatia, Hungary, Slovenia

Figure 2.1: The flowchart of in- and exclusion for this study
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Figure 2.2: Violin plots with embedded box plots of the median serum

sodium (Na) levels at listing, for the most frequent causes of liver disease.

The dotted line represents the median Na of 137 mmol/L for the whole co-

hort. For the significant differences between Na levels, P values for pairwise

comparisons are shown

was found in respectively 28.5%, 8.8%, and 2.6% of the patients. Pa-

tients with alcohol-induced cirrhosis (ALD) had the lowest median

Na levels, see Figure 2.2.

For the assessment of selection bias, an analysis of all eligible pa-

tients (Na present versus absent) was added (supplement 1). Com-

pared to the included patients, eligible patients with missing serum

Na were more often female (31.9% vs 35.5%) and had higher rates of

alcohol- or virus-induced liver cirrhosis (respectively 35.9% vs 41.0%

and 12.4% vs 15.3%, p<0.001). MELD scores were comparable, but

excluded patients had significantly higher creatinine levels at listing

(1.36 vs 1.42 mg/dL p<0.001).
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Figure 2.3: Cumulative incidence plots for 90-day WL outcomes, with com-

peting risks of death, transplantation and removal due to clinical condition

or censoring for NSE or HU status during waiting. Hyponatriemic patients

show increased rates of mortality (27%) and transplantation (33%) com-

pared to normonatriemic patients (respectively 8% and 18%).

Competing risk analysis showed that 90-day mortality and trans-

plantation rates increased as sodium levels decreased, see Figure
2.3. Na<130, 130-134 and >=135 patients had 90-day death risks of 
respectively 27%, 18% and 8%. The 90-day transplant rates were 
respectively 33%, 27% and 18.0%. The grouped Na levels showed 
diverging survival curves, i.e. at lower Na levels the mortality risk 
increased at a higher rate (supplement 2). The 90-day death HRs for 
Na <130 and Na 130-134 compared to Na >=135 patients were 4.72 
(95%CI 3.81-5.83), and 2.72 (95%CI 2.26-3.28), respectively.
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peting risks of death, transplantation and removal due to clinical condition

or censoring for NSE or HU status during waiting. Hyponatriemic patients

show increased rates of mortality (27%) and transplantation (33%) com-

pared to normonatriemic patients (respectively 8% and 18%).

Competing risk analysis showed that 90-day mortality and trans-

plantation rates increased as sodium levels decreased, see Figure
2.3. Na<130, 130-134 and >=135 patients had 90-day death risks of 
respectively 27%, 18% and 8%. The 90-day transplant rates were 
respectively 33%, 27% and 18.0%. The grouped Na levels showed 
diverging survival curves, i.e. at lower Na levels the mortality risk 
increased at a higher rate (supplement 2). The 90-day death HRs for 
Na <130 and Na 130-134 compared to Na >=135 patients were 4.72 
(95%CI 3.81-5.83), and 2.72 (95%CI 2.26-3.28), respectively.
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Figure 2.4: Generalized additive Cox model with spline showing the effect of

serum sodium at listing on 90-day mortality, corrected for the MELD score.

MELD-Na performance

Per MELD point increase, the 90-day mortality risk increased by 17%

(HR 1.17; 95%CI 1.16 – 1.18; p<0.001), c-index 0.832 (SE 0.008). The

GAM with splines of the MELD-corrected effect of Na level on 90-day

mortality showed approximate linearity in the 125-140 mmol/L

range, see Figure 2.4. Within this interval, the risk of 90-day death
increased by threefold (HR 2.9; 95%CI 2.30-3.53; p<0.001). In the 
MELD-Na model, each gained MELD and lowered Na point increased 
90-day mortality risk by respectively 16% (HR 1.16; 95%CI 1.15 – 1.17; 
p<0.001), and 8% (HR 0.92; 95%CI 0.90 – 0.94; p<0.001), c-index 0.847 
(SE 0.007).
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Figure 2.5: The concordance statistics (c-indices) for 90-day mortality of

MELD and MELD-Na between 2007 and 2018.

For each year of the study period, the c-index of MELD and MELD-Na 
was plotted, see Figure 2.5. Between 2007-2018, the c-index of MELD 
and MELD-Na decreased significantly, r espectively f rom 0 .866 to 
0.810 and 0.946 to 0.828 (Table 2.2 ). In this period, the MELD, age and 
distribution of liver disease changed significantly ( supplement 4). 
Alcohol-induced liver disease, HCC, primary biliary cirrhosis (PBC) 
and non-alcoholic steatohepatitis (NASH) cirrhosis increased and 
primary sclerosing cholangitis (PSC), hepatitis-C (HCV), hepatitis-B 
(HBV) and other causes decreased.

The MELD-Na calibration plot showed a well calibrated model for

90% of the predicted risks in the population, with an overestimation

for the highest 10% (504 patients) predicted risks (Figure 2.6 and sup-

plement 6). The prediction error of 90-day death was lower for MELD-

Na than for MELD, with Brier scores of respectively 0.059 (34% predic-

tion error reduction), and 0.061 (32% reduction).
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Table 2.2: The 90-day mortality concordance statistics of MELD and MELD-
Na

Year MELD SE MELD-Na SE

2007 0.866 0.087 0.946 0.036
2008 0.835 0.079 0.900 0.046
2009 0.922 0.026 0.933 0.024
2010 0.855 0.032 0.863 0.033
2011 0.776 0.049 0.804 0.041
2012 0.828 0.023 0.848 0.019
2013 0.843 0.023 0.846 0.022
2014 0.829 0.024 0.843 0.021
2015 0.821 0.021 0.824 0.021
2016 0.853 0.016 0.866 0.015
2017 0.814 0.026 0.843 0.019
2018 0.810 0.034 0.828 0.031
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Figure 2.6: Calibration plot of the MELD-Na model showing the predicted

and observed risks of death per decile (10%) of the patient population. The

diagonal line represents perfect calibration.
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Impact on the waiting list

On the WL, implementation of the MELD-Na score would lead to

competition for transplantation between hyponatremic and high-

MELD patients. The constructed heatmap of risk differences showed

that compared to MELD, approximately 20% of the patients gained

significant predicted 90-day mortality risks according to MELD-Na

(red area). The largest increase (+22.5%) was found for MELD 23 Na

125 patients. Approximately 19% of the patients had significantly

lower predicted risks with MELD-Na compared to MELD (blue area),

of which the largest decrease (-8.72%) was estimated for MELD 27 Na

140 patients, see Figure 2.7.

Thus, the patients in the red area (19%) are prioritized most by

MELD-Na. On the other hand, the lowest 20% of predicted risks (blue

area) would have a reduced chance of transplantation compared to

MELD allocation. The interactive heatmaps allow specific assess-

ment of the gained risks and MELD-Na points for individual patients

(online supplement https://plot.ly/~Liver_Research/3/ and https:

//plot.ly/~Liver_Research/5/). In total, 3384 (64.9%) patients gained

an average of 1.94 MELD-Na points at listing. The highest reclassifica-

tion rates, i.e. lowest percentage on the diagonal, were seen between

MELD 12 to 30 (figure 8 and https://plot.ly/~Liver_Research/7/ and

https://plot.ly/~Liver_Research/18/). On average, MELD 23 patients

gained the most, i.e. an average of 2.73, MELD-Na points. From 19

points and above, the frequency of MELD-Na scores at listing was
significantly higher than MELD scores, with the exception of MELD 
40 (online supplement https://plot.ly/~Liver_Research/11/).
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To make comparison to the UNOS data possible, we calculated the

stratified MELD reclassification rates and estimated WL mortality re-

duction (supplement 3). Stratification of scores in accordance to Kim

et al.9 showed a reclassification rate of 26.3% (156 / 593) in the de-

ceased patients. This led to an estimated 4.9% reduction in 90-day

waiting list mortality. The analysis of disease-specific prioritization

in the deceased patients showed that patients with HCC and hep-

atitis B had the highest chance of reclassification to a higher MELD-

Na stratum, 36% and 30% respectively (supplement 3). However, pa-

tients with (post)alcoholic cirrhosis had the highest increase in mean

MELD-Na compared to MELD. This illustrated that the strata chosen

by Kim et al. could enable stage migration bias (supplement 3 and 5).

Therefore, we believe that the total number of reclassified patients

and the distribution of the gained MELD-Na points are more use-

ful information when estimating the possible impact of MELD-Na-

based allocation (Figure 2.8 and https://plot.ly/~Liver_Research/7/

and https://plot.ly/~Liver_Research/18/).

Discussion

This cohort analysis validated the UNOS MELD-Na score for the Eu-

rotransplant region and provided the first examination of the extent

of hyponatremia among LT candidates in this region. It was shown

that the mortality hazards for mild and severely hyponatremic pa-

tients continued to increase during waiting for LT. The precise rela-

tion between the sodium concentration at listing and the 90-day WL

mortality was calculated. Our analysis showed that MELD-Na had

better prognostic abilities than MELD for the prediction of 90-day WL

mortality, even though both MELD and MELD-Na declined the past
years. Therefore, the use of the MELD-Na score could improve the

allocation of donor livers in the Eurotransplant region.
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MELD-Na prediction performance

Accounting for serum sodium is relevant for the Eurotransplant pop-

ulation, as the prevalence of hyponatremia was similar,9,22 or even

higher compared to another large study.28 The severity of hypona-

tremia was associated with a continuous increase in the risk of death

on the WL, as shown by the cumulative incidence plots and diverging

survival curves (Figure 2.3 and supplement 2). Compared to MELD,

MELD-Na showed better discrimination between death and survival

at 90-days, with a c-index of respectively 0.832 and 0.847. The c-index

of MELD-Na was higher than found by some29 and comparable to

that found by other investigators.9,30 Although the improvement in

c-index by using MELD-Na was modest, it represented an important

improvement in mortality prediction by considering hyponatremia as

an independent risk factor of 90-day mortality. As the sickest candi-

dates on the waiting list are prioritized, the increased discrimination

would improve allocation.

Although MELD-Na performed better than MELD, both models 
showed significantly d eclining c -indices b etween 2 007-2018 (Figure 
2.5, Table 2.2 ). It is possible that the exceptionally high MELD-Na 
c-indices in the years 2007-2009 were due to population sampling, 
which would also make the decrease in c-index over the years seem 
excessive. In this period, average age and MELD at listing increased 
significantly. M o st i m portantly, t h e d i stribution o f  c a uses o f  liver 
disease significantly c hanged ( supplement 4 ) . C ompared t o t he US, 
the Eurotransplant population comprised more patients with ALD 
and HCC and less with HCV and NASH.24 Godfrey et al. first showed 
declining c-indices over the years for MELD and MELD-Na, which 
they attributed to the decrease in HCV and increase of NASH and
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ALD. Despite the different distribution of causes of liver disease

compared to the US, a similar change over time was seen. This could

explain the initially higher but similarly declining c-indices of MELD

and MELD-Na. Policy makers should consider this decline when

evaluating a possible shift from MELD to MELD-Na. Still, MELD-Na

would be a significant improvement because of the increasing

prevalence of hyponatremia, its effect on 90-day mortality and the

significantly higher c-indices of MELD-Na.

The MELD-Na showed good calibration, with overestimation of risks

only in the top 10% of the patients. Both MELD and MELD-Na over-

estimated the highest predicted risks (supplement 6), as also shown

by others.9 However, MELD-Na showed a higher reduction in the pre-

diction error of 90-day death compared to MELD, as calculated with

Brier scores. Thus, MELD-Na was a more accurate predictor of 90-day

WL death than MELD alone.

Effect of MELD-Na

Since we validated the UNOS MELD-Na score, we used the Na

125-140 mmol/L interval to fit our model. In this interval we showed

a 1.5 higher increase in 90-day mortality risk per Na unit as compared

to the UNOS regions.9 Therefore, a greater reduction in WL mortality

could be achieved through MELD-Na-based allocation. In the US,

introduction of MELD-Na-based allocation reduced (HR 0.738)

90-day waiting list mortality for almost all MELD scores.22 However,

the number of transplants was higher in the studied MELD-Na

period, which also could have reduced WL mortality. Still, Nagai

et al. showed that the intended recognition of hyponatremia was

achieved, as the WL mortality hazards of mild and severe hypona-

tremia decreased with respectively 27.9% and 48.3%.22 In the US, it

was shown that in MELD<12 patients hyponatremia was not associ-

ated with LT survival benefit.20 Thus, UNOS MELD-Na is only used
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to allocate liver grafts in MELD>11 patients. In our population, very

few (2.8%) MELD<12 patients had severe hyponatremia. Although

these patients would gain transplant chances through MELD-Na

allocation, others would be prioritized more often. Our data also

showed that the frequency of MELD-Na >18 scores increased sig-

nificantly (https://plot.ly/~Liver_Research/11/). This would reduce

transplant chances for patients listed with exception points, e.g. HCC

patients, as these patients initially receive 20 points at listing in

Eurotransplant.6 Although the reduced advantage of (N)SE points is

warranted according to some,31,32 (N)SE point policy did not change

after MELD-Na implementation in the UNOS regions (personal

SRTR communication). Still, many patients are listed with exception

points, both in Eurotransplant and in the US. Therefore, the distri-

bution of gained MELD-Na points, survival benefit and influence

on exception points of Eurotransplant LT candidates should be

considered before implementation of MELD-Na-based allocation.

A simulation of MELD-Na-based allocation would give the most

accurate estimates of the effect on WL mortality.

Limitations

This study has several limitations. First, only one measurement,

i.e. at first listing, of the MELD and sodium was used to study the

effect on 90-day mortality. Since the disease state of the patient is a

dynamic process, a time-dependent analysis with more datapoints

might have been a better representation of the true risk posed by

hyponatremia. Indeed, we showed that the effect of hyponatremia

increased with time (Figure 2.3 and supplement 3). Also, serum

sodium levels in the MELD-Na model were bound between 125-140

mmol/L. The fitted Cox model between these borders had a excellent

c-index, but the relationship between serum sodium level and mor-

tality was slightly different for the Eurotransplant region compared to
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the UNOS regions.9 However, the goal was to validate the MELD-Na

as used in the UNOS regions for the Eurotransplant region, and this

goal was achieved. Still, refitting of the MELD parameters for the

Eurotransplant population could be valuable, especially regarding

the decline in c-index between 2007-2018. Second, sodium data at

first listing was missing for many eligible patients (supplement 1).

This could have caused selection bias, possibly making the results

less generalizable. However, analysis of the differences between the

patients with and without registered sodium at listing showed that

there was no reason to suspect selection bias. In the missing Na

group, a significantly higher prevalence of alcoholic cirrhosis and

virus-induced hepatitis was seen (supplement 4). Also, patients

in the group with missing Na had a significantly higher serum

creatinine. Thus, the prevalence of hyponatremia in those eligible

patients could very well be even higher than found in the current

cohort. Moreover, even though some data was missing, the number

of patients included in this study sufficed to evaluate and estimate

the improvements of MELD-Na with great statistical precision. Thus,

the results of this study should be an incentive for the mandatory

collection of sodium values across the Eurotransplant region.

Conclusion

In conclusion, this study showed that the MELD-Na gave better 90-

day mortality prediction than MELD for LT candidates on the Euro-

transplant waiting list. As stated before, “the MELD-based allocation

system will and also must evolve.”26 The recognition of the indepen-

dent prognostic impact of hyponatremia should lead to a more effec-

tive allocation. Thus, in the Eurotransplant region the MELD should

be replaced by the MELD-Na as the basis allocation of donor livers.
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Abstract

Background & Aims: The United Network for Organ Sharing’s Model for

End- Stage Liver Disease (UNOS-MELD) score is the basis of liver allocation

in the Eurotransplant region. It was constructed 20 years ago in a small US

cohort and has remained unchanged ever since. The best boundaries and

coefficients were never calculated for any region outside the United States.

Therefore, this study refits the MELD (reMELD) for the Eurotransplant re-

gion.

Methods: All adult patients listed for a first LT between 01.01.2007-

31.12.2018 were included. Data was randomly split in a training (70%)

and validation (30%) set. In the training data, generalized additive models

(GAMs) with splines were plotted for each MELD parameter. The lower

and upper bound combinations with the maximum log-likelihood were

chosen for the final models. The refit models were tested in the validation

data with c-indices and Brier scores. Through likelihood ratio tests the refit

models were compared to UNOS-MELD. The correlation between scores

and survival of prioritized patients was calculated.

Results: A total of 6,684 patients were included. Based on training data,

refit parameters were capped at creatinine 0.7-2.5 (mg/dL), bilirubin 0.3-27

(mg/dL), INR 0.1-2.6 and sodium 120-139 (mmol/L). ReMELD and reMELD-

Na showed c-indices of 0.866 and 0.869 respectively. ReMELD-Na priori-

tized patients with 1.6 times higher 90-day mortality probabilities as com-

pared to UNOS-MELD.

Conclusion: Refitting MELD resulted in new lower and upper bounds for

each parameter. The predictive power of reMELD-Na was significantly

higher than UNOS-MELD. Refit MELD prioritized patients with higher

90-day mortality rates. Thus, reMELD(-Na) should replace UNOS-MELD

for liver graft allocation in the ET region.
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Introduction

The number of patients in need of a liver transplantation (LT) in the

Eurotransplant region exceeds the available donor grafts.1 Therefore,

patients with end-stage liver disease are placed on a waiting list (WL)

which prioritizes the patients with the most severe liver disease,

i.e. most in need of transplantation. The Model of End-stage Liver

Disease (MELD) estimates disease severity in LT candidates, based on

three parameters: serum creatinine, bilirubin and the international

normalized ratio (INR) for prothrombin time.2 Since 2016, the UNOS

regions also added serum sodium through the MELD-Na score,3 but

the Eurotransplant region remains MELD-based. The MELD was

weighed, i.e. the relative importance of each parameter, based on a

cohort from 1991-1995.4 For clinical use, the lower boundaries for

the parameters were set to one, to prevent negative MELD scores

after natural logarithm (ln) transformation. Creatinine levels were

capped at four mg/dL for patients not receiving dialysis. According

to some of the proposers of MELD, these boundaries were “based

entirely on the clinical intuition of the policy-making body when the

MELD score was implemented.”5 Others also noted that “arbitrary

changes not based on mortality risk evidence were incorporated into

the form of MELD” and that these lower and upper limits were “set

without any particular objective rationale.”6

On another continent and almost 20 years later, the original UNOS-

MELD equation is still being used for the allocation of liver grafts

in the Eurotransplant region and elsewhere. Due to changing pop-

ulation characteristics, the predictive power of UNOS MELD has

declined significantly in the last years.7 However, an update of the

MELD coefficients in UNOS data showed that performance could

still be further improved.5 As the Eurotransplant population differs

from the original MELD cohort,4,8 improvement of the Eurotrans-

plant liver allocation is very well possible by refitting MELD to the
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Eurotransplant population. Refitting is the reweighing of predictors

and establishment of lower and upper bounds of each parameter,

based on the best fit to the current data. It was hypothesized that

the UNOS-MELD is not optimally fit for the Eurotransplant patients,

as it was fit on the UNOS population. This could diminish MELDs

predictive power and discrimination ability between survival and

death. It is the optimization of this discrimination that gives the most

effective sickest-first allocation.

Therefore, this study constructs a refit MELD score for the Eurotrans-

plant region, by reweighing the MELD coefficients and re-evaluating

the boundaries for the three parameters based on recent Eurotrans-

plant data. The refitting methods presented here could be used to im-

prove prediction models for any region. Also, the added value of the

serum sodium (Na) levels at listing in an Eurotransplant refit MELD-

Na score will be evaluated. The performance of the constructed refit

Eurotransplant models will be compared to the UNOS-MELD.

Methods

Patient data

The TRIPOD statement was used to report the development of the

multivariate prediction models in this study.9 Data was requested

from the Eurotransplant Database. All adult patients actively listed

for a first liver transplantation between January 1st, 2007 - December

31st, 2018 were included. The starting point of inclusion was chosen

after the start of MELD-based allocation in 2006. Patients were

excluded if they received (non)standard exception points (NSE), a

high urgency (HU) status (i.e. UNOS status 1), living donor grafts or

multi-organ transplantations (other than kidney).10 Patient data was

collected from the date of active listing until delisting or the end of

90-day follow-up. Reasons for delisting were death, transplantation,
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removal because of clinical condition or other reasons. The primary

outcome was death within 90 days of first active listing. The pre-

dictors used for the multivariate models were both the bound and

continuous levels of serum creatinine, bilirubin, INR and sodium at

first active listing. For the survival analysis, patients were censored at

transplantation, removal from the list, end of follow-up at 31.12.2018

or after receiving NSE points or a HU status during active waiting.

The sample size for this study was set by the retrospective design.

Missing data (in <0.01%) was not imputed.

Statistical methods

The data was randomly split into a training (70%) and validation

(30%) set. For each recipient, the UNOS-MELD and MELD-Na score

at first active listing were calculated.11,12 Then, the ET refit MELD

(reMELD) score was constructed in the training data. For each MELD

parameter, a multivariate generalized additive Cox model (GAM)

with smoothing splines was plotted. The GAM showed the (non-

)linear effect of the specific parameter on 90-day mortality, corrected

for the other uncapped MELD parameters. By visual inspection it

was assessed whether upper and lower boundaries for the parameter

were necessary, i.e. if there was any violation of the linearity relation

between studied parameter and the 90-day mortality and at which

point. Then, the best boundaries for the parameter were sought

within the visually apparent range by calculating the maximum log-

likelihood and the concordance statistic (c-index) for each possible

combination of upper and lower bounds. The combination with

the maximum log-likelihood was chosen as the lower and upper

bound for that MELD parameter. The impact of deviations from

the maximum log-likelihood and c-index were visualized through

heatmaps to facilitate discussion of weighing the maximum calcu-

lated values against clinically relevant cut-offs. After establishing
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the best boundaries for the parameter, a multivariate Cox model

with the capped parameter was compared to a Cox model with

the unbounded values through likelihood ratio tests. To visualize

the fit of the studied reMELD parameter, the obtained bounds and

coefficient were plotted in the training data. The abovementioned

steps were repeated for all three MELD parameters.

The three obtained capped parameters were then combined into a

multivariate Cox model, thus forming the Eurotransplant refit MELD.

To ensure equal distributions of the traditional UNOS-MELD and

ET refit MELD scores in our data, the 25th and 75th quantiles were

matched. Also, reMELD scores below 6 and above 40 were set to

that value. Then, the addition of serum sodium to the reMELD was

investigated in the training set as described above for the MELD

parameters. In short: based on the GAM inspection, the optimal

Na bounds were sought, i.e. calculating log-likelihood values and

c-indices, and compared with likelihood ratio tests to uncapped

Na levels. Interactions between Na and each refit MELD param-

eter were assessed and deemed relevant if p<0.01. Thus, the final

reMELD-Na model comprised of reMELD parameters, newly bound

sodium and relevant interactions between the terms. Again, the

25th and 75th quantiles were matched and the final scores of the

refit MELD-Na were set between 6 to 40. Finally, the refit ET models

were compared with likelihood ratio tests to UNOS-MELD. For each

model, the c-index was calculated to calculate discriminative ability

in the validation data. Brier scores were calculated as a measure

of error reduction in prediction estimates.13 The fit of the models

to the validation data was visualized by plotting the coefficients

for each MELD parameter. The correlation between the currently

used UNOS-MELD and constructed reMELD-Na was investigated

by plotting both scores. To assess whether reMELD-Na would give

more effective sickest-first allocation, survival estimates were calcu-

lated for patients prioritized by UNOS-MELD and reMELD-Na. All
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statistical analyses were performed using R v3.6.1(R Foundation for 
Statistical Computing, Vienna, Austria).

Results

In this study, 6,944 patients were included, see Table 3.1. More male 
(68%) than female patients were included, and alcohol induced 
cirrhosis was the most frequent cause of liver disease. The median 
UNOS-MELD and serum sodium at listing were 14 (IQR 10-20) and 
138 (IQR 134-140) respectively. After 90 days of follow-up, 35.7%

of the patients were still waiting for LT, 23.8% were censored due 
to HU status or (N)SE points, 18.0% were transplanted, 12.6% were 
removed from the WL and 9.8% died on the WL. There were no 
relevant differences between the training and validation data.

Model development

The GAM plots for each parameter are shown below. For creatinine, 
the S-shaped curve displayed clear lower and upper boundaries 
in Figure 3.1A, the maximum log-likelihood was calculated for the 
bounds of 0.7 and 2.5 mg/dL. Clinically, it seemed logical to include 
values of creatinine below 1.0 mg/dL, mainly because many patients 
(55%) had creatinine levels <=1 mg/dL. Through refitting, the serum 
creatinine was decreased in weight and its upper bound was lowered. 
Therefore, the influence o f r enal f ailure o n t he c hances f or LT was 
reduced.

For bilirubin, in Figure 3.1B, the lower bound was found at 0.3 and 
the upper at 27 mg/dL. Varying of the lower bound between 0.1 and 
0.5 did not alter the log-likelihood significantly, i.e. would still be an 
acceptable fit t o t he d ata. A lso, 2 3.7% o f o ur p opulation w ould no 
longer be capped at listing. The upper bound of 27 mg/dL could be
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Table 3.1: Characteristics of training and validation data

characteristics Training set Validation set p

n 4860 2084

Age (median (IQR)) 56 (49-62) 55 (49-62) 0.022

Gender female (%) 1563 ( 32.2) 659 ( 31.6) 0.680

Disease (%)

Cirrhosis, Alcoholic 1361 ( 28.0) 600 ( 28.8)

Cirrhosis, HCV 352 ( 7.2) 123 ( 5.9)

Cirrhosis, other causes 825 (17.0) 353 (16.9)

Cholestatic disease 652 (13.4) 295 (14.1)

HCC and cirrhosis 953 ( 19.6) 421 ( 20.2)

Other 717 (14.8) 292 (14.0)

Status after 90 days

Censored because of HU or NSE 1171 ( 24.2) 476 ( 22.9)

Deceased 452 (9.30) 226 ( 10.8)

Removed from the waiting list 624 ( 12.8) 257 ( 12.3)

Still waiting on waiting list 1734 ( 35.8) 739 ( 35.5)

Transplanted 867 ( 17.9) 381 ( 18.3)

Days follow-up (mean (SD)) 44.22 (39.48) 44.06 (39.27) 0.875

Serum measurement at listing (mean (SD))

Creatinine in mg/dL 1.40 (3.73) 1.46 (4.16) 0.563

Bilirubin in mg/dL 5.74 (8.79) 5.84 (9.34) 0.669

INR 1.51 (0.72) 1.52 (0.72) 0.510

Sodium in mmol/L 137.02 (4.99) 136.94 (4.88) 0.526

UNOS MELD at listing (median (IQR)) 14 (10-20) 14 (10-20)

Note:

IQR: inter quartile range, HCV: hepatitis C induced cirrhosis, HCC: hepa-

tocellular carcinoma, HU: high urgency, NSE: (non)standard exception, SD:

standard deviation, INR: international normalized ratio, UNOS: united net-

work for organ sharing
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Figure 3.1: For each parameter, the relation to 90-day mortality is shown

based on the training data
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altered to a clinically more relevant value, roughly between 20 and 40,

without affecting the optimal fit to the data too much (supplement

heatmap bilirubin).

The INR had no lower bound and was capped at a maximum of 2.6,

see Figure 3.1C. However, assessment of the log-likelihoods values

showed that a range between 0.1 and 1.0 would be acceptable as

lower bound (supplement heatmap INR) and would affect few pa-

tients (2.7%). For the INR an upper bound of 2.6 was chosen, which

still acknowledged, i.e. did not cap, 93% of the patients. Although it

may seem controversial to cap the INR, this meant that if patients

reached 2.6, they would receive the maximum refit points for INR, of

which the weight was increased in the refit models.

Overall, the reMELD and reMELD-Na models capped less patients at

assumed values than UNOS-MELD. In Figure 3.2, lines were plotted

for respectively creatinine, bilirubin, and the INR to represent the re-

fit coefficient (slope of the diagonal) and the boundaries (horizontal

lines).

The heatmaps of the calculated log-likelihoods and c-indices per

combination of boundaries are attached in the (online) supplement.

After checking for interactions and matching the 25th and 75th

quantiles of the reMELD to the UNOS-MELD in the training data, the

reMELD equation was:

7.728∗ ln(creatinine)+3.446∗ ln(bilirubin)+10.597∗ ln(INR)+8.422

In this equation the abovementioned boundaries were used for the

parameters. The maximum log-likelihood for Na levels was found be-

tween 120 and 139 mmol/L. Combining the reMELD and Na showed a

significant interaction between Na and creatinine. Thus, after quan-

tile matching in the training data, the reMELD-Na formula was:

9.025× ln(creatinine) + 2.969× ln(bilirubin) + 9.518× ln(INR)−

0.392× (139−Na)− 0.351× ln(139−Na)× ln(creatinine)
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Figure 3.2: For each parameter, the diagonal line represent the coefficient

(slope of the diagonal) and lower and upper boundaries (horizontal seg-

ments) in refit MELD
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Table 3.2: Parameter bounds and number of patient measurements in-

cluded in UNOS and refit models

UNOS MELD(-Na) refit MELD(-Na)

bounds capped (%) included (%) bounds capped (%) included (%)

Creatinine lower 1 55.0 41.9 0.7 20.1 73

upper 4 3.1 2.5 6.9

Bilirubin lower 1 23.7 76.3 0.3 2.0 93.5

upper NA 26.9 4.5

INR lower 1 9.8 91.2 0.1 NA 94.8

upper NA 2.6 5.2

Sodium lower 125 2.7 72.9 120 0.7 56.3

upper 140 24.4 138.6 43

Note:

For each parameter the lower and upper bounds are shown. ’capped’ shows the percentage of

the cohort that either lies under or above the chosen bounds. ’included’ shows the percentage of

patients whose measurements are included in the model.

For the parameters in the reMELD-Na score, the abovementioned

boundaries were used. Compared to the UNOS-MELD, re-MELD

and reMELD-Na used respectively 149% (n=4815) and 42% (n=2748)

more patient measurements, i.e. less true patient measurements

were capped, at listing with the boundaries as shown in Table 3.2.

Model performance

Figure 3.3 shows the effect of each MELD parameter, corrected for the

others, on 90-day mortality in the validation data. The red and blue

lines represent the coefficients of the reMELD and UNOS-MELD re-

spectively. It was visually apparent that refit MELD showed a better

fit to the data for all three parameters. The calculated chi-square val-

ues confirmed significant (p<0.001) improvements in the refit models

compared to the UNOS-MELD, shown in Table 3.3. The reMELD and

reMELD-Na models showed c-indices of 0.866 and 0.869 respectively,

which were significantly (p<0.001) higher than 0.849 of the UNOS-

MELD, see Table 3.3. Furthermore, the reMELD-Na showed a 8% re-
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Figure 3.3: In the validation data, the relation with 90-day mortality is

shown. The coefficients and boundaries of creatinine in reMELD (red) and

UNOS-MELD (blue) illustrate model fit.
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Table 3.3: Comparison of models in validation data

Model C-index Max log-likelihood Chisq p

UNOS MELD 0.849 (se = 0.012 ) -1376.6

UNOS MELD-Na 0.860 (se = 0.010 ) -1362.8 27.660 < 2.2e-16

reMELD 0.866 (se = 0.011 ) -1347.1 58.966 < 2.2e-16

reMELD-Na 0.869 (se = 0.010 ) -1347.1 59.066 < 2.2e-16

Note:

For each model the C- index and maximum log- likelihood are calculated in

the validation data. The likelihood ratio comparisons of the models to UNOS-

MELD are shown by chi- squared and P values.

duction in prediction error as compared to UNOS-MELD with Brier

scores of 0.053 (reMELD-Na) and 0.057 (UNOS-MELD) respectively.

Impact on the waiting list

After 90 days of follow-up, 1,248 patients of our cohort were trans-

planted. By using the reMELD-Na compared to the UNOS-MELD to

allocate the 1,248 available liver grafts, 134/1,248 (11.5%) of the trans-

planted patients would have been within the top 1,248 candidates

under one of these models but not under the other; i.e., prioritiza-

tion would differ. Table 3.4 shows the characteristics of these differ-

ently prioritized patients. Most notably, reMELD-Na-prioritized pa-

tients were slightly older, were more often male, and had a higher

prevalence of cirrhosis. Unsurprisingly, these patients had signifi-

cantly lower serum sodium levels (138 vs. 127 mmol/L). As hypona-

tremia is most often seen in alcohol-associated cirrhosis,14 the sex

and age differences are largely explained. The correlation plot Fig-

ure 3.4 shows which patients would be prioritized according to either

UNOS-MELD or re-MELD-Na allocation.
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Figure 3.4: Correlation plot of UNOS- MELD and reMELD- Na. Based on 
the number of transplanted patients after the first 90 days (n = 1,248), the 
highest-ranked patients according to both scores separately were assigned 
a liver graft, as represented by the horizontal (graft granted by reMELD-

Na) and vertical (by UNOS-MELD) lines. Patients in the top left quadrant 
(reMELD-Na-prioritized) had a 1.58 times higher risk of 90- day death com-

pared to patients in the lower right quadrant (UNOS-MELD-prioritized).

The patients in the top left quadrant would have been prioritized by 

reMELD-Na allocation but not by UNOS-MELD. They had estimated 

90-day survival probabilities of 52.4% (95CI 41.3 – 66.5), as compared 

to 70.0% (95CI 58.9 – 83.1) for patients prioritized by UNOS-MELD, 

but not by reMELD-Na (bottom right quadrant), Thus, re-MELD-Na 

would have prioritized patients with a 90-day WL mortality HR of 

1.6 as compared to currently prioritized patients. Figure 3.4 also il-

lustrated that after refitting, no scores above 40 were calculated and 

thus that all high MELD scores were acknowledged correctly. By using 

more recent data and the true 90-day mortality rates of our popula-

tion, reMELD-Na showed that very few patients actually approached
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100% 90-day WL mortality, i.e. MELD 40. Thus, the refit models re-

stored the clinical meaning of the 6-40-point range.

Discussion

In this study, for the first time the MELD score was refitted to the Eu-

rotransplant data. By establishing new and evidence-based lower and

upper bounds for each MELD parameter, the role of each MELD com-

ponent was reweighed. The reweighed coefficients performed signif-

icantly better than the currently used UNOS-MELD in the indepen-

dent validation dataset. The reMELD and reMELD-Na gave convinc-

ingly higher c-indices than UNOS-MELD and were based on the best

fit to the current Eurotransplant data. The reMELD-Na prioritized pa-

tients with 1.6 times higher 90-day mortality rates than the currently

prioritized patients. Thus, refitting MELD results in more accurate,

effective and just mortality prediction and subsequent sickest-first al-

location.

The UNOS-MELD has remained unchanged ever since it was con-

structed 20 years ago in a cohort of 231 patients.4 Its parameter

bounds were chosen arbitrarily.5,6,11 Thus, UNOS-MELD is not fit

for the changing LT candidate population, which showed through a

decline in predictive power.7 Refitting, i.e. re-establishing parameter

bounds and weights, enables prediction models to change along with

the population they serve. Indeed, the principle of refitting could be

applied to any model used for survival prediction.

Lower bounds

By refitting, the lower border of creatinine was set to 0.7. A creatinine

of 1.0 mg/dL might already indicate disease in LT candidates, as mea-

sured creatinine overestimates kidney function in e.g. sarcopenia,
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females and patients with high bilirubin.15 Evaluation of the lower

bounds of bilirubin and the INR showed that multiple combinations

of bounds provided a good fit to the data, while preserving the

predictive power of the model. Thus, the exact lower bounds should

be determined through expert-based discussion. By acknowledging

more low values (which most patients had at listing), the higher

values were placed in a more appropriate context than with the

UNOS lower bounds of 1.0.

Upper bounds

The upper bounds found in this study were perhaps more controver-

sial, as UNOS-MELD uses none for bilirubin and INR. However, the

new bounds resulted in better-performing models. Through refitting,

serum creatinine became less important. Under UNOS-MELD, the

number of transplanted patients with renal failure increased signif-

icantly, possibly due to overweighed creatinine in UNOS-MELD.6,16

As these patients have increased morbidity and mortality both before

and after LT, the principle of the sickest-first system was to prioritize

them. However, one could question the prioritization of renal failure

above liver failure, through the high weight of creatinine in UNOS-

MELD, when allocating scarce liver grafts. High bilirubin levels led

to unreliable measurements of UNOS-MELD due to interaction

with creatinine, which influenced scores because of the weight of

creatinine in UNOS-MELD.17 Therefore, decreasing the weight of

creatinine and establishing an upper bound for bilirubin should

give more reliable reMELD scores. Of the three MELD parameters,

INR is the most unreliable. This is in part because the INR varies

significantly depending on the method of laboratory measurement.18

Also, medical treatment (or non-treatment) can decrease or increase

the INR. Therefore, an upper bound for the INR would also be an

improvement, as it would reduce the influence of outliers in INR

measurements.5
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Sodium addition

The UNOS regions have used MELD-Na for liver allocation since

2016.3 Despite the proven impact of serum sodium levels on LT

candidate survival,12,14 Na is not used (yet) for the Eurotransplant

liver allocation. The addition of Na to the reMELD gave a small but

significant improvement in discriminative ability (c-index 0.866 to

0.869). Although the largest improvement in c-index was achieved

by reMELD alone (0.849 to 0.866), the additional smaller gain still

represented important changes for hyponatremic patients. The

c-index measures the proportion of patient pairs whose ranking is

correctly ordered. Hence, a difference in c-index can be thought

of as the proportion of patients whose ranking change. It however

does not measure the degree of change within ranks, i.e. for each

patient. Thus, a small difference for many patients will give a high

c-index increase, whereas a large change for a smaller number of

(hyponatremic) patients gives little improvement.12,14 Based on the

current findings, reMELD-Na performed slightly but significantly

better than reMELD. Also, it seems just to consider the proven effect

of Na levels on mortality. Therefore, use of reMELD-Na is preferred.

Impact on the WL

Despite the seemingly small performance differences between UNOS

and refit models, the refit models were very different at their bases,

which was the goal of this study. Refitting established new param-

eter bounds, notably different coefficients and a superior fit to the

data, see Figure 3.3 and Table 3.3. This improved both model discrim-

ination (c-index) and calibration (prediction errors). The increase in

c-index from 0.849 to 0.869 may seem small, but is both statistically
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and clinically very significant. Recent study showed that switching

from UNOS MELD to MELD-Na would significantly reduce waiting

list mortality in the Eurotransplant region, although the difference in

c-index was 0.015 (0.832 vs 0.847).14 The study that formed the ba-

sis of the US switch from MELD to MELD-Na, showed a similar in-

crease in c-index (i.e. 0.868 to 0.883),12 which was considered an im-

portant increase and convincing evidence for possible MELD-Na im-

plementation. Another large UNOS cohort study on improving MELD

showed a c-index increase from 0.75 to 0.77.16 This illustrates that

improving an already-high c-index is very difficult, as it increases in

an asymptotic fashion when approaching its maximum. The highest

obtainable baseline c-index is probably around 0.9 or lower because

of possible imperfections and biological variation in the data.5,12,14

Moreover, compared to respectively UNOS MELD and MELD-Na, re-

fitting reduced prediction errors by 8% and 5%, which is a major im-

provement considering the already-high accuracy of the scores.

To estimate the possible clinical impact of refitting, differences in

prioritization were assessed, see Table 3.4. As the 90-day mortality

of the reMELD-Na-prioritized patients (Figure 3.4 ) was 1.6 times

higher than the currently prioritized patients, reMELD-Na could

possibly better effectuate the sickest-first principle. Figure 3.4 also

shows patients with MELD>=40, which were rescaled below 40 after

refitting. An UNOS-MELD score of 40 originally corresponded to a

100% 90-day WL mortality.11 However, over the past decades, the

waitlist population and the risks of death per MELD score have

changed,7 which also shows through the increasing number and

survival of MELD>=40 patients.19 This has important implications

for the Eurotransplant exception point system, which is based on

MELD mortality rates dating from 2006 (supplement 3) and allocates

25-30% of the LT candidates.10,20 Regardless of possible refit score

implementation, the Eurotransplant exception point system would

benefit from an accurate rescaling. Still, by quantile matching and
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refitting specifically in the 6 to 40 range, the refit scores restored their

old mortality equivalents, i.e. MELD 40 represented a 100% 90-day

mortality risk.

Limitations

Estimating the impact of a new allocation system based on another

system’s data inadequately reflects the possible effects of new al-

location. Before implementation, one aims to answer important

questions concerning counterfactual outcomes in causal inference,

e.g. what would have happened to patients had they not been trans-

planted. The best way to evaluate a new allocation system is to bring

it in practice and measure the difference. Evaluating a new system

through simulation is probably the next best option. One should

be aware, however, that assessment through simulation is based on

intrinsically unverifiable assumptions, namely that with changing

the allocation priorities nothing else in the system will change. The

Eurotransplant region does not yet have a simulation model of its

liver allocation, like the Liver Simulation Allocation Model (LSAM) in

the UNOS. Therefore, new allocation systems, e.g. refit models, can-

not be formally evaluated before possible implementation. Instead,

only a rough estimate of possible impact could be given by assessing

differences in prioritized patients. Still, this was likely a less-biased

method compared to proposed UNOS MELD-Na estimations of

impact.12

Finally, the role of clinical intuition and logic of reasoning should not

be underestimated. Optimizing MELD for our region makes clini-

cal sense and the log-likelihood-based approach is statistically solid

and logical. Regions without simulation programs cannot know for

certain what the effect of new allocation systems will be. Still, evi-

dence can form a strong suggestion of improvement, which can be

confirmed after possible implementation.
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Conclusion

This study showed that updating the boundaries and coefficients on

more recent region-specific data increased the predictive power of

MELD again. The discussion on the establishment of refit models

should consider at least three aspects: the parameter boundaries,

fit of the model to the data and the prediction performance of the

model. With the increasing interest in more advanced computational

possibilities, the transplant community should investigate alterna-

tive models to the current allocation system.21 However, as the MELD

still is the basis of liver allocation in many regions, efforts should

be made to keep the model as relevant as possible, and we believe

the current study serves this purpose. In conclusion, refitting MELD

acknowledged more patient measurements at listing and prioritized

patients with higher 90-day mortality. The discriminative ability and

accuracy of refit models was a significant and relevant improvement

compared to the currently used UNOS-MELD.
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Part II: Disease over time

It is tempting, if the only tool you have is a hammer, to treat

everything as if it were a nail.

— Abraham Maslow
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Abstract

Background & Aims: Liver function is measured regularly in liver transplan-
tation (LT) candidates. Currently, these previous disease development data
are not used for survival prediction. By constructing and validating joint
models (JMs), we aimed to predict outcome based on all available data, us-
ing both disease severity and its rate of change over time.

Methods: Adult LT candidates listed in Eurotransplant between 2007-2018
(n=16,283) and UNOS between 2016-2019 (n=30,533) were included.
Patients with acute liver failure, exception points or priority status were
excluded. Longitudinal MELD(-Na) data was modeled using spline-based
mixed effects. Waiting list survival was modeled with Cox proportional
hazards models. The JMs combined the longitudinal and survival analysis.
JM 90-day mortality prediction performance was compared to MELD(-Na)
in the validation cohorts.

Results: MELD(-Na) score and its rate of change over time significantly
influenced patient survival. The JMs significantly outperformed the
MELD(-Na) score at baseline and during follow-up. Baseline MELD-JM
AUC was 0.94 (0.92-0.95) versus MELD AUC 0.87 (0.85-0.89). MELDNa-JM
AUC was 0.91 (0.89-0.93) and MELD-Na AUC was 0.84 (0.81-0.87). The
JMs were significantly (p<0.001) more accurate than MELD(-Na). After 90
days, we ranked patients for LT based on their MELD-Na and MELDNa-JM
survival rates, showing that MELDNa-JM-prioritized patients had 3x higher
waiting list mortality.

Conclusion: The MELD(Na)-JM significantly outperformed current models
that drive liver allocation. Thus, patient survival can be dynamically pre-
dicted based on past and current disease. These predictions could more
accurately direct treatment to those most in need.
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Introduction

The shortage of available donor livers creates waiting lists of liver

transplant (LT) candidates with end-stage liver disease.1 In many

countries, candidates with the lowest expected survival are ranked

highest and thus usually treated first.2 In the Eurotransplant and

United Network for Organ Sharing (UNOS) regions, the survival

prediction and subsequent ranking of LT candidates is based on

the Model for End-stage Liver Disease (MELD) or MELD sodium

(MELD-Na) score.2 The MELD(-Na) score estimates 90-day mortality

based on the last known measurement of serum creatinine, bilirubin

and the INR (and sodium).3–5 For patients awaiting LT, MELD(-Na)

scores are repeatedly and regularly measured. These data are valu-

able for outcome prediction as they show the patient-specific disease

development over time.6,7 Clinically, it also makes sense to account

for past disease and its severity when estimating prognosis. However,

currently only the last available MELD(-Na) measurement is used for

survival prediction and subsequent LT allocation. Previous data is

ignored.

Joint models (JMs) are a recent statistical development that join

longitudinal and survival analysis.8 JMs can handle complex

follow-up data, i.e. irregularity in number, interval and missing of

measurements.9 Also, JMs can use both the disease severity and its

rate of change for survival prediction. This approximates disease as

a dynamic process, whereas MELD(-Na) is static and underestimates

fast-changing disease severity.10,11 Previous work has shown that

JMs can outperform Cox models.12–14 JMs have however never been

used to model patients with end-stage liver disease or any other large

cohort data. The LT setting is interesting for evaluating JMs because

statistical models, i.e. currently the MELD(-Na) score, determine who

is offered transplantation first.
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of waiting list mortality, by considering disease severity and its rate

of change over time. Therefore, this study develops and validates

JMs for LT waiting list survival prediction based on repeated MELD(-

Na) measurements. We constructed and validated JMs both in the

Eurotransplant and the United Network for Organ Sharing (UNOS)

regions. Online survival prediction tools of the resulting MELD-JM

and MELDNa-JM were created to allow predictions based on single-

patient data.

Methods

The analyses were done separately for the Eurotransplant and UNOS

regions, MELD- and MELD-Na based JMs were constructed and vali-

dated respectively.

Study population

For this study, waiting list data was used from Eurotransplant and

the UNOS regions. For the Eurotransplant region, patients were

followed between January 1st, 2007 until December 31st, 2018. For

the UNOS, the study interval was from January 16th 2016 (MELD-Na

implementation) to December 31st, 2019. Patients with acute liver

failure, exception points or priority status at registration and listing

for multiple organs were excluded. All other adult patients listed

for a first LT were included. Longitudinal exception points were not

modeled, as they do not reflect disease severity within the patient.

Separate training (67% of the patients) and testing (33%) sets were

constructed through random sampling. The longitudinal data of the

waiting list contained repeated measurements of the MELD(-Na)

score.4 Data from first active listing until delisting were used. Rea-

sons for delisting were death, transplantation, removal or the end

The goal of this study is to use joint models to improve prediction
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The goal of this study is to use joint models to improve prediction
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of study. Patients who were removed due to deteriorating clinical

condition or who died within 30 days of removal were also counted as

deceased. “Removal” comprised of removal from the waiting list due

to improved clinical condition and censoring for exception points

or priority status acquired during follow-up. The primary outcome

of survival analysis was the overall waiting list mortality. Predictors

were (repeated) MELD(-Na) scores. In table S7, results are shown of

an additional model that also considers e.g. age, region and sex. For

the longitudinal analysis, patients were censored at the end of the

study follow-up. Also, patients receiving priority status or exception

points during waiting were censored from that date, as transplant

and thus death chances would change from that time point on. The

sample size was set by the retrospective study design. Complete-case

analysis was done.

Statistical analysis

Study variables following normal distributions are presented as

mean±SD (standard deviation) and non-normal variables as me-

dian±IQR (interquartile range). Categorical variables are reported as

counts and percentages.

Longitudinal analysis

The longitudinal MELD(-Na) data were modeled with mixed effect

models. These calculate both the average (population) and individ-

ual (deviation of each patient from the average) MELD(-Na) develop-

ment over time. Importantly, they model developments as continu-

ous trajectories, which can also be non-linear, e.g. hyperbolical. This

gives a natural approximation of disease over time, which contrasts

the last measurement carried-on-forward approach of Cox models

(figure S4). The fixed effects included: intercept (representation of
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disease severity at baseline) and time on the waiting list which were

modeled with natural cubic splines (3 degrees of freedom). The ran-

dom effect components, which varied to randomly deviate from the

average for each individual, were intercept (baseline disease severity)

and follow-up time on the waiting list.

Combining longitudinal and survival analysis

Next, the abovementioned mixed effects model was combined with a

Cox model. The latter was fit to the outcome of waiting list mortality,

censoring for all other outcomes, with MELD(-Na) as predictor. Thus,

the MELD(-Na) joint models (MELD-JM and MELDNa-JM) were con-

structed using the R package “JMbayes.”15 The JMs predicted survival

using both the value of the MELD(-Na) score and its rate of change

at each moment in time (i.e. time-dependent slope). By considering

time-dependent slopes, a more nuanced definition of disease sever-

ity is used for survival prediction, see Figure 4.1. Also, predictions are

updated for each newly-available measurement, i.e. the model is dy-

namic.

Prediction performance

The JMs ability to predict 90-day mortality was assessed by calculat-

ing the area under the receiver operator curve (AUC) and prediction

errors (Brier scores). Model performance was assessed at baseline

(start of waiting list follow-up) and 3-monthly during follow-up of two

years through bootstrap cross validation with 100 repetitions. To clar-

ify, patients were censored if they did not die, but their data up un-

til censoring would still be used when calculating performance. For

comparison to currently-used models, MELD(-Na) prediction perfor-

mance was also calculated at these time points.
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Figure 4.1: Two hypothetical patient trajectories on the LT waiting list are

shown. Patient A initially increases and then stabilizes in disease severity.

B is initially stable and later deteriorates. Under the current MELD(-Na) al-

location, patient A would be prioritized over patient B in liver allocation,

because the most recent MELD(-Na) is used. However, the JM uses both the

past and current disease severity (value) and the rate of change at each mo-

ment in time (slope). At any given time, the JM combines the hazard ratio’s

for value and slope to calculate the risk of death. Thus, the JM would cal-

culate a higher mortality risk and thus LT priority for patient B, because the

disease is increasing fast.
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Impact on the waiting list

Next, we estimated the possible impact of using the JMs instead

of MELD(-Na) for waiting list prioritization. To do this, data from

baseline to 90 days was used. At day 90, patients still on the wait-

ing list were ranked highest-to-lowest based on their predicted

90-day mortality probability. This created a different ranking for the

MELD(Na)-JM and MELD(-Na) models. The number of available

donor livers in the first 90 days was then assigned to the highest

ranking patients. This created a rough estimate who would have

been offered LT first.16,17 To further explain the possible differences

in prioritization, baseline characteristics and the MELD(-Na) de-

velopments over time were compared between patients prioritized

either by the MELD(Na)-JM or MELD(-Na).

Online LT-JM prediction tool

Lastly, online prediction tools of the MELD-JM (https://predictionmodels.

shinyapps.io/meld-jm/) and MELDNa-JM (https://predictionmodels.

shinyapps.io/MELDNa-JM/) were created. This allows interested

readers to predict survival probabilities based on individual patient

data. For the instruction manual, see supplement page 3. All

the analyses were done with R v4.0.0 (R Foundation for Statistical

Computing, Vienna, Austria).

Results

Population characteristics

Table 4.1 shows the baseline characteristics for the Eurotransplant

and UNOS populations. The 16,283 Eurotransplant LT candidates

had a median age of 55 (48-61) at listing. Most (66.3%) patients
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were male and the most common liver diseases were (post)alcoholic

(39.5%), cholestatic (11.7%) and hepatitis-C (10.7%) induced cir-

rhosis. At the end of follow-up, 50.2% were transplanted, 20.9%

deceased, 20.2% were removed either due to improved clinical con-

dition, priority status or exception points and 8.7% were censored

at the end of study. The 30,533 UNOS patients had a median age

of 58 (50-64) years and were mostly (63.3%) male. Alcohol- (30.5%)

and NASH (20.7%) related liver cirrhosis were most common. The

median MELD at listing was 18 (13-26), which was higher than the

MELD 15 (11-21) for the Eurotransplant region. Median MELD-Na

at listing was 19 (12-27) points in the UNOS cohort. At the end

of follow-up, 52.2% was transplanted, 13% had died while waiting

or was removed because of worsening clinical condition 31% was

removed due to improved condition, exception point or status 1

approval during follow-up and 3.8% was censored at the end of study.

JM properties

The JMs calculates hazard ratios at a specific time (HRt) through the

following equations, for MELD-JM:

HRt =
(
1.29MELDvalue

)
∗
(
8.12MELDslope

)

and MELDNa-JM:

HRt =
(
1.24MELDNavalue

)
∗
(
8.02MELDNaslope

)

The MELD-JM coefficient for MELD values is 1.29, with 95% CI

(1.28-1.31). The MELD-JM slope coefficient is 8.12 (95% CI 1.27-

50.38). For the MELDNa-JM these are 1.23 (95% CI 1.24-1.26)

and 8.02 (95% CI 3.65-17.1) respectively. This means that at a

given moment in time, a 1-point increase in MELD value will

increase mortality risk by a factor 1.29, and a 1-point faster or

slower change gives a factor 8.12 difference. These equations,
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Table 4.1: Baseline characteristics for the Eurotransplant and UNOS regions

Region Eurotransplant UNOS

study interval 2007-2018 2016-2019
n 16283 30533
Age (median (IQR)) 55.0 [48.0, 61.0] 58.0 [50.0, 64.0]
Gender male (%) 10796 (66.3) 19334 (63.3)
BMI (median (IQR)) 25.6 [22.9, 29.2] 29.0 [25.0, 33.0]

Disease (%)
Cirrhosis, Alcoholic 6432 (39.5) 9309 (30.5)
Cirrhosis, HCV 1742 (10.7) 4001 (13.1)
Cirrhosis, NASH NA 6328 (20.7)
Cirrhosis, other causes 3794 (23.3) 4754 (15.6)
Cholestatic disease 1905 (11.7) 2422 (7.9)
Other 2410 (14.8) 3725 (12.2)

Serum measurement at listing (mean (SD))
Creatinine in mg/dL 1.3 (3.0) 1.5 (1.4)
Bilirubin in mg/dL 6.0 (10.6) 7.0 (9.4)
INR 1.5 (0.6) 1.8 (0.9)
Sodium in mmol/L NA 136 (5.0)

Dialysis dependency (%) 937 (5.8) 3223 (10.6)
MELD at listing (median(IQR)) 15.0 [11.0, 21.0] 18.0 [13.0, 26.0]
MELD-Na at listing (median(IQR)) NA 19.0 [12.0, 27.0]

Status at delisting (%)
Transplanted 8174 (50.2) 15928 (52.2)
Deceased 3404 (20.9) 3974 (13.0)
Removed from the waiting list 3289 (20.2) 9460 (31.0)
Censored at study end 1417 (8.7) 1171 (3.8)

Note:
NA: Eurotransplant has no complete data regarding this item, HCV:
hepatitis-C induced, HCC: hepatocellular carcinoma,HU: high urgent
status, NSE: (non)standard exception points, MELD: Model of End-
stage Liver Disease
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combined with the baseline risks, can be used to calculate spe-

cific risks. However, the JM is needed to calculate the MELD(-Na)

value and slope at a given time point. To enable easy access to

JM predictions, we developed online applications of the MELD-JM

(https://predictionmodels.shinyapps.io/meld-jm/) and MELDNa-

JM (https://predictionmodels.shinyapps.io/MELDNa-JM/). Inter-

ested readers can upload repeated MELD(-Na) measurements of

individual patients into these applications, to generate personalized

predictions. See supplement page 3 for an instruction manual. The

performance of these JMs is tested below.

JM performance

The JM performance was assessed in the independent validation data

at baseline (Figure 4.2 and figure S1) and during follow-up (Table 4.2:

UNOS, table S1: Eurotransplant).

At baseline, MELDNa-JM AUC was 0.91 (0.89-0.93) and MELD-Na

AUC was 0.84 (0.81-0.87). In Eurotransplant, MELD-JM AUC was 0.94

(95% CI 0.92-0.95) compared to 0.87 (0.85-0.89) for MELD (figures

S1 and S2). For both the MELD(Na)-JM and MELD(-Na), predic-

tion performance was best in the first months of follow-up. The

MELD(Na)-JMs AUCs were significantly (p<0.001) better than the

MELD(-Na) for the first 12 months of follow-up. During this period,

the majority of transplantations was done, i.e. 94% (UNOS) and 84%

(Eurotransplant). After 12 months, JMs AUCs were still notably but

not significantly better than MELD(-Na). Over time, MELD(-Na)

might be less representative of disease severity in LT candidates,

which could explain the decrease in AUC over time for both models.

MELD(Na)-JM prediction errors were always significantly lower than

the MELD(-Na) (figure 2B, figure S2, tables S1 and S2). In other

words, the JMs predictions were more accurate and thus better

resembled the observed risks in the population. Subset analysis of
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Figure 4.2: Performance measures for the MELDNa-JM and MELD-Na.
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Table 4.2: 90-day mortality AUCs of the MELDNa-JM versus the MELD-Na,

at baseline and during waiting list follow-up in the validation cohort.

MELDNa-JM MELD-Na

Time (months) AUC low95 upp95 AUC low95 upp95 p

0 0.91 0.89 0.93 0.84 0.81 0.87 <0.001

3 0.79 0.75 0.82 0.67 0.62 0.73 <0.001

6 0.80 0.76 0.84 0.69 0.61 0.75 <0.001

9 0.81 0.75 0.86 0.75 0.69 0.81 <0.001

12 0.74 0.66 0.81 0.69 0.58 0.79 NS

15 0.76 0.67 0.84 0.70 0.54 0.83 <0.001

18 0.78 0.69 0.86 0.76 0.62 0.87 NS

21 0.88 0.78 0.97 0.83 0.62 0.96 NS

24 0.72 0.60 0.85 0.68 0.42 0.86 NS

Note:

AUC: area under receiver operator curve, JM: joint model, MELD-Na:

model for end-stage liver disease sodium score
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prior (2007-2012) versus recent (2013-2018) years showed slightly

better performance in the 2007-2012 cohort (table S4). Excluding

HCV patients as sensitivity analysis increased AUCs (table S5).

MELDNa-JM performed better in males (Figure S5), possibly because

MELD-Na tends to underestimate female disease severity through

lower creatinine levels.18 Performance was comparable for most

diseases and worst in HCV disease (Figure S6). The implications for

LT candidates might be limited, as the number of listed HCV patients

is decreasing.19 Performance for non-black candidates was slightly

better than for black candidates (Figure S7).

JM impact on the waiting list

The possible differences in MELDNa-JM and MELD-Na prioritization

were assessed. Table 4.3 shows the baseline characteristics of patients

that would have been prioritized both by MELDNa-JM and MELD-

Na, by one of the models or by neither (table S6: MELD and MELD-JM

comparison).
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Compared to MELD-Na, the MELDNa-JM prioritized slightly younger

(56 vs 58 years) and female (46.5% vs 35.4%) patients, who less often

had hepatitis-C-induced liver cirrhosis. Most importantly, MELDNa-

JM-prioritized patients had a 3.6 times higher 90-day mortality rate,

i.e. 15.4% versus 4.3%. For the Eurotransplant region, MELD-JM pri-

oritized patients with 5.0 times higher 90-day mortality compared to

MELD, i.e. 23.2% versus 4.6% (table S6). A possible cause of this dif-

ference in mortality is illustrated in Figure 4.3.

The JM prioritized patients with lower median MELD-Na scores, see

Table 4.3, but these patients had increasing disease severity at the

time of liver graft allocation. This illustrates how not only the MELD-

Na value, but also the rate of change is considered when estimating

survival (figure S3 for Eurotransplant plots). The MELDNa-JM could

therefore have prioritized patients with a higher waiting list mortality,

possibly not captured by MELD-Na.

Online prediction tools

To access MELD-JM or MELDNa-JM predictions for the individ-

ual patient, please visit respectively https://predictionmodels.

shinyapps.io/meld-jm/ or https://predictionmodels.shinyapps.

io/MELDNa-JM/. See page 3 of the supplement for instructions.

For clinical JM implementation in individual patients, repeated

measurements of MELD(-Na) can be loaded into the online app.

This essentially is the same data as uploaded to organ procurement

organizations. The JM app then calculates prognosis based on these

measurements and lets the user choose the moment in time and

prediction horizon, e.g. assess 90-day survival probabilities after five

months of waiting. These individual predictions can improve clinical

decision making.
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Figure 4.3: The MELDNa- JM and MELD- Na would prioritize different pa-

tients for liver transplantation. For these patients, we plotted the individ-

ual (black lines) and average (red line) MELD-Na score development dur-

ing 90 days. Although the MELD-Na-prioritized patients had a higher ini-

tial MELD-Na score (value), their average scores remained stable (slope). In

contrast, the JM-prioritized patients had lower MELD-Na (value) scores but

with faster increasing disease severity (slope). Interestingly, the JM- priori-

tized patients had a five times higher 90- day mortality rate. Indicating that

JM prioritization could possibly be more just.
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Discussion

This retrospective cohort analysis aimed to improve LT candidate

survival prediction by using longitudinal data. Therefore, we devel-

oped and validated the MELD-JM and MELDNa-JM for waiting list

mortality prediction in the Eurotransplant and UNOS regions. We

report several important findings. First, the JM-calculated MELD(-

Na) values and their time-dependent rate of change are significantly

associated with LT candidate waiting list mortality. Second, using

time-dependent value and slope, the JMs significantly outperformed

both MELD and MELD-Na when predicting mortality. Third, the

JMs would have prioritized patients with three to five times higher

mortality on the waiting list, who would not have been prioritized

under MELD(-Na).

Longitudinal analysis

The progression of liver disease changes within and between patients

over time. The current models that determine transplantation

priority for patients with end-stage liver disease, i.e. the MELD(-Na),

ignore previous disease development. However, for the clinician it

is evident that the history of disease is important when estimating

prognosis. Therefore, JMs were used to combine longitudinal and

survival analysis.8 The resulting MELD(Na)-JM estimate both the

value and slope - i.e. current disease severity and the current rate

of change- at each new measurement in time to predict survival,

while also considering all previous measurements, see Figure 4.1.

The resulting disease developments are a continuous and flexible

trajectory over time, whereas e.g. time-dependent Cox (TDC) models

carry the last measured value on forward.20 This can fail to ade-

quately model changing disease severity (figure S4) and can lead

to underestimation of mortality in severely-ill LT candidates.11 The
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of change- at each new measurement in time to predict survival,
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idea of using MELD(-Na) rate of change for survival prediction is

not new. Previously, the MELD spike and delta-MELD have been

proposed.6,21 The MELD spike indicates a 30% or higher difference

between current MELD and the MELD score measured 7 days ago. It

is a binary parameter based on cut-offs (30% and 7 days). However,

through joint-modelling, we achieved a continuous representation

of disease based on all data (not only assessing 30% differences or

the past 7 days). MELD spike was intended as tiebreaker between

patients with the same MELD scores. The JMs could however prior-

itize patients even if their MELD-Na values are lower, as long as the

product of the value and slope is higher, see Figure 4.1 and 4.3. The

delta-MELD is the difference between lowest MELD in previous 30

days and current MELD. It averages the slope over a varying number

of previous days or measurements (depending on the date of lowest

MELD). In our view, this makes it an imprecise approximation of

current rate of change. Still, it is often considered as predictor in

LT analysis.22–26 However, Bambha et al. already showed that the

effect of delta-MELD depends on the frequency of measurements.27

In contrast, the estimated slope of the MELD(Na)-JM is updated

with each new measurement and is not altered by the frequency of

measurements.

Prediction performance

The MELD(Na)-JM prediction performance was significantly better

than MELD(-Na). The predictions also more accurately resembled

the actual survival rates on the waiting list. Models on which treat-

ment decisions are based should ascertain excellent accuracy.28

Using additional predictors in JMs, such as age and sex, slightly

improved AUCs after 12 months (table S7). However, this was a small

improvement, while using these predictors adds to complexity and

might be considered unethical. Therefore, MELD(-Na)-only JMs
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were primarily constructed. Others have also studied possible im-

provements to MELD(-Na). Recently, a machine-learning MELD-Na

alternative was constructed by Bertsimas et al., i.e. the optimized

prediction of mortality (OPOM) model.29 Although OPOM outper-

formed MELD-Na, it also considered more (n=25 or 28) variables.

Moreover, OPOM is based on classification analysis, i.e. is the patient

alive after 90 days yes/no, instead of survival analysis, i.e. how much

time passed until death or censoring. Other machine-learning

techniques, like random survival forests and neural networks, do not

seem to outperform Cox models, even in high-dimensional data.30

Previous work did show that JMs outperform time-dependent Cox

(TDC) models,12–14 which is interesting considering the frequent use

of TDC analysis for LT candidates.6,7,24,27,31–33 We believe that the

TDC last measurement carried-on-forward can give a suboptimal

representation of disease (supplement figure 4). With changing dis-

ease severity, the TDC model either underestimates or overestimates

disease severity. This is especially the case if few measurements are

available or data is missing, which often occurs in LT candidate data.

Impact on the waiting list

We investigated the prioritization differences between the MELDNa-

JM and MELD-Na, to give clinical meaning to the found statistical

improvements. Considering the rate of change in disease severity

helped to identify patients with worse prognosis, which illustrates the

concepts shown in Figure 4.1. To optimize the sickest-first allocation

and transplantation benefit, it could therefore be interesting to use

the JM-approximated course of disease for LT evaluation. Physicians

can use the MELD(Na)-JM as online tool (see above) to predict out-

come based on individual patient data. Also, on a center or waiting

list population level, JMs can be applied to predict survival of each

eligible patient every time a donor liver graft is offered. These predic-
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tions can be used alongside or eventually perhaps instead of MELD(-

Na), because JM performance is good compared to MELD-Na and the

same data is used. This is practical, because no changes would have

to be made in the centers’ routine of collecting and uploading data.

Limitations

A limitation is that data could be missing dependent on unobserved

values. Statistical methods, like the JM and Cox model, assume

missing at random (MAR) data. For the waiting list, this means that

MELD(-Na) missingness should not depend on unobserved values,

but it may depend on observed values. Because unobserved values

cannot be observed, MAR cannot be proven in this study or any

other Eurotransplant/UNOS registry analysis. We did however assess

the relation between MELD(-Na) value and reporting frequency

(supplement “missingness analysis”). Involuntary updates of low

MELD(-Na) scores were done in only a small part of the data. Also,

despite the fact that the most recent score was lower than the

previous one, centers still reported these values and often well in

time. The average time between measurements that were previously

higher or lower did not differ substantially. Dependent missingness

in low MELD(-Na) scores could lead to overestimation of waiting list

mortality. A solution to alleviate possible bias could be to increase

the mandatory update frequency of MELD(-Na) scores. Another lim-

itation is that patients with exception points were excluded, because

longitudinal modelling of arbitrarily assigned MELD points does

not reflect disease severity. However, JMs could be used to model

repeated AFP measurements, tumor characteristics and response to

therapy. Also, the difference in waiting list prioritization between the

MELD(-Na) and MELD(Na)-JM is a rough estimate, which depends

on the chosen interval, i.e. for a shorter follow-up, presumably

prioritization of the two indices would be more similar and vice
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versa. Furthermore, we did not study postoperative survival if the

MELD(Na)-JM would have been used for allocation. This is because

the JMs were not used to drive allocation. We therefore only could

have assessed postoperative survival after MELD(-Na) allocation and

would not know how the JMs would have changed that. These ques-

tions concern counterfactual outcomes in causal inference, e.g. what

would have happened to patients had they not been transplanted.34

The best way to evaluate a new allocation system is to bring it in

practice and measure the difference. Evaluating a new allocation

system through simulation is probably the next best option. These

extensive simulations were beyond the scope of this study. One

should be aware, however, that assessment through simulation is

based on intrinsically unverifiable assumptions, namely that with

changing the allocation priorities nothing else in the system will

change. Lastly, JMs are statistically complex and can give biased

results if mis-specified. Therefore, construction should be done with

care. To aid clinicians, we made online versions of our models freely

available.

Conclusion

This study developed and validated the MELD-JM and MELDNa-JM

prediction models for respectively the Eurotransplant and UNOS re-

gions. The MELD(Na)-JM significantly outperformed current models

that drive liver allocation. Thus, patient survival can be dynamically

predicted based on past and current disease. These predictions could

more accurately direct treatment to those most in need.
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Abstract

Background & Aims: Acute-on-Chronic-Liver Failure (ACLF) involves an

acute deterioration of liver function in patients with chronic liver disease.

ACLF is usually associated with a precipitating event and results in the fail-

ure of other organ systems and high short-term mortality. Currently-used

prediction models fail to adequately estimate prognosis and need for liver

transplantation (LT) in ACLF. This study develops and validates a dynamic

prediction model for ACLF patients, that uses both longitudinal and survival

data.

Methods: Adult patients on the UNOS waitlist for LT between 11.01.2016-

31.12.2019 were included. Repeated model for end-stage liver disease

sodium (MELD-Na) measurements were jointly-modeled with Cox survival

analysis to develop the ACLF joint model (ACLF-JM). Model validation was

done in separate testing data with area under curve (AUC) and prediction

errors. An online ACLF-JM tool was created for clinical application.

Results: In total, 30,533 patients were included. ACLF grade 1 to 3 was

present in respectively 16.4, 10.4 and 6.2% of the patients. The ACLF-JM

predicted survival significantly (p<0.001) better than the MELD-Na, both at

baseline and during follow-up. For 28- and 90-day predictions, ACLF-JM

AUCs ranged between 0.840-0.871 and 0.833-875, respectively. Compared to

MELD-Na, AUCs and prediction errors were improved by 23.1%-62.0% and

5%-37.6% respectively. Also, the ACLF-JM could have prioritized patients

who had four times higher waiting list mortality, possibly not identified by

MELD-Na.

Conclusion: The ACLF-JM dynamically predicts outcome based on current

and past disease severity. Prediction performance is excellent over time,

even in ACLF-3 patients. Therefore, the ACLF-JM could be used as clinical

tool in the evaluation of prognosis and treatment in patients with ACLF.
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Introduction

Liver transplantation (LT) is a lifesaving treatment for patients with

acute-on-chronic-liver failure (ACLF). ACLF is characterized by an

acute deterioration of liver function in patients with chronic liver

disease, often started by a precipitating event. ACLF results in the

failure of one or more organs and is associated with high short-term

mortality.1–3 The current model that prioritizes patients for LT, the

Model for End-stage Liver Disease sodium (MELD-Na) score,4,5

underestimates disease severity in ACLF.6,7 This is because MELD-Na

does not consider temporal development of single or multiorgan fail-

ure (involving the 6 major organs/systems—i.e. liver, kidney, brain,

coagulation, circulation, and respiration). This underestimation of

predicted waitlist mortality results in lower access to transplanta-

tion for ACLF patients.7 Sundaram et al. showed that ACLF death

and waiting list removal rate were highest in ACLF-3 patients with

MELD-Na <25.8 Given that 20.9% of UNOS LT candidates between

2005-2016 had a form of ACLF,8 the inequal transplantation access

might be substantial.

The MELD-Na uses one moment in time, i.e. the most recent mea-

surement, to predict outcome.4,5 It therefore ignores previous data

valuable for survival estimation. However, ACLF is a dynamic disease

with a clinical course that can change within days, resulting in very

different outcomes.9,10 Thus, there is a need for prediction models

that estimate ACLF survival based on disease development over

time.7 The Chronic Liver Failure Consortium Organ Failure score

(CLIF-C OFs) and CLIF-C ACLF score were developed for this purpose

and showed better performance than the MELD-Na.3,6 However, they

also assessed only one moment in time. A joint model (JM) is a novel

prediction model that simultaneously uses longitudinal and survival

data.11 It approximates changing disease severity over time and uses

this for survival prediction.12 JMs have shown superior predictive

performance over Cox models.12–14 However, they have not been

applied to ACLF.
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We hypothesized that using disease development over time to 
dynamically predict prognosis could improve survival prediction 
in ACLF patients. Much like a clinician, we aimed to use disease 
severity and its rate of change to predict outcome. We believe this is 
warranted in ACLF, because of the dynamic nature of ACLF 
disease and the current underestimation of mortality by MELD-

Na.9,10,15

Therefore, we constructed and validated a multivariate prediction 
model for survival prediction in ACLF patients: the ACLF Joint Model 
(ACLF-JM). We investigated the ACLF-JM 28- and 90-day survival 
prediction performance in the United Network for Organ Sharing 
(UNOS) registry and compared its performance to the MELD-Na 
score. We also investigated whether the ACLF-JM would identify 
patients in whom MELD-Na underestimates mortality. For easy 
clinical application, an online ACLF-JM tool was developed for 
dynamic survival prediction in ACLF patients.

Methods

The TRIPOD statement was used for the development and validation

of this multivariate prediction model.16

Study population

Data of LT candidates was requested from the UNOS. We included

adult (>=18 years) patients listed for a first LT between January 11th,

2016 (after MELD-Na implementation) and December 31st, 2019. We

excluded candidates with acute liver failure (ALF) and hepatocellular

carcinoma (HCC) at baseline. Data were used from first active

listing until the earliest of patient death, transplantation, removal
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or censor at December 31st, 2019. Death was defined both as death

while listed and removal for being too sick to transplant.8 If patients

received exception points or a status 1 (i.e. high urgency status)

after first listing, they were censored from that date. MELD-Na data

was missing in 0.05%, therefore complete-case analysis was done.

Missing values for the predictors life support dependency (variable

CAN_LIFE_SUPPORT, 0.00009% missing) and spontaneous bacterial

peritonitis (CAN_BACTERIA_PERIT, 0.005% missing) were set to ‘no.’

Identification of ACLF

Baseline ACLF was defined according to the to the European Founda-

tion for the Study of Chronic Liver Failure (EF Clif) criteria.3 Specifi-

cally, liver failure was defined as serum bilirubin >=12 mg/dL, kidney

failure as serum creatinine >=2.0 mg/dL or renal replacement ther-

apy, cerebral failure as presence of hepatic encephalopathy grade 3-4,

coagulation failure as INR >=2.5. Like other authors that used United

Network for Organ Sharing (UNOS) data, we used mechanical venti-

lation as replacement for respiratory failure, since data on PaO2/FiO2

were not available. Also, life-support dependency was used to desig-

nate circulatory failure.6,8,10,17

Development of the ACLF-JM

Data were randomly split in a training (67% of the patients) and a test-

ing (33%) set, for model development and validation respectively. The

ACLF-JM consists of two parts: a longitudinal (mixed-effect) and sur-

vival (Cox proportional hazards) model. Mixed-effect models were

used because they estimate disease development over time as a con-

tinuous trajectory and can model both linear (chronic, stable disease)

and non-linear (fast deterioration in ACLF) developments. See fig-

ure S4 for an illustration. Thus, repeated measurements of MELD-
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Na scores were modeled with mixed-effects. Additional predictors

were used to correct the longitudinal data. To start, 50 candidate

variables were assessed (table S2). We excluded some variables a pri-

ori, because they referred to pediatric recipients, exclusion criteria,

or donor characteristics. Variable relation to mortality was studied

in univariate analysis and then variables were backwards selected for

multivariate Cox analysis. The final variables included in the model

contributed most significantly besides those used for ACLF scoring

through EF CliF criteria (serum bilirubin, creatinine, renal replace-

ment therapy, encephalopathy grade, INR, mechanical ventilation,

and life-support dependency). Thus, we additionally corrected for

candidate age (years), sex (male/female), life support dependency

(yes/no), presence of bacterial peritonitis (yes/no), presence of cir-

rhosis (alcohol-induced, hepatitis-C virus, non-alcoholic steatohep-

atitis (NASH) or other cirrhosis) (yes/no) and CLIF-C OF score (No

ACLF or ACLF grade 1 to 3) (table S1). Next, a Cox proportional haz-

ards model was constructed for waiting list mortality, using the same

predictors as the mixed-effect model. Then, the ACLF-JM was con-

structed by joint-modelling the longitudinal (mixed-effect) and sur-

vival (Cox) model.18 A key feature is that the ACLF-JM uses both the

estimated MELD-Na value and the rate of change in MELD-Na (the

slope of the decrease/increase) over time for survival prediction.

For clarity, these concepts of value and slope were illustrated in Figure

5.1. For three hypothetical patients A, B and C, the 20-day MELD-Na

development is shown. After 20 days, patient A has a MELD-Na score

of 30 and is thus prioritized by the current allocation system. How-

ever, the ACLF-JM uses both the estimated value (measured MELD-

Na score) and slope (rate of change) at time=20 for survival predic-

tion. Calculation of the HRs shows that the ACLF-JM gives patient C

the greatest risk of death, because of the fast increase in MELD-Na

scores (positive slope). See supplement 4 for the precise explanation

and calculation.
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Figure 5.1: Three hypothetical patient MELD-Na trajectories over time, each

illustrates differences in value, slope and risk.

Validation of the ACLF-JM

Next, the prediction performance of the ACLF-JM was compared

to the MELD-Na at various points in time in the separate testing

data. Specifically, predictions were assessed at baseline and after a

follow-up of 48 hours, 7 days and 14 days (similar to the validation

study of the CLIF-C OF).6 Outcomes were 28-day and 90-day survival.

For both the ACLF-JM and MELD-Na Cox model, the area under

the receiver-operator-characteristic curve (AUC) and prediction

errors were calculated and compared (see supplement 3 for detailed

information). These measures and their 95% confidence intervals

(95%CI) and p-values were calculated using the R package JM and

bootstrapping.18

ACLF-JM impact on the transplantation waiting list

Next, we assessed the possible effect of using the ACLF-JM instead of

MELD-Na to estimate mortality and subsequently prioritize patients

for LT. This was of interest, because ACLF patients are likely under-

served in the current LT allocation.15 To assess possible differences
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in MELD-Na and ACLF-JM waitlist prioritization of patients, we fol-

lowed patients from baseline until day 28.6 Within this period, each

time a liver graft was offered, patients were ranked two times from

most to least ill based on their estimated survival without transplant.

One ranking was made with the ACLF-JM predictions and one based

on MELD-Na. Thus, for each model, patients were ranked 2636 times,

i.e., the total number of available liver grafts within the first 28 days.

After a liver graft offer, the transplanted patient was removed from the

waiting list. We assumed that the highest ranked patients were trans-

planted, which is not necessarily true, and thus that the number of

available transplants in the first 28 days represented the threshold of

receiving transplantation. We then assessed which patients were pri-

oritized according to what model. After 28 days and 2636 rankings,

patients were stratified in four groups: those who are prioritized and

possibly transplanted within 28 days according to both scores, those

who are prioritized by either the ACLF-JM or MELD-Na score (but not

by both) and those who are not prioritized by both. We also assessed

the characteristics of the differently-prioritized patients, to see why

patients were prioritized differently.

Clinical application of the ACLF-JM

Lastly, an online version of the ACLF-JM was created (https:

//predictionmodels.shinyapps.io/aclf-jm/), which allows clinicians

to assess ACLF-JM survival predictions for their individual patient(s).

Plots can be created of these dynamic predictions, to show the

updating survival estimate for every new available measurement

during follow-up. For a instruction manual, see supplement 1 and 2.

All statistical analyses were performed using R v4.0.0 (R Foundation

for Statistical Computing, Vienna, Austria).
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Results

Study population

In total, we included 30,533 patients with 249,030 measurements.

Table 5.1 shows the baseline characteristics of the study population.

ACLF at baseline was seen in 33.3% of the patients; 15.9% had ACLF

grade 1, 10.3% had grade 2 and 7.1% had grade 3. In these patients,

liver (47.2%) and kidney (63.6%) failure were the most common. With

increasing ACLF grade, median [IQR] age decreased, ranging from 59

[52-64] (no ACLF) to 53 [43-60] years (ACLF-3). Most patients were

male (no ACLF: 65.0%, ACLF: 60%) and had alcoholic liver disease

(no ACLF 25.8%, ACLF 40%). For ACLF grades 0 to 3, median [IQR]

MELD-Na scores at listing were 15 [10-22], 27 [23-31], 33 [29-37]

and 37 [31-42]. Average time on the waiting list was 150 days for

patients without ACLF, 89 for ACLF grade 1, 24 for grade 2 and 10

days for grade 3. Cumulative incidence plots showed significantly

higher death and transplantation rates in ACLF patients (figure S1).

At the end of follow-up, 10.9% of the patients without ACLF died. For

patients with ACLF grade 1 to 3, death rates were 16.7%, 14.3% and

22.4%, respectively.
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Model properties

The ACLF-JM is summarized by the equation:

Hazard Ratio deatht = 1.15MELDNavalue t ∗ 1.02MELDNaslope t ∗ 1.38age

∗0.75female gender ∗ 0.95cirrhosis ∗
(
if : 1.06ACLF1

)
∗
(
if : 1.98ACLF2

)

∗
(
if : 5.90ACLF3

)
∗ 1.18SBP ∗ 1.35lifesupport

The ACLF-JM estimates the MELD-Na value and slope at a given

timepoint and calculates the HR of death. For each MELD-Na

point increase, the risk of 1-year death increases with 15% (95% CI

14-16). For every 1-point increase in slope, i.e. acceleration of disease

increase, the mortality risk increases with 2% (95% CI 1-2). Of course,

in clinical practice, disease severity often changes more rapidly,

especially for ACLF patients. A more intuitive illustration of the

effect of MELD-Na value and slope is provided in Figure 5.1, where

three hypothetical patients awaiting LT are shown. The example

calculation (details in supplement 4) shows that considering the rate

of change (slope) in disease severity adds important information.

Considering both MELD-Na value and slope would give priority to

patient C (MELD-Na score 20, accelerating disease severity), whereas

using the current MELD-Na-based allocation would prioritize patient

A (MELD-Na 30, stable disease).
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Model validation

The ACLF-JM prediction performance was validated in separate

testing data. Table 5.2 shows the 28- and 90-day prediction perfor-

mance of the ACLF-JM and MELD-Na, stratified for patients with and

without ACLF, at baseline and during follow-up. For all time points

and studied outcomes, the JM performance was significantly better

than MELD-Na. At baseline in ACLF patients, the ACLF-JM AUC was

0.875 (95% CI 0.840-0.909) and MELD-Na AUC was 0.780 (95% CI

0.737-0.823). During follow-up, AUCs of both models declined to

0.833 (0.799-0.868) and 0.719 (0.677-0.761) respectively, which is still

excellent for the ACLF-JM and respectable for the MELD-Na (also see

figure S2A and S3).

Figure 5.2 show that with increasing ACLF grade, JM performance re-

mains significantly better than the declining MELD-Na (also see ta-

ble S3 and figure S3). Especially for 90-day prediction in ACLF grade

3 patients, JM performance is excellent with AUCs ranging from 0.841

to 0.853, contrasting the MELD-Na AUCs between 0.613 and 0.693.

MELD-Na AUCs (almost) equal chance when predicting 28-day mor-

tality in ACLF-3 patients, ranging from 0.497 to 0.605. Importantly,

the ACLF-JM also better estimated risks, i.e. is better calibrated, than

the MELD-Na (figure S2B). With increasing ACLF grade, prediction

errors were improved up to 37.6% (figure S3B). An accurate model is

important for clinical decision-making, because decisions are often

based on risks.19



116 CHAPTER 5. JOINT MODELS FOR ACLF

0.8 0.8 0.8 0.8

0.7 0.7 0.7 0.7

0.8 0.8 0.8 0.8

0.7 0.7 0.7 0.7

0.8 0.8 0.8 0.8

0.7 0.7 0.7 0.7

0.8 0.8 0.8 0.8

0.7 0.7 0.7 0.7

0.8 0.8 0.8 0.8

0.7 0.7 0.7 0.7

0.9 0.9 0.9 0.8

0.7 0.7
0.7

0.7

0.8 0.8 0.8 0.8

0.6
0.6

0.5 0.5

0.8 0.8 0.9 0.8

0.7 0.7
0.6 0.6

No ACLF ACLF−1 ACLF−2 ACLF−3

28 days
90 days

0 2 7 14 0 2 7 14 0 2 7 14 0 2 7 14

0.5

0.6

0.7

0.8

0.9

0.5

0.6

0.7

0.8

0.9

Time (days)

M
or

ta
lit

y 
AU

C

ACLF−JM MELD−Na

Figure 5.2: The AUCs for 28- and 90-day mortality prediction of the ACLF-

JM and the MELD-Na, stratified for ACLF severity.
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Figure 5.2: The AUCs for 28- and 90-day mortality prediction of the ACLF-

JM and the MELD-Na, stratified for ACLF severity.
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Figure 5.3: The correlation plot of MELD-Na score and ACLF-JM 28 days 
survival predictions. Patients are stratified in 4 groups: orange and blue pa-

tients would have been prioritized differently under either the ACLF-JM or 

MELD-Na. Orange patients had a 4x higher 28-day waiting list mortality 

than blue patients.

ACLF-JM impact on the transplantation waiting list

To study the difference in survival prediction and subsequent alloca-

tion priority between the ACLF-JM and the MELD-Na, patients were 
followed the first 28 days. In total, 2636 transplants were done within 
this period. Figure 5.3 shows the correlation plot between MELD-Na 
scores and ACLF-JM mortality estimates after 28 days of waiting list 
follow-up. For 2186 patients (in black), transplantation priority was 
given according to both the ACLF-JM and MELD-Na, as estimated 
mortality without LT was highest. More interestingly, 450 patients (in 
orange) could possibly have been prioritized by the ACLF-JM, but 
not by MELD-Na.
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Importantly, although these patients had lower median MELD-Na 

scores, they also had four times higher 28-day mortality rates, i.e., 

13.1% versus 3.1%, see Table 5.3. Compared to the 450 MELD-Na-

prioritized patients (blue), ACLF-JM-prioritized patients were 

older, more often female, had lower ACLF-1 rates, more NASH, 

less alcohol-induced liver disease and were more often dependent 

on life-support. After 28 days, 190 patients were delisted due to 

increased disease severity. In these patients, survival prediction AUC 

(95%CI) of the ACLF-JM and MELD-Na was 88.0 (85.1-90.9) and 82.5 

(79.0-85.9), respectively (figure S6).

Clinical application of the ACLF-JM

After constructing and validating the ACLF-JM in this large cohort, an 

online application was developed, which allows clinicians to easily 

calculate individual patient survival probabilities based on the ACLF-

JM. Available at: https://predictionmodels.shinyapps.io/aclf-jm/. 

Excel files with repeated MELD-Na measurements can be uploaded 

into this tool, to generate dynamic survival predictions during 

follow-up. The ACLF-JM simulates individual patient data to cal-

culate personalized predictions. See supplement 1 for precise 

instructions for the data upload and supplement 2 for a step-by-step 

manual.
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on life-support. After 28 days, 190 patients were delisted due to

increased disease severity. In these patients, survival prediction AUC

(95%CI) of the ACLF-JM and MELD-Na was 88.0 (85.1-90.9) and 82.5

(79.0-85.9), respectively (figure S6).

Clinical application of the ACLF-JM

After constructing and validating the ACLF-JM in this large cohort, an

online application was developed, which allows clinicians to easily

calculate individual patient survival probabilities based on the ACLF-

JM. Available at: https://predictionmodels.shinyapps.io/aclf-jm/.

Excel files with repeated MELD-Na measurements can be uploaded

into this tool, to generate dynamic survival predictions during

follow-up. The ACLF-JM simulates individual patient data to cal-

culate personalized predictions. See supplement 1 for precise

instructions for the data upload and supplement 2 for a step-by-step

manual.

Importantly, although these patients had lower median MELD-Na

scores, they also had four times higher 28-day mortality rates, i.e.,

13.1% versus 3.1%, see Table 5.3. Compared to the 450 MELD-Na-

prioritized patients (orange), ACLF-JM-prioritized patients were

older, more often female, had lower ACLF-1 rates, more NASH,

less alcohol-induced liver disease and were more often dependent
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Discussion

In this study, we developed and validated the ACLF-JM prediction

model, to estimate survival of ACLF patients. We report several

important findings. First, both current and past disease severity

and its rate of change are strongly associated with survival in ACLF.

Second, by using these data, the ACLF-JM gives excellent predic-

tion performance, even in ACLF-3, and significantly outperforms

MELD-Na. Third, the ACLF-JM could have prioritized patients with

low median MELD-Na scores, i.e. not identified by MELD-Na, but

four times higher mortality rates than MELD-Na prioritized patients.

Fourth, the ACLF-JM can be clinically applied online to estimate and

visualize patient-specific survival, which can be updated with every

new measurement.

Disease development over time

ACLF disease severity is dynamic and can change rapidly. During the

first week, disease severity changes for most patients, resulting in dif-

ferent survival outcomes.9,10 The current liver allocation system does

not consider change, as it uses only the most recent measurement for

survival prediction and ignores previous data. Moreover, survival is

estimated based on the MELD-Na score, which ignores relevant fac-

tors for ACLF and therefore underestimates mortality.7,8 Hernaez et

al. showed that mortality was higher than expected in low MELD-Na

score patients. They also showed that, despite their high(er) ACLF

grade, these low MELD-Na patients were often not considered for LT.7

Interestingly, Hernaez et al. mentioned that “Future research should

also focus on developing and validating prognostic scores that incor-

porate dynamic changes in patients clinical course,” i.e. the goal of

this study. Sundaram et al. showed that ACLF death and removal rate

did not correlate well with the MELD-Na score, as mortality rates were
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highest in ACLF-3 patients with MELD-Na <25.8 In this study, ACLF

was present in 33.3% of the patients. Therefore, the MELD-Na un-

derestimation of ACLF disease severity could be substantial, which

possibly leads to unequal treatment access and surplus mortality.7

Therefore, the ACLF-JM was developed to predict ACLF patient sur-

vival based on disease development over time. The model provides

several important improvements over the MELD-Na (table S4).21

Most importantly, predictions are based on all available previous

data and update for every new measurement.22 Predictions should

be updated based on accumulating evidence, because ACLF is a

dynamic disease. Also, the ACLF-JM considers both the value of

disease severity and the rate at which disease severity is chang-

ing, see Figure 5.1. It uses more nuanced aspects of ACLF disease

development to predict survival. Thus, like a clinician, past and

current disease developments are used to estimate patient prognosis.

Updating prognosis is important in ACLF, as disease can increase fast

and non-linearly (e.g. exponential).1,3 ACLF-JM survival predictions

could therefore be used to aid clinical decision making for ACLF

patients on the waiting list for LT, as current models result in unequal

transplantation access and post-LT survival rates.8,10,17 Furthermore,

In this cohort, we showed that ACLF-JM prioritization identified

patients with low MELD-Na scores, but high mortality, see Table

5.3. Mortality is underestimated in these patients and subsequently

they receive a lower priority for LT. Since ACLF patients benefit from

fast LT,17 use of the ACLF-JM for the evaluation of prognosis could

perhaps help to resolve the underestimation of waiting list mortality

for ACLF patients.7

ACLF-JM validation

The ACLF-JM showed excellent short-term survival prediction per-

formance at baseline and with increasing follow-up. Increasing
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ACLF grade did not lead to a decrease in predictive accuracy. This is

important, because risk of death and need for LT should be reliably

estimated in the sickest patients. Our data showed that both the

ACLF-JM and MELD-Na AUCs declined with increasing follow-up.

This is likely due to population changes, i.e. the sickest patients die

or are transplanted first and less patients remain with increasing

follow-up.23 Also, with increasing disease severity, generally a shorter

follow-up period is available. The ACLF-JM approximation of disease

does not depend on the number of measurements per patient,

because it estimates disease over time as a continuous trajectory

(figure S4). This is important, because frequency of measurement

confounded previous (Cox-based) survival predictions for patients

in need of LT.24 The ACLF-JM performed comparable and sometimes

even better compared to the reported performance of the CLIF-C OF

score.6 This could possibly indicate that ACLF-JM performance was

adequate enough for clinical application. Because the UNOS registry

does not contain data on white blood cell counts, CLIF-C ACLF

scoring was not possible in this study. ACLF-JM performance could

however be externally validated in the cohorts used to construct the

CLIF-C scores.6

Clinical application of the ACLF-JM

After training and ascertaining excellent performance, an online tool

of the ACLF-JM was created for clinical use. Especially in ACLF, both

the patient and treating clinician benefit from patient-specific mod-

elling, which shifts the focus of prediction from the population to

the individual patient level. Jalan et al. already stated that there is

a need for models that “update on a daily basis providing additional

prognostic information,” and that “currently, no validated evidence-

based tools guide the decision-making.”6 The ACLF-JM meets these

demands and more, with excellent performance leading to personal-
ized prediction, readily available online for any clinician.
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ized prediction, readily available online for any clinician.

123

Limitations

A limitation is that longitudinal MELD-Na measurements are not

best to model ACLF disease development, as they can underestimate

ACLF disease severity.7 Ideally, longitudinal CLIF-C ACLFs data

would be available in the UNOS data. However, MELD-Na was

one of the few consistently available longitudinal measurements,

which allowed analysis on a large scale and comparison to previous

studies. The retrospective analysis of large databases also has several

disadvantages. Misclassification of disease severity could give bias,

e.g. subjective scoring of ascites and encephalopathy. Also, surrogate

markers, suggested by authors of other large UNOS ACLF analyses,

were used for ventilatory and circulatory failure.6,8,10,17 For example,

mechanical ventilation was used as replacement for respiratory

failure, it is however very well possible that a patient with respiratory

failure did not receive mechanical ventilation, or vice versa. Despite

these shortcomings, the ACLF-JM showed excellent performance

with increasing disease severity (ACLF grade).

Conclusion

ACLF survival is dynamically predicted by the ACLF-JM prediction

model, using both longitudinal and survival data. Updating progno-

sis on new measurements is important, as ACLF is a dynamic disease.

The ACLF-JM prediction performance was excellent in this cohort,

even in ACLF-3 patients. The ACLF-JM could therefore be used as a

tool for the personalized evaluation of prognosis and clinical decision

making in patients with ACLF.
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Part III: Survival with and

without transplantation

“What can be controlled is never completely real;

what is real can never be completely controlled.”

— Vladimir Nabokov
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Chapter 6

Survival benefit from liver

transplantation for patients

with and without

hepatocellular carcinoma

Goudsmit BFJ, Prosepe I, Tushuizen ME, et al. Survival benefit from

liver transplantation for patients with and without hepatocellular car-

cinoma. Under review.
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Abstract

Background & Aims: In the US, inequal liver transplantation (LT) access

exists between patients with and without hepatocellular carcinoma (HCC).

Survival benefit considers survival without and with LT and could equalize

LT access. We calculated and compared LT survival benefit scores for pa-

tients with(out) HCC, based on longitudinal data in a recent US cohort.

Methods: Adult LT candidates with(out) HCC between 2010-2019 were in-

cluded. Waitlist survival over time was contrasted to posttransplant survival,

to estimate 5-year survival benefit from the moment of LT. Waitlist survival

was modeled with bias-corrected time-dependent Cox regression and post-

transplant survival was estimated through Cox proportional hazards regres-

sion.

Results: Mean HCC survival without LT was always lower than non-HCC

waitlist survival. Below MELD(-Na) 30, HCC patients gained more life-years

from LT than non-HCC patients at the same MELD(-Na) score. Only non-

HCC patients below MELD(-Na) 9 had negative benefit. Most HCC patients

were transplanted below MELD(-Na) 14 and most non-HCC patients above

MELD(-Na) 26. Liver function (MELD(-Na), albumin) was the main predic-

tor of 5-year benefit. Therefore, during five years, most HCC patients gained

0.12 to 1.96 years from LT, whereas most non-HCC patients gained 2.48 to

3.45 years.

Conclusion: On an individual level, transplanting patients with HCC re-

sulted in survival benefit. However, on a population level, benefit was in-

directly wasted, as non-HCC patients were likely to gain more survival due

to decreased liver function. Based on these data, we now provide an online

calculator to estimate 5-year survival benefit given specific patient charac-

teristics. Survival benefit scores could serve to equalize LT access.
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Introduction

Adult liver transplantation (LT) relies on scarce donor grafts. There-

fore, allocation prioritizes patients that likely will die soon without

transplantation.1 For most patients on the LT waiting list in the

United States (US), the Model for End-stage Liver Disease sodium

(MELD-Na) score adequately predicts expected survival without

transplantation.2,3

However, MELD-Na is less predictive of survival for transplant can-

didates with hepatocellular carcinoma (HCC). This is because HCC

mortality is typically caused by tumor progression and not by liver

failure.4 The number of HCC patients listed for transplantation has

tripled the past 10 years.5 HCC is the single most important cause

of death in cirrhotic patients, and treatment through LT still has the

best long-term results.6–8 The exception point system was developed

to compensate liver graft allocation based on inadequate MELD(-Na)

survival prediction for most notably HCC patients. In this system,

HCC patients receive artificial MELD points that increase automati-

cally every 90 days, to mimic HCC progression.9–11 Unintendedly, the

exception points created inequity between non-HCC and HCC pa-

tients, because HCC LT access increased too much,12–14 and inequity

among HCC patients, because all patients within one region receive

the same priority with only waiting time as tiebreaker.15

Instead of arbitrary points, patient characteristics should be used

to model the risk of waiting list dropout.10,14,16–18 Moreover, to

balance the principles urgency and utility,19 the risk of waiting list

dropout should be compared to expected post-transplant survival.

The difference is survival benefit, or the life-years gained from

transplantation.20 Considering LT survival benefit is valuable be-

cause donor grafts are scarce and some patients gain more life-years

than others.20–23
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evaluated,13,14,16,17 but re-evaluation is warranted. Firstly, be-

cause contradicting findings have been reported. Most notably,

Vitale et al. showed that HCC patients in Italy benefited twice as

much from LT compared to non-HCC patients,17 whereas Berry et

al. stated that US HCC patients derived negative or little benefit.13

Secondly, previous work defined survival benefit as the difference

between post-transplant survival and waiting list survival counted

from first registration. We hypothesized that counting waiting list

survival from first registration is suboptimal, as LT candidates on

average have to wait six to eight months for transplantation.5 During

this time, liver disease will typically progress,24,25 patients can drop

out,5 or HCC could be downstaged.6 This changes survival rates as

compared to baseline.20,21,23,26 Because survival is gained from the

moment of possible transplantation, benefit should be counted from

that moment on, see Figure 6.1. Lastly, benefit evaluation reflective

of the current US population and allocation is missing.

Therefore, the goal of this study was to estimate survival gain from

transplantation in a large and recent US cohort. We compared LT sur-

vival benefit between non-HCC and HCC patients. Life expectancy

with transplantation was contrasted to life expectancy without trans-

plantation. We constructed an online benefit application that calcu-

lates life expectancy gained from transplantation based on specified

patient characteristics.

Methods

Patient population

This retrospective cohort analysis included adult (>=18 years) pa-

tients listed for a first LT between January 1st, 2010 and April 30th,

2019 on the UNOS waiting list (Figure S1). This interval ended before

the May 14th, 2019 implementation of median MELD at transplant.15

Benefit of non-HCC and HCC patients has been previously
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Figure 6.1: Survival benefit is defined as the difference in 5-year life-

expectancy with and without transplantation. While patients are waiting

for LT, time passes and disease severity typically changes. At the moment

of transplantation, benefit is estimated. The survival up until transplanta-

tion (‘survival before LT’) is used to predict waiting list survival in absence

of transplantation (‘survival without LT’). Without LT survival is then con-

trasted to posttransplant survival (‘with LT’) to calculate benefit.
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It also compromised the most recent data with adequate 5-year

follow-up completeness. We aimed to calculate benefit for two

patient groups: patients without HCC and without exception points

(non-HCC group), and patients with HCC and with exception points

(HCC group). Although other diseases also qualify for exception

points, like primary sclerosing cholangitis and biliary cirrhosis, we

only assessed HCC patients, as this is by far the largest group and

incidence is increasing.5 Current OPTN policy allows standard excep-

tion points for 1) HCC patients within Milan criteria (henceforth T2

HCC),27 and 2) HCC patients initially outside Milan criteria but suc-

cessfully downstaged within criteria through loco-regional treatment

before LT (henceforth HCC outside criteria). Although previous study

found that outcomes of these groups were similar,28 we separately

analyzed these groups, as the initial HCC disease severity and non-LT

treatment are different. We excluded patients with previous LT, acute

liver failure, listing for living donation, listing for multiple organs, and

non-HCC malignancy (Figure S1). We randomly split our population

in training data (67% of patients) and validation data (the remaining

33% of patients).

Benefit definition

Survival benefit was defined as the life-years gained from trans-

plantation during the next five years, see Figure 6.2.21,29 To estimate

benefit for a given transplanted patient, post-transplantation survival

(henceforth ‘with LT’) was contrasted to the hypothetical waiting list

survival if LT would not have happened (henceforth ‘without LT’),

again see Figure 6.1.21

Crucially, we estimated future waiting list survival from the moment

of LT and not from baseline, as patients are not transplanted at base-

line. To model without LT survival, we chose time-dependent Cox

regression corrected with inverse probability censoring weighting
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Figure 6.2: The survival with (solid line), without (dashed line) and benefit

from transplantation (green area) are shown. In this example, survival is av-

eraged for non-HCC patients with MELD-Na 25. Please note the difference

in survival during five years (lines) and at five years (dots).
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(IPCW), in accordance to previous studies.21–23,26 IPCW is used when

treatment is initiated after baseline and the chance of treatment

depends on patient characteristics, that is changing MELD-Na scores

over time.21,26,30 This dependence confounds analysis of waiting list

survival upon which allocation is based. These risks therefore must

be corrected with statistical methods, preferably IPCW.21,26,30 Unlike

previous work,13,16,17,28,31,32 we specifically did not use intention-to-

treat (ITT) or competing risk analysis, please see supplement 1 for

a detailed explanation. In short, because 1) they predict a different

risk than without LT survival, 2) could result in undertreatment of

patients,30 and 3) we wanted to model changes in waiting list disease

over time beyond baseline. The IPCW analyses are more complex

and therefore less often applied, but this does not mean we should

not use them.33

Statistical analysis

Waiting list survival

The waiting list population was divided in biweekly cross-sections,

because in allocation liver grafts are offered to active patients on the

waiting list at a certain date, not whole study cohorts of patients.21 In

time-dependent Cox analysis, repeated MELD-Na scores were mod-

eled over time. Date and type of pre-LT HCC treatments were specif-

ically included to account for their effects on waiting list survival.

Additional predictors were used to correct the longitudinal data (Ta-

ble S1), which we selected from available UNOS candidate variables

deemed clinically relevant in published studies.10,16–18,21 We excluded

some variables a priori, because they referred to pediatric recipients,

exclusion criteria, or donor characteristics. The outcome of analy-

sis was waiting list mortality, which comprised death while awaiting

LT and removal because of worsened condition. We censored for all

other outcomes (e.g., transplantation, removal due to recovery, end
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of study) and corrected for dependent censoring with IPCW. Through

IPCW we also estimated without LT survival of transplanted patients

based on logic continuation of disease trajectories of similar patients

at the same moment in time that were not transplanted (yet), please

see supplement 1 for further explanation.

Post-transplantation survival

We then used Cox proportional hazards regression to model post-

transplant survival. Predictors were selected by assessing relations

of available UNOS recipient and donor variables to 5-year survival in

univariate models, with backwards selection of significant variables

in multivariate analysis. The outcome was 5-year post-transplant sur-

vival, defined as the difference between the date of transplantation

and the earliest date of death, loss to follow-up or end of study on

April 30th, 2019.

Calculating benefit scores

After establishing the Cox models in the training data, 5-year survival

benefit from LT was calculated for each transplanted patient in the

independent validation data. Benefit scores were averaged per bio-

chemical MELD or MELD-Na [MELD(-Na)] score at transplantation,

respectively for transplantations before or after January 11th, 2016,

and stratified for non-HCC and HCC patients. We visualized bene-

fit with smoothed general additive model plots per MELD(-Na) score

and (non-)HCC disease. We assessed model discrimination for 5-year

survival by calculating the area under the receiver-operating-curve

(AUC). Cox proportional hazards model calibration (i.e., model ac-

curacy) at five years was assessed based on bootstrapping with 200

repetitions, to obtain overfitting-corrected estimates of predicted sur-

vival, which were compared to observed survival probabilities.34
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Online benefit score calculator

It was of interest to calculate LT benefit scores based on individual

patient and donor characteristics. These benefit predictions had to

be readily available online for the clinician and patient, in an intu-

itive calculator. Therefore, we fit a regression model to the previ-

ously calculated 5-year survival benefit scores. To compromise clin-

ical ease of use and predictive power, only the most predictive vari-

ables were used in the benefit regression model. Variable importance

for benefit prediction was assessed based on ANOVA tests. We used

the overfitting-corrected R2 to assess how much variation in bene-

fit was explained by the predictors.34 A R2 value of 1 indicates that all

variability in predictions is accounted for and a value above 0.9 there-

fore indicates excellent model predictions. The online calculator also

gives graphical summaries of benefit, averaged per MELD-Na score

and (non-)HCC disease, to illustrate the gain of life years during the

next five years.

Results

Patient characteristics at transplantation

Characteristics for non-HCC and HCC patients at transplantation be-

tween 2010-2019 are shown in Table 6.1 . Compared to non-HCC pa-

tients, HCC patients were slightly older, more often male, and less of-

ten of white race/ethnicity. HCC patients also more frequently had

diabetes mellitus, were less dependent on renal replacement ther-

apy, and had lower median MELD(-Na) scores. HCC patients were

mostly transplanted in medium (2, 4, 6, 7, and 8) and long (1, 5, and 9)

UNOS waiting time regions, whereas non-HCC patients were mostly

transplanted in short (3, 10, and 11) waiting time regions. Until the

moment of transplantation, the vast majority (93%) of HCC patients
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apy, and had lower median MELD(-Na) scores. HCC patients were

mostly transplanted in medium (2, 4, 6, 7, and 8) and long (1, 5, and 9)
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transplanted in short (3, 10, and 11) waiting time regions. Until the

moment of transplantation, the vast majority (93%) of HCC patients
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were at home and therefore significantly less often in hospital or ICU

than non-HCC patients. Accordingly, non-HCC patients were more

often dependent on life-support. Median MELD-Na scores in non-

HCC, T2 HCC, and HCC beyond criteria patients were 25, 12, and 11,

respectively. The AFP at transplantation for within Milan/T2 criteria

and initially outside Milan/T2 criteria HCC patients was on average

(SD) 67 (294) and 61 (262) ng/mL, respectively. The average AFP lev-

els were higher in T2 HCC patients than HCC patients beyond criteria,

which was likely due to the higher frequency of downstaging non-LT

treatment. At time of transplantation, HCC outside criteria patients

more frequently had two or three tumors. Average total tumor diam-

eter for T2 and non-T2 HCC was 2.79 (1.11) cm and 3.17 (1.89) cm, re-

spectively. Donor risk index scores were comparable for (non-)HCC

patients, therefore HCC patients on average received the same donor

quality organs as non-HCC patients.
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Waiting list survival model

The significant predictors of the waiting list Cox model are shown in

Table S1. In summary, the most important predictors of survival with-

out LT were age, MELD(-Na) score, serum sodium, serum AFP, serum

albumin, presence of diabetes mellitus, presence of ascites, and liver

disease etiology. By correcting coefficients through IPCW, the impor-

tance of MELD(-Na) increased (data not shown), which was expected

as we aimed to correct for dependent censoring bias.

Post-transplantation survival model

The significant predictors for the post-transplantation survival model

are shown in Table S2. Most important were age, liver disease eti-

ology, being of black race/ethnicity, presence of diabetes mellitus,

mechanical ventilation, total tumor diameter, serum AFP, and DRI

score. HCC patients with MELD(-Na)>19, AFP>24 ng/mL, and total

tumor diameter>3.2 cm had the worst posttransplant 5-year survival

rates (58.1%; 95% CI 50.2-67.2). For all other HCC patients, 5-year

survival was above 60% (Figure S2).29 Post-transplant model AUC of

5-year survival was 61.9 (61.2-62.6), indicating respectable discrimi-

nation. More importantly,35 model calibration was excellent (Figure

S3), which meant that our predicted risks closely resembled observed

risks. After establishing model accuracy, survival estimates and ben-

efit were calculated in the validation data.

Survival without and with LT

The distribution of MELD(-Na) scores at transplantation is shown in

Figure 6.3. Non-HCC patients were mostly transplanted at MELD(-

Na) scores above 14 and HCC patients mostly below MELD(-Na) 14.
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Figure 6.3: Distribution of MELD(-Na) scores at transplantation, per (non-

)HCC disease. Non-HCC patients are mostly transplanted at MELD(-Na)

scores >14. On the other hand, HCC patients are mostly transplanted below

MELD(-Na) 14. Also, a significant part of non-HCC patients is transplanted

above MELD(-Na) 30, whereas only 3% of HCC patients is transplanted at

MELD(-Na) above 30.

This distribution is important for the interpretation of the survival

and benefit estimates presented below.

Figure 6.4A shows the smoothed average survival probabilities dur-

ing the next five years, both for post-transplantation (with LT: solid

lines) and for remaining on the waiting list (without LT: dashed lines).

Because life years are gained over time, Figure 6.4A shows the mean

survival during five years, i.e., the mean of the lines shown in Fig-

ure 6.2. The survival probabilities at five years without and with LT

are presented in Table S3, which are perhaps more intuitive survival

measures for the clinician and patient. However, these hold no in-

formation regarding the survival trajectory during five years, which is
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what the average survival and benefit do encompass. For non-HCC

patients below MELD(-Na) 10, i.e., a small number of patients, see

Figure 6.3, mean survival probability without LT was better than with

LT survival. In other words, on average these patients should not be

transplanted. At equal MELD(-Na) scores, waiting list survival with-

out LT for HCC patients was notably lower than for non-HCC patients.

Survival without LT probabilities converged at the lowest levels, i.e.,

mortality could not increase much more at high MELD(-Na) scores.

The average survival with LT in both groups declined above approx-

imately MELD(-Na) 24. However, HCC survival decreased more at

higher MELD(-Na) scores, most for HCC outside criteria. This de-

crease in posttransplant survival was possibly due to disease recur-

rence.

Survival benefit: life-years gained per 5 years

The 5-year transplantation survival benefit per MELD(-Na) score and

per (non-)HCC disease is shown in Figure 6.4B and Table 6.2 (see Ta-

ble S4 for the averages per MELD(-Na) score). Please note that the

y-values correspond to the surface area shown in Figure 6.2, e.g., for

a non-HCC MELD(-Na) 25 patient, LT would give 2.35 years survival

benefit during the next five years.

For the 2.2% of non-HCC patients transplanted at MELD(-Na) below

9, benefit was negative, because mean postoperative life-expectancy

was lower than survival without LT. With increasing MELD(-Na)

scores, non-HCC benefit increased approximately linearly, up to

70% mean 5-year survival improvement for MELD(-Na) 40. The

HCC benefit curves flattened with increasing MELD(-Na), whereas

non-HCC benefit continued to increase. HCC MELD(-Na) >=30

benefit estimates should be interpreted carefully as they represent a

small number of patients, i.e., 4.5% of the T2 HCC and 2.8% of the

outside criteria HCC patients. The HCC benefit flattened at higher
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Table 6.2: Liver transplantation 5-year survival benefit per MELD(-Na) score
and etiology of disease

No HCC T2 HCC HCC outside criteria

MELD(-Na) n % benefit n % benefit n % benefit

6-9 175 2.2 -0.14 729 32.0 0.39 717 39.2 0.82
10-13 425 5.3 0.46 675 29.6 0.98 525 28.7 1.40
14-17 943 11.7 1.08 416 18.2 1.61 304 16.6 2.03
18-21 1134 14.1 1.67 197 8.6 2.02 153 8.4 2.37
22-25 1260 15.6 2.20 106 4.6 2.37 59 3.2 2.65
26-29 1064 13.2 2.60 56 2.5 2.69 17 0.9 2.72
30-34 1159 14.4 2.99 41 1.8 2.78 21 1.1 2.72
35-40 1900 23.6 3.38 61 2.7 2.92 31 1.7 2.85
All patients 8060 100 2.30 2281 100 1.19 1827 100 1.45

Note:
n: number of patients per MELD(-Na) group, % : percentage of patients per
MELD(-Na) group

MELD(-Na) scores because of decreasing post-transplant survival,

see Figure 6.4A. Below MELD(-Na) 30, HCC patients would gain more

benefit than non-HCC patients at the same MELD(-Na) score, which

was mainly due to the lower expected HCC waiting list survival in

absence of LT. However, the likelihood of transplantation at lower

MELD(-Na) was much lower for non-HCC patients. Figure 6.3 and

Table 6.2 show that most non-HCC patients were transplanted at

higher benefit scores than most HCC patients. Indeed, over 50% of

HCC patients were transplanted below MELD(-Na) 14, whereas over

50% of non-HCC patients were transplanted above MELD(-Na) 26.

In terms of benefit, most HCC patients gained 0.10 to 1.96 years from

LT, whereas most non-HCC patients gained 2.48 to 3.46 years (Table

S4). For all patients across all MELD(-Na) scores, non-HCC patients

gained 3.2 years in the next 5 years through transplantation, T2 HCC

gained 1.19 and HCC outside criteria gained 1.45 life-years, see Table

6.2.
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Liver transplant benefit scores

Liver transplant benefit scores could be used as a continuous,

equalizing metric for (non-)HCC LT access. There might be

a need to calculate benefit given specific patient character-

istics. This is now possible in the online benefit calculator:

https://predictionmodels.shinyapps.io/benefit_calculator/. The

calculator was based on a secondary regression analysis with only

the most important benefit predictors, which showed an optimism

corrected R2 of 0.93. We therefore assumed that the calculator

adequately predicted benefit and could serve as translation from

our complex analyses to clinical practice. Variable importance in

regression was summarized in Figure S4. When predicting benefit,

the MELD(-Na) score was by far most important. Next were serum

albumin, (non-)HCC disease, serum sodium levels, and recipient

age. In line with Schaubel et al.,21 liver function therefore remained

the strongest predictor of survival benefit. Lastly, the online app

also allows users to plot mean benefit per MELD-Na and (non-)HCC

disease, like Figure 6.1. This can be used to inform clinicians and

patients on the expected survival gain from transplantation. It also

shows for selected HCC patients which non-HCC patients have equal

benefit, i.e., which patients would compete for transplant based on

benefit scores.

Discussion

Organ allocation aims to equally distribute donor organs to all

patients in need. However, inequities on the LT waiting list exist. As

a result, liver allocation has become increasingly relevant and com-

plex. Survival benefit has gained increased attention,13,14,16,17,29 as its

optimization could improve life-years gained from transplantation

for all listed patients.21 Also, considering survival with and without LT
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based on patient characteristics closer resembles clinical reasoning.

The objective of this study was to estimate and compare LT survival

benefit for patients with and without HCC in a recent US waiting

list cohort. The novelty was estimating benefit from the moment

of transplantation based on longitudinal disease development up

until that moment. Our results showed that mean LT survival benefit

was positive across all MELD(-Na) scores, except for non-HCC

patients with MELD(-Na) scores below 9. Non-HCC patients gained

most life years from transplantation, as these patients were mostly

transplanted above MELD(-Na) 26, where benefit was highest. HCC

patients were mostly transplanted below MELD(-Na) 14, which

yielded lower survival benefit. Liver function was the most important

predictor of benefit. It is now possible online to calculate 5-year

survival benefit based on specific patient characteristics through

https://predictionmodels.shinyapps.io/benefit_calculator/.

Benefit definition

Benefit was defined as the difference in survival with and without LT

during the next five years. The endpoint of survival analysis was five

years, because using 10-year or overall survival as outcome would

give too much importance to variables that predict post-transplant

survival.4,29 Also, further increasing the prediction horizon made

estimates less certain. At five years, the waiting list model showed

an excellent AUC, also when compared to other similar analyses.21,23

Compared to recently reported and tested post-transplant survival

models, our 5-year post-transplant survival model performed similar

(LiTES) or better (HALT-HCC, Metroticket).10
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Estimation of benefit

We choose our methods to estimate benefit from the moment

of possible LT. These methods differed from previous clini-

cal studies that modeled waiting list survival counted from first

registration.13,16,17,32,36 Our goal was to model future survival without

LT, whereas counting from baseline gives survival before LT, see

Figure 6.1. Also, patient states at first listing and transplantation

should not be compared, as survival changes within each patient over

waiting list time due to e.g., disease progression and possible non-LT

treatments.6,21,22,24–26 We therefore calculated counterfactual waiting

list survival (without LT) through time-dependent analysis with

additional correction for bias.21,26 Others performed similar analyses

over time, but averaged calculated benefit over waiting list follow-

up,21,23 which for us seemed suboptimal as possible transplantation

and its benefit occurred at one moment in time per patient. Lastly,

some previous studies calculated benefit using characteristics of a

‘median donor’ assigned to all patients.13,37 Instead, we choose to

use the actual transplantations between 2010-2019, with the aim to

best evaluate reality, as the observed transplants indicate inequity

between (non-)HCC patients.5

Non-HCC and HCC benefit

A competing risks study by Berry et al. showed that HCC patients

in the US overall gained negative or little benefit from transplanta-

tion, i.e., that HCC patients wasted benefit.13 This contrasts with our

findings that mean HCC benefit was positive across all MELD(-Na)

scores, mainly because HCC survival without LT was low. Clinically,

it makes sense that out of two otherwise identical patients, the pa-

tient with HCC will live shorter without LT because of the malignancy

in situ.38 It was suggested that Berry et al. overestimated HCC wait-

ing list survival,39 and that having HCC increased risk of waiting list
mortality by factor 1.5.21
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Therefore, on the individual patient level, transplantation for HCC

will add life years. However, on a population level, (over)prioritizing

HCC patients can indirectly waste benefit, as non-HCC patients

often will gain more survival from LT due to worse liver function.

Interestingly, many HCC patients were transplanted at MELD(-Na)

<10, which was considered harmful in previous study.36 Moreover,

resectable HCC may be regarded a contra-indication for LT,4 espe-

cially when considering the limited number of available liver donors.

Therefore, the selection of HCC patients for transplantation remains

one of the most important parts of liver graft allocation.29

Using benefit scores

The LT benefit scores offer a continuous metric to stratify survival

equally for non-HCC and HCC patients, as one single model is used

for both groups. This abandons the use of waiting time, which is

inherently flawed,19 and binary criteria, which allow underreporting

of HCC severity.40,41 Current HCC criteria lack granularity, as patients

that have the same waiting list priority can have very different

survival with(out) LT.10,13,17,21 Changing LT priority based on benefit

scores could therefore prevent loss of life-years, as also shown in

simulations.21 Allocation policies like the HCC cap, HCC delay, and

Median MELD at Transplant helped to reduce HCC LT access, but

HCC patients are currently still better of regarding waiting time,

transplantation rates, and death rates.5,42 Clearly, there is a need for

an equalizing principle for all eligible LT candidates.

Still, consensus must be reached whether to consider benefit in allo-

cation at all. Understandably, some feel uncomfortable to base treat-

ment decisions on future posttransplant outcomes, which is in part

why US policy first focused on improving regional disparities.15,43,44

On the other hand, there is consensus on acceptable posttransplant
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outcomes,45 and posttransplant survival can be accurately predicted.

Interestingly, in the UK, a benefit-based allocation system was im-

plemented in 2018.46 The evaluation of this system will be valuable

for the debate on benefit and its role in liver allocation. However, it

is most important that, regardless of the driving allocation principle,

scarce liver grafts should be fairly distributed based on patient char-

acteristics and disease severity, not arbitrary exception points.

Limitations

Our study has limitations. We excluded a minority of patients with

exception points that did not have HCC, our findings might there-

fore not apply to the whole waiting list population. However, our

goal was to compare non-HCC and HCC patients. Also, five-year

post-transplant follow-up was not complete for all patients, as we

compromised completeness and study period. Furthermore, we

could only draw conclusions based on patients that were listed for

transplantation. Therefore, selection bias exists, which is inherent

to the analysis of registries. The UNOS also does not register HCC

recurrence, which would be valuable as HCC recurrence rates can

be up to 20%, after which median survival is less than a year.41

Studying these data in HCC MELD>30 patients would be especially

interesting. Still, overall mortality is considered free from bias,

whereas disease-specific survival is not.47 Also, due to the small

number of transplantations in HCC patients with MELD(-Na)>30,

estimates were less reliable for that group. Lastly, the presented

time-dependent IPC-weighted analyses are complex and not intu-

itively interpreted. However, this complexity was needed to calculate

future survival without LT and to best answer the clinical question

of survival benefit. We attempted to translate complexity into an

easy-accessible online benefit calculator.
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Conclusion

In conclusion, on an individual level, transplanting patients with

HCC resulted in survival benefit. However, on a population level,

benefit was indirectly wasted, as non-HCC patients were likely to

gain more survival due to decreased liver function. Liver transplant

benefit scores offer equal survival stratification for (non-)HCC

patients. It is now possible online to calculate these scores based

on individual patient characteristics. Considering benefit better

resembles clinical reasoning and can optimize life years gained for

the whole waiting list population. Survival benefit scores could

therefore serve to more equally allocate scarce liver grafts amongst

patients eligible for transplantation.



6

152 CHAPTER 6. BENEFIT FROM LT

Conclusion

In conclusion, on an individual level, transplanting patients with

HCC resulted in survival benefit. However, on a population level,

benefit was indirectly wasted, as non-HCC patients were likely to

gain more survival due to decreased liver function. Liver transplant

benefit scores offer equal survival stratification for (non-)HCC

patients. It is now possible online to calculate these scores based

on individual patient characteristics. Considering benefit better

resembles clinical reasoning and can optimize life years gained for

the whole waiting list population. Survival benefit scores could

therefore serve to more equally allocate scarce liver grafts amongst

patients eligible for transplantation.

153

References

1. Tschuor C, Ferrarese A, Kuemmerli C, et al. Allocation of liver grafts
worldwide – Is there a best system? J Hepatol. 2019;71(4):707-718.
doi:10.1016/j.jhep.2019.05.025

2. Kim WR, Biggins SW, Kremers WK, et al. Hyponatremia and Mortality
among Patients on the Liver-Transplant Waiting List. N Engl J Med.
2008;359(10):1018-1026. doi:10.1007/s11250-017-1262-3

3. Goudsmit BFJ, Putter H, Tushuizen ME, et al. Validation of the
Model for End-stage Liver Disease sodium (MELD-Na) score in the
Eurotransplant region. Am J Transplant. Published online 2020.
doi:10.1111/ajt.16142

4. Vitale A, Cucchetti A, Qiao GL, et al. Is resectable hepatocellular car-
cinoma a contraindication to liver transplantation? A novel decision
model based on “number of patients needed to transplant” as mea-
sure of transplant benefit. J Hepatol. 2014;60(6):1165-1171. doi:10.
1016/j.jhep.2014.01.022

5. Kwong AJ, Kim WR, Lake JR, et al. OPTN/SRTR 2019 Annual Data Re-
port: Liver. Am J Transplant. 2021;21(S2):208-315. doi:10.1111/ajt.
16494

6. Mazzaferro V, Citterio D, Bhoori S, et al. Liver transplantation
in hepatocellular carcinoma after tumour downstaging ( XXL ):
a randomised , controlled ,. Lancet Oncol. 2020;21(7):947-956.
doi:10.1016/S1470-2045(20)30224-2

7. Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Allen
C, et al. Global, Regional, and National Cancer Incidence, Mortality,
Years of Life Lost, Years Lived With Disability, and Disability-
Adjusted Life-years for 32 Cancer Groups, 1990 to 2015: A Systematic
Analysis for the Global Burden of Disease Study. JAMA Oncol.
2016;388(10053):1459-1544. doi:10.1001/jamaoncol.2016.5688

8. Galle PR, Forner A, Llovet JM, et al. Clinical Practice Guidelines
OF HEPATOLOGY EASL Clinical Practice Guidelines: Management
of hepatocellular carcinoma q. J Hepatol. 2018;69(1):182-236.
doi:10.1016/j.jhep.2018.03.019

9. Alver SK, Lorenz DJ, Marvin MR, Brock GN. Projected outcomes of
6-month delay in exception points versus an equivalent Model for
End-Stage Liver Disease score for hepatocellular carcinoma liver
transplant candidates. Liver Transplant. 2016;22(10):1343-1355.
doi:10.1002/lt.24503

10. Goldberg D, Mantero A, Newcomb C, et al. Predicting survival after
liver transplantation in patients with hepatocellular carcinoma using
the LiTES-HCC score. J Hepatol. Published online 2021:1-9. doi:10.
1016/j.jhep.2020.12.021

11. Freeman RB, Gish RG, Harper A, et al. Model for End-Stage Liver



154 CHAPTER 6. BENEFIT FROM LT

Disease (MELD) Exception Guidelines: Results and Recommen-
dations From the MELD Exception Study Group and Conference
(MESSAGE) for the Approval of Patients Who Need Liver Transplanta-
tion With Diseases Not Considered by the Standar. Liver Transplant.
2007;13(5):767-768. doi:10.1002/lt

12. Northup PG, Intagliata NM, Shah NL, Pelletier SJ, Berg CL, Argo CK.
Excess mortality on the liver transplant waiting list: Unintended pol-
icy consequences and model for End-Stage Liver Disease (MELD) in-
flation. Hepatology. 2015;61(1):285-291. doi:10.1002/hep.27283

13. Berry K, Ioannou GN. Comparison of Liver Transplant-Related
Survival Benefit in Patients with Versus Without Hepatocellular Car-
cinoma in the United States. Gastroenterology. 2015;149(3):669-680.
doi:10.1053/j.gastro.2015.05.025

14. Washburn K, Edwards E, Harper A, Freeman RB. Hepatocellular Car-
cinoma Patients Are Advantaged in the Current Liver Transplant Allo-
cation System. Am J Transplant. 2010;10(7):1652-1657. doi:10.1111/j.
1600-6143.2010.03127.x

15. OPTN/UNOS Liver and Intestinal Transplantation Committee.
OPTN / UNOS Policy Notice Revisions to National Liver Review
Board Policies. Published 2019. Accessed April 21, 2021. https://optn.
transplant.hrsa.gov/media/2816/liver_nlrb-revised-policynotice-dsa_
01252019.pdf

16. Toso C, Dupuis-Lozeron E, Majno P, et al. A model for dropout assess-
ment of candidates with or without hepatocellular carcinoma on a
common liver transplant waiting list. Hepatology. 2012;56(1):149-156.
doi:10.1002/hep.25603

17. Vitale A, Volk ML, De Feo TM, et al. A method for establishing
allocation equity among patients with and without hepatocellular
carcinoma on a common liver transplant waiting list. J Hepatol.
2014;60(2):290-297. doi:10.1016/j.jhep.2013.10.010

18. Mehta N, Dodge JL, Roberts JP, Yao FY. A novel waitlist dropout score
for hepatocellular carcinoma - identifying a threshold that predicts
worse post-transplant survival. J Hepatol. Published online 2020:1-
9. doi:10.1016/j.jhep.2020.10.033

19. Persad G, Wertheimer A, Emanuel EJ. Principles for allocation of
scarce medical interventions. Lancet. 2009;373(9661):423-431.
doi:10.1016/S0140-6736(09)60137-9

20. Merion RM, Schaubel DE, Dykstra DM, Freeman RB, Port FK, Wolfe
RA. The survival benefit of liver transplantation. Am J Transplant.
2005;5(2):307-313. doi:10.1111/j.1600-6143.2004.00703.x

21. Schaubel DE, Guidinger MK, Biggins SW, et al. Survival benefit-based
deceased-donor liver allocation. Am J Transplant. 2009;9(4 PART
2):970-981. doi:10.1111/j.1600-6143.2009.02571.x

22. Schaubel DE, Sima CS, Goodrich NP, Feng S, Merion RM. The survival



6

154 CHAPTER 6. BENEFIT FROM LT

Disease (MELD) Exception Guidelines: Results and Recommen-
dations From the MELD Exception Study Group and Conference
(MESSAGE) for the Approval of Patients Who Need Liver Transplanta-
tion With Diseases Not Considered by the Standar. Liver Transplant.
2007;13(5):767-768. doi:10.1002/lt

12. Northup PG, Intagliata NM, Shah NL, Pelletier SJ, Berg CL, Argo CK.
Excess mortality on the liver transplant waiting list: Unintended pol-
icy consequences and model for End-Stage Liver Disease (MELD) in-
flation. Hepatology. 2015;61(1):285-291. doi:10.1002/hep.27283

13. Berry K, Ioannou GN. Comparison of Liver Transplant-Related
Survival Benefit in Patients with Versus Without Hepatocellular Car-
cinoma in the United States. Gastroenterology. 2015;149(3):669-680.
doi:10.1053/j.gastro.2015.05.025

14. Washburn K, Edwards E, Harper A, Freeman RB. Hepatocellular Car-
cinoma Patients Are Advantaged in the Current Liver Transplant Allo-
cation System. Am J Transplant. 2010;10(7):1652-1657. doi:10.1111/j.
1600-6143.2010.03127.x

15. OPTN/UNOS Liver and Intestinal Transplantation Committee.
OPTN / UNOS Policy Notice Revisions to National Liver Review
Board Policies. Published 2019. Accessed April 21, 2021. https://optn.
transplant.hrsa.gov/media/2816/liver_nlrb-revised-policynotice-dsa_
01252019.pdf

16. Toso C, Dupuis-Lozeron E, Majno P, et al. A model for dropout assess-
ment of candidates with or without hepatocellular carcinoma on a
common liver transplant waiting list. Hepatology. 2012;56(1):149-156.
doi:10.1002/hep.25603

17. Vitale A, Volk ML, De Feo TM, et al. A method for establishing
allocation equity among patients with and without hepatocellular
carcinoma on a common liver transplant waiting list. J Hepatol.
2014;60(2):290-297. doi:10.1016/j.jhep.2013.10.010

18. Mehta N, Dodge JL, Roberts JP, Yao FY. A novel waitlist dropout score
for hepatocellular carcinoma - identifying a threshold that predicts
worse post-transplant survival. J Hepatol. Published online 2020:1-
9. doi:10.1016/j.jhep.2020.10.033

19. Persad G, Wertheimer A, Emanuel EJ. Principles for allocation of
scarce medical interventions. Lancet. 2009;373(9661):423-431.
doi:10.1016/S0140-6736(09)60137-9

20. Merion RM, Schaubel DE, Dykstra DM, Freeman RB, Port FK, Wolfe
RA. The survival benefit of liver transplantation. Am J Transplant.
2005;5(2):307-313. doi:10.1111/j.1600-6143.2004.00703.x

21. Schaubel DE, Guidinger MK, Biggins SW, et al. Survival benefit-based
deceased-donor liver allocation. Am J Transplant. 2009;9(4 PART
2):970-981. doi:10.1111/j.1600-6143.2009.02571.x

22. Schaubel DE, Sima CS, Goodrich NP, Feng S, Merion RM. The survival

155

benefit of deceased donor liver transplantation as a function of
candidate disease severity and donor quality. Am J Transplant.
2008;8(2):419-425. doi:10.1111/j.1600-6143.2007.02086.x

23. Sharma P, Schaubel DE, Goodrich NP, Merion RM. Serum Sodium
and Survival Benefit of Liver Transplantation. Liver Transplant.
2015;21:308-313. doi:10.1002/lt.

24. Merion RM, Wolfe RA, Dykstra DM, Leichtman AB, Gillespie B, Held
PJ. Longitudinal assessment of mortality risk among candidates for
liver transplantation. Liver Transplant. 2003;9(1):12-18. doi:10.1053/
jlts.2003.50009

25. Goudsmit BFJ, Braat AE, Tushuizen ME, et al. Joint modeling of liver
transplant candidates outperforms the model for end-stage liver dis-
ease: The effect of disease development over time on patient out-
come. Am J Transplant. 2021;(June):ajt.16730. doi:10.1111/ajt.16730

26. Gong Q, Schaubel DE. Estimating the average treatment effect on sur-
vival based on observational data and using partly conditional mod-
eling. Biometrics. 2017;73(1):134-144. doi:10.1111/biom.12542

27. Mazzaferro V, REGALIA E, DOCI R, et al. Liver transplantation for the
treatment of small hepatocellular carcinomas in patients with cirrho-
sis. N Engl J Med. 1996;334(11):693-699.

28. Yao FY, Kerlan RK, Hirose R, et al. Excellent outcome following down-
staging of hepatocellular carcinoma prior to liver transplantation: An
intention-to-treat analysis. Hepatology. 2008;48(3):819-827. doi:10.
1002/hep.22412

29. Cillo U, Vitale A, Polacco M, Fasolo E. Liver transplantation for hepa-
tocellular carcinoma through the lens of transplant benefit. Hepatol-
ogy. 2017;65(5):1741-1748. doi:10.1002/hep.28998

30. van Geloven N, Swanson SA, Ramspek CL, et al. Prediction
meets causal inference: the role of treatment in clinical pre-
diction models. Eur J Epidemiol. 2020;35(7):619-630. doi:
10.1007/s10654-020-00636-1

31. Llovet JM, Fuster J, Bruix J. Intention-to-treat analysis of sur-
gical treatment for early hepatocellular carcinoma: Resection
versus transplantation. Hepatology. 1999;30(6):1434-1440.
doi:10.1002/hep.510300629

32. Lai Q, Vitale A, Iesari S, et al. Intention-to-treat survival benefit of liver
transplantation in patients with hepatocellular cancer. Hepatology.
2017;66(6):1910-1919. doi:10.1002/hep.29342

33. Kaplan A. The Conduct of Inquiry: Methodology for Behavioral Sci-
ence. Chandler; Chandler; 1964.

34. Harrell FE. Regression Modeling Strategies. Vol 45.; 2003. doi:10.1198/
tech.2003.s158

35. Van Calster B, McLernon DJ, Van Smeden M, et al. Calibration: The
Achilles heel of predictive analytics. BMC Med. 2019;17(1):1-7. doi:



156 CHAPTER 6. BENEFIT FROM LT

10.1186/s12916-019-1466-7
36. Vitale A, Huo T La, Cucchetti A, et al. Survival Benefit of Liver Trans-

plantation Versus Resection for Hepatocellular Carcinoma: Impact of
MELD Score. Ann Surg Oncol. 2015;22(6):1901-1907. doi:10.1245/
s10434-014-4099-2

37. Luo X, Leanza J, Massie AB, et al. MELD as a metric for survival benefit
of liver transplantation. Am J Transplant. 2018;18(5):1231-1237. doi:
10.1111/ajt.14660

38. Vitale A, Volk ML, Senzolo M, Frigo AC, Cillo U. Estimation of Liver
Transplant Related Survival Benefit: The Devil Is in the Details. Gas-
troenterology. 2016;150(2):534-535. doi:10.1053/j.gastro.2015.12.002

39. Mehta N, Heimbach J, Hirose R, Roberts JP, Yao FY. Minimal Trans-
plant Survival Benefit for Hepatocellular Carcinoma: Is it Real or
an Overestimation of Waitlist Life Expectancy? Gastroenterology.
2016;150(2):533-534. doi:10.1053/j.gastro.2015.08.059

40. Aufhauser DD, Sadot E, Murken DR, et al. Incidence of Occult
Intrahepatic Metastasis in Hepatocellular Carcinoma Treated
with Transplantation Corresponds to Early Recurrence Rates
after Partial Hepatectomy. Ann Surg. 2018;267(5):922-928.
doi:10.1097/SLA.0000000000002135

41. Mahmud N, Hoteit MA, Goldberg DS. Risk Factors and Center-
Level Variation in Hepatocellular Carcinoma Under-Staging for
Liver Transplantation. Liver Transplant. 2020;26(8):977-988.
doi:10.1002/lt.25787

42. Northup PG, Intagliata NM, Shah NL, Pelletier SJ, Berg CL, Argo CK.
Excess mortality on the liver transplant waiting list: Unintended pol-
icy consequences and model for End-Stage Liver Disease (MELD) in-
flation. Hepatology. 2015;61(1):285-291. doi:10.1002/hep.27283

43. Kadry Z, Schaefer EW, Uemura T, Shah AR, Schreibman I, Riley TR.
Impact of geographic disparity on liver allocation for hepatocellular
cancer in the United States. J Hepatol. 2012;56(3):618-625. doi:10.
1016/j.jhep.2011.08.019

44. Neuberger J, Heimbach JK. Allocation of deceased-donor livers – Is
there a most appropriate method? J Hepatol. 2019;71(4):654-656. doi:
10.1016/j.jhep.2019.07.013

45. Mehta N, Bhangui P, Yao FY, et al. Liver Transplantation for Hepato-
cellular Carcinoma. Working Group Report from the ILTS Transplant
Oncology Consensus Conference. Transplantation. 2020;104(6):1136-
1142. doi:10.1097/TP.0000000000003174

46. National Health Service Blood and Transplantat. Policy for De-
ceased Donor Liver Distribution and Allocation. Published
online 2018:1-18. http://www.odt.nhs.uk/transplantation/
tools-policies-and-guidance/policies-and-guidance/

47. Penston J, Steele R, Brewster D. Should we use total mortality rather
than cancer specific mortality to judge cancer screening programmes?
Yes/No. BMJ. 2011;343(7830):1-2. doi:10.1136/bmj.d6395



6

156 CHAPTER 6. BENEFIT FROM LT

10.1186/s12916-019-1466-7
36. Vitale A, Huo T La, Cucchetti A, et al. Survival Benefit of Liver Trans-

plantation Versus Resection for Hepatocellular Carcinoma: Impact of
MELD Score. Ann Surg Oncol. 2015;22(6):1901-1907. doi:10.1245/
s10434-014-4099-2

37. Luo X, Leanza J, Massie AB, et al. MELD as a metric for survival benefit
of liver transplantation. Am J Transplant. 2018;18(5):1231-1237. doi:
10.1111/ajt.14660

38. Vitale A, Volk ML, Senzolo M, Frigo AC, Cillo U. Estimation of Liver
Transplant Related Survival Benefit: The Devil Is in the Details. Gas-
troenterology. 2016;150(2):534-535. doi:10.1053/j.gastro.2015.12.002

39. Mehta N, Heimbach J, Hirose R, Roberts JP, Yao FY. Minimal Trans-
plant Survival Benefit for Hepatocellular Carcinoma: Is it Real or
an Overestimation of Waitlist Life Expectancy? Gastroenterology.
2016;150(2):533-534. doi:10.1053/j.gastro.2015.08.059

40. Aufhauser DD, Sadot E, Murken DR, et al. Incidence of Occult
Intrahepatic Metastasis in Hepatocellular Carcinoma Treated
with Transplantation Corresponds to Early Recurrence Rates
after Partial Hepatectomy. Ann Surg. 2018;267(5):922-928.
doi:10.1097/SLA.0000000000002135

41. Mahmud N, Hoteit MA, Goldberg DS. Risk Factors and Center-
Level Variation in Hepatocellular Carcinoma Under-Staging for
Liver Transplantation. Liver Transplant. 2020;26(8):977-988.
doi:10.1002/lt.25787

42. Northup PG, Intagliata NM, Shah NL, Pelletier SJ, Berg CL, Argo CK.
Excess mortality on the liver transplant waiting list: Unintended pol-
icy consequences and model for End-Stage Liver Disease (MELD) in-
flation. Hepatology. 2015;61(1):285-291. doi:10.1002/hep.27283

43. Kadry Z, Schaefer EW, Uemura T, Shah AR, Schreibman I, Riley TR.
Impact of geographic disparity on liver allocation for hepatocellular
cancer in the United States. J Hepatol. 2012;56(3):618-625. doi:10.
1016/j.jhep.2011.08.019

44. Neuberger J, Heimbach JK. Allocation of deceased-donor livers – Is
there a most appropriate method? J Hepatol. 2019;71(4):654-656. doi:
10.1016/j.jhep.2019.07.013

45. Mehta N, Bhangui P, Yao FY, et al. Liver Transplantation for Hepato-
cellular Carcinoma. Working Group Report from the ILTS Transplant
Oncology Consensus Conference. Transplantation. 2020;104(6):1136-
1142. doi:10.1097/TP.0000000000003174

46. National Health Service Blood and Transplantat. Policy for De-
ceased Donor Liver Distribution and Allocation. Published
online 2018:1-18. http://www.odt.nhs.uk/transplantation/
tools-policies-and-guidance/policies-and-guidance/

47. Penston J, Steele R, Brewster D. Should we use total mortality rather
than cancer specific mortality to judge cancer screening programmes?
Yes/No. BMJ. 2011;343(7830):1-2. doi:10.1136/bmj.d6395

157





Part IV: Summary, general

discussion, and future

perspectives

“Zodat het dan net lijkt alsof u vanaf het begin al de meest

verantwoorde gedachten had over uw variabelen (u weet

wel, die dingen waar u achteraf altijd zo’n spijt van had),

en over uw hypothesen (u weet wel, die dingen die u dan

achteraf verzon om het nog ergens op te laten lijken).”

— Arno Goudsmit
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162 CHAPTER 7. SUMMARY

The persistent scarcity of donor liver grafts necessitates prioritization

of patients based on expected future survival without transplanta-

tion. The goal of this thesis was to improve survival prediction models

for patients on the LT waiting list. Through advancements in predic-

tion models, liver grafts can be allocated in the best way possible.

In Chapter 2, the MELD-Na score (devised in the UNOS region)

was validated for the Eurotransplant region. We investigated the

relationship between serum sodium levels, MELD scores, and 90-day

mortality. Hyponatremia of <135, <130, and <125 mmol/L was found

in respectively 28.5%, 8.8%, and 2.6% of the patients. We found that

between 140 and 125 mmol/L, the risk of 90-day death increased

threefold (HR 2.9; 95% CI 2.30-3.53; p<0.001). Every point decrease

in serum sodium levels increased 90-day mortality by 8% (HR 0.92;

95% CI 0.90-0.94; p<0.001). Concordance statistics of MELD and

MELD-Na were 0.832 and 0.847, respectively. Predictions based

on MELD-Na were also more accurate than MELD. Comparing the

possible impact of using MELD-Na instead of MELD for allocation on

the waiting list, we found that approximately 20% of patients would

receive a significantly higher predicted risk of death with MELD-Na

and therefore a better chance for timely LT.

In Chapter 3, the 20-year-old UNOS MELD score was refitted to

the Eurotransplant population. We assessed the relation of each

MELD(-Na) parameter to 90-day mortality. Based on the data, the

lower and upper parameter bounds and coefficients with the best fit

were established. Specifically: creatinine 0.7- 2.5 mg/dL, bilirubin

0.3- 27 mg/dL, INR 0.1- 2.6, and sodium 120- 139 mmol/L. The

resulting reMELD(-Na) significantly improved fit, discrimination,

and calibration compared to MELD(-Na). Compared to MELD,

reMELD-Na could have prioritized patients with on average 1.6 times

higher 90-day mortality, thus better effectuating the sickest-first

principle.
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transplant (MELD-JM) and UNOS (MELDNa-JM) regions. Repeated

MELD(-Na) measurements were modeled flexibly over time and

joined with Cox proportional hazards models. It was found that both

MELD(-Na) value and its rate of change were strongly associated

with waiting list mortality. The JMs significantly improved AUCs

and Brier scores for waiting list survival prediction in both regions.

MELD(Na)-JM possibly could have prioritized patients with three to

five times higher 90-day waiting list mortality than MELD(-Na).

In Chapter 5, we constructed and validated the ACLF-JM for patients

with ACLF on the waiting list. For the ACLF-JM, repeated MELD-

Na scores were corrected for CLIF-C OF scores at baseline, age, sex,

life-support dependency, presence of bacterial peritonitis, and pres-

ence of cirrhosis. ACLF-JM performance was compared to a land-

mark MELD-Na Cox model. ACLF grade 1 to 3 was present in respec-

tively 16.4%, 10.4%, and 6.2% of the patients. ACLF-JM performance,

measured through AUCs and prediction errors, was significantly bet-

ter than landmark MELD-Na. The ACLF-JM identified patients with

lower MELD-Na scores but four times higher 90-day mortality.

In Chapter 6, we studied the survival benefit that LT caused, by com-

paring 5-year survival with and without LT between patients with and

without HCC in the US. HCC patients had lower waiting list survival

than non-HCC patients. Most HCC patients were transplanted be-

low MELD(-Na) 14 and most non-HCC patients above MELD(-Na) 26.

Liver function (MELD(-Na), albumin) was the main predictor of 5-

year benefit. Therefore, during five years, most HCC patients gained

0.12 to 1.96 years from LT, whereas most non-HCC patients gained

2.48 to 3.45 years. Thus, on an individual level, transplanting patients

with HCC resulted in survival benefit. However, on a population level,

benefit was indirectly wasted, as non-HCC patients were likely to gain

more survival due to decreased liver function.

In Chapter 4, we developed and validated joint models for the Euro-
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166 CHAPTER 8. GENERAL DISCUSSION

Part I: Forms of MELD

In Chapter 2, we showed that hyponatremia increased 90-day waiting

list mortality. We also found that MELD-Na was a significantly bet-

ter predictor of waiting list survival than MELD. Prioritization based

on MELD-Na survival predictions could therefore reduce waiting list

mortality. However, in the Eurotransplant region, MELD-Na is still

not used for liver allocation.

Sodium levels and post-transplant survival

One of the concerns in the Eurotransplant community was that prior-

itizing hyponatremic patients for LT could decrease post-transplant

survival. This concern arose in part because pre-transplant sodium

levels are associated with increased morbidity, complications, and

hospital admission.1 Some older European studies indeed showed

decreased short-term post-transplant survival in hyponatremic

LT recipients.2,3 Still, in recent Eurotransplant data, we found no

significant post-transplant survival differences between normo- and

hyponatremic LT recipients (data not published). This is in agree-

ment with the largest study on post-transplant sodium effects in the

US.4 MELD-Na evaluation also showed that after implementing the

score for allocation, the negative effect of hyponatremia on waiting

list mortality was greatly reduced.5

In the US, MELD-Na was implemented for MELD>11 patients after

studying the effect of serum sodium levels on both survival with

and without LT.6 Ideally, such analyses would also have been done

in Eurotransplant. However, the required longitudinal sodium data

is not available, as sodium is not adequately registered. In our

validation study, we had to exclude two-thirds of eligible patients

at baseline due to missing sodium. This missingness forms the

most important limitation and rationale of our MELD-Na validation
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study. MELD-Na implementation could further improve waiting

list ranking than found in this study because missing data analysis

suggested that hyponatremia likely was more prevalent in patients

with missing sodium data, as these patients significantly more often

had alcohol-induced cirrhosis and higher creatinine levels. The

seminal validation study of MELD by Wiesner et al. also excluded

48% (n=3,214) of patients due to missing data.7 This illustrates that

sometimes evidence of improvement is provided despite missing

data.

Sodium levels and renal function

Another concern was that increasing priority based on serum sodium

levels would increase LT access for patients with renal dysfunction.

Liver cirrhosis leads to portal hypertension and pooling of blood in

the splanchnic bed. This lowers effective circulating blood volume,

which increases the risk of renal dysfunction and renal failure.8 Hy-

ponatremia in cirrhosis results from the renal compensation of the

lowered effective circulating blood volume due to vasodilatation.1

Considering lowered serum sodium levels could therefore increase

waiting list priority and transplantation rates for patients with renal

dysfunction over patients with liver failure alone.

However, (over)prioritization of patients with renal dysfunction

is more likely caused by the high relative weight of creatinine in

MELD than by the incorporation of serum sodium. MELD was

developed in a cohort wherein patients with renal failure were

excluded.9 In these patients, high creatinine levels likely indicated

hepatorenal syndrome (HRS). Treating HRS with LT can reverse renal

dysfunction postoperatively. Therefore, creatinine received a high

weight in MELD, i.e., an increase in creatinine levels greatly increases

MELD scores and transplant access. After construction, subsequent

MELD validations were done in LT waiting list populations where
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patients with renal dysfunction were included.7,10 This resulted in

increased prioritization and transplantation for all patients with

renal dysfunction,11,12 whereas the aim of creatinine’s weight in

MELD was to increase transplant rates for patients with HRS.

Interestingly, after MELD’s implementation, the number of liver-

kidney transplant candidates tripled.12 Therefore, the concern of

(over)prioritizing patients with renal dysfunction for LT is relevant,

but argues mostly against the current form of MELD. For the Euro-

transplant region, a possible clinical solution could be to optimize

patient’s renal function before transplantation. This would however

also lower a patient’s ranking on the waiting list. Perhaps a better

statistical solution could be to reweigh MELD’s parameters to de-

crease the importance of creatinine in LT allocation priority. It must

be kept in mind that measuring creatinine and estimating GFR tends

to overestimate renal function in cirrhotic patients,13,14 creatinine is

however widely available.

The Eurotransplant region uses a form of MELD that was constructed

20 years ago in 231 US patients. In its current form, MELD therefore

does not represent the Eurotransplant population. Moreover, the pre-

dictive power of MELD is decreasing, as shown in Chapter 2 and in

literature.15 In Chapter 3, we aimed to investigate whether updating

MELD’s coefficients and bounds for the current Eurotransplant pop-

ulation would improve survival prediction for patients on the waiting

list. We found that the refit models indeed significantly outperformed

older non-Eurotransplant forms of MELD.

Beyond linearity

Refitted MELD and MELD-Na were based on the best fit in recent

data to establish new parameter coefficients between new bounds.

Refit MELD(-Na) is a linear model and splits continuous data into

evidence-based categories, e.g., the proposed creatinine bounds of
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0.7 and 2.5 mg/dL. The advantage of linear parameter relations to

mortality is easy interpretation and computation. Some disadvan-

tages are discussed below.

First, information was lost, as we forced linearity where the data

showed non-linear parameter relations to mortality (e.g., sodium

level relation to 90-day mortality). By categorizing continuous pa-

rameters, we assumed relations to be constant within each category

but different between categories, which is not true. For example,

we assumed that an 0.1-point creatinine increase from 0.7 to 0.8

mg/dL and from 2.4 to 2.5 mg/dL would give the same increase in

risk of mortality. Then, for an increase from 2.5 to 2.6 mg/dL, a very

different (constant) relation was assumed. This clearly is suboptimal.

Still, these new bounds and resulting coefficients were a significantly

better fit than those of UNOS-MELD. This implies that capturing the

majority of patients with the right coefficient is most important.

Second, parameter lower and upper limits were set for the linear

models. Beyond these limits, linearity broke down and parameter

values were kept constant. Still, many patients had values beyond

these limits. For example, 55% of Eurotransplant patients had a

creatinine level below 1 mg/dL at listing, which was set to 1. Capping

lower creatinine values might especially disadvantage female LT can-

didates, as measured creatinine overestimates their renal function,16

which results in MELD underestimation of mortality and perhaps

unequal transplant access. To counter this inequality, additional

MELD points for women have been suggested.17 Another possibility

would be to express renal function through estimated glomerular

filtration rate,18 which is still based on creatinine. At the higher end of

creatinine levels, a limit was set to 4 mg/dL, again without evidence

based on mortality risks.19 This upper limit also served to decrease

the LT access for patients on dialysis, as all dialysis-dependent

patients were set to this value. We proposed a new evidence-based

upper limit for creatinine. Additionally, the need for dialysis could
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be incorporated in MELD as predictor, interacting with creatinine

levels.

We especially argue against MELD’s lower limits of 1 for creatinine,

bilirubin, and INR, as these were chosen to prevent negative MELD

scores after log-transforming values below 1.19 Furthermore, we

believe that survival probabilities should be used instead of MELD

scores. Firstly, because this would eliminate the abovementioned

arbitrary lower bounds of 1. Secondly, although clinicians have be-

come used to communicating 90-day survival probabilities through

MELD scores, they are an unintuitive and unnecessary translational

step from actual probabilities to arbitrary scores. Currently, a 50%

chance of being alive after 90 days is communicated to patients

and clinicians as a MELD score of 30, which is arguably less easily

understood. Primarily communicating survival probabilities would

benefit both patients and clinicians.

MELD 3.0

Recently, MELD 3.0 was proposed, which refits MELD-Na and adds

serum albumin, patient sex, and significant interactions.20 Interest-

ingly, MELD 3.0 improves none of the abovementioned limitations.

Although non-linearity was present for sodium and albumin levels, a

linear model was used. Lower bounds of 1 were kept. Reality is not

linear, yet MELD is. Therefore, as alternative, in Supplement Chapter

10.1 we proposed to use a flexible, non-linear waiting list model.21

Such a spline-based model would capture non-linear relations and

thus provide a better fit to the data. A concern could be that the

model would overfit. However, this seems unlikely given the large

data sample and small number of predictors. A model best repre-

sents the population it was constructed in. Parameter relations to

mortality will change over time within the same population, which for

MELD resulted in decreased prediction performance.15,22 The estab-
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lished model can be a bad fit to other independent datasets, which we

confirmed by refitting the 20-year-old UNOS-MELD in a recent Euro-

transplant dataset. This is why regular updates of prediction models

are recommended.23 The fear of overfitting therefore should not pre-

vent updates that bring valuable improvements for patients on the

waiting list.15,24

Part II: Disease over time

MELD’s linearity reduces non-linear reality. MELD 6-to-40 scores are

used instead of survival probabilities. Longitudinal data is registered

but is currently ignored. Current prediction models are static but

should be dynamically updated based on newly available data. Us-

ing MELD at one single moment does not acknowledge changes over

time and how these changes are related to survival. Clinicians intu-

itively update estimates of patient life-expectancy with changing pa-

tient condition and measurements.

These formed the reasons to investigate LT candidate survival predic-

tion models that could meet these demands. In Part II of this the-

sis, we aimed to better approximate a clinician who evaluates patient

prognosis.

Approximation of disease severity over time

Current waiting list survival predictions are based on measurements

at one moment in time, i.e., the last measurement available. How-

ever, previous data provide important information about the severity

of disease and its rate of change over time.25,26 The second part of this

thesis therefore focuses on joint models (JMs), which combine longi-

tudinal and survival analysis. This allowed investigation of the effect

of changing MELD scores over time on patient survival.
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Figure 8.1: Staircase versus smooth representation of disease over time.

Previously, time-dependent Cox (TDC) models have been used to

model MELD scores and waiting list survival over time.25–31 In TDC

analysis, the changing temporal effect of a predictor is estimated

based on follow-up time divided into intervals of measurement, e.g.,

0-30 days and 31-60 days. Within each time interval, TDC models

assume that the last measured value is carried on forward. In the

abovementioned example, creatinine values measured on day 0 and

31 would remain constant for the next 30 days. Crucially, there is no

interpolation of values, thus a creatinine value at e.g. day 45 is not

approximated.32 In clinical terms, the TDC assumes that the disease

state does not change until the next moment of measurement. This

results in a ‘staircase effect,’ where the trajectory of disease over time

is represented through rectangular steps, see Figure 8.1. Survival is

then predicted based on this staircase trajectory.
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the liver disease are not constant until a new moment of measure-

ment. Instead, disease develops continuously, as a smooth and non-

linear trajectory. We configured JMs to estimate disease as a smooth

continuum over time with interpolation of trajectories between mea-

surements. At and between measurements, not the last measured

value was assumed, but the ‘true’ underlying value. For the above-

mentioned example, the JM would estimate values for each moment

in time between day 0 and 60. Crucially, the model considered that

measurements from the same patient were more related than mea-

surements between patients. TDC models ignore this correlation.

Another advantage of extrapolating the true underlying trajectory is

that missing values are filled in. Missing values therefore have less

effect on estimated survival. We therefore believe that JMs are better

suited for real-life cohort data, where disease is continuously devel-

oping and where measurements are correlated and can be missing.

The performance of JMs versus TDC models was previously assessed

in small and theoretical simulation studies, where JMs showed signif-

icantly improved performance over TDC models.33–35 However, JMs

were never applied to large cohorts of patients nor to the field of LT.

In Chapter 4, Chapter 5 and supplement Chapter 10.2, we therefore

investigated JMs as alternatives for survival prediction in LT candi-

dates.

Joint modeling disease and survival over time

In Chapter 4, we fitted JMs to waiting list data of the Eurotransplant

and UNOS regions. The JMs modeled average and individual MELD

scores and considered both the value of MELD(-Na) and its rate of

change at each moment in time. For the first time, liver disease was

considered as developing entity within each patient on the waiting

list.

However, it is clinically evident that the condition of a patient and
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Underlying MELD value

The observed, that is measured, values of MELD(-Na) scores have

been used in liver graft allocation for 20 years. The JM uses these

observed measurements to estimate the ‘true’ underlying disease tra-

jectory. The model can therefore assume a different MELD(-Na) score

than is observed for each patient. For example, for actively listed LT

candidates in the Eurotransplant region between 2007-2018, the me-

dian measured value of MELD at the start of listing was 15 ( Table 4.1

). However, the JM assumed a baseline MELD value of 17.8, which

is notably higher. In addition, for each patient, the JM considered

the individual deviation from the average MELD(-Na) score at a given

moment in time. This placed patients in context to the population

average. The individual deviations from the average were also used

as prognostic information in survival prediction. Naturally, the ques-

tion arose whether this underlying disease severity should be used

over actually measured disease.

Prediction performance based on underlying trajectories

Interestingly, when predicting waiting list survival, the JM outper-

formed MELD both at baseline and during follow-up. This implied

that 1) the JM-estimated underlying disease severity better corre-

sponded with survival than observed MELD values and 2) using

individual deviation from the population average added prognostic

information. The estimated underlying disease trajectory is less

sensitive to missingness or errors. JMs can however be severely

biased if they are mis-specified, particularly in the specification of

longitudinal trajectories.33 Therefore, we considered multiple config-

urations of spline-based and linear mixed effect models (longitudinal

part of the JMs) and assessed their fit through Akaike information

criterion (AIC) values. Most notably, the use of spline-based instead

of linear-approximated patient trajectories greatly improved model

fit.
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Over time more waiting list data per patient typically becomes avail-

able. Therefore, after listing, the JM predictions became increasingly

accurate within each patient as follow-up increased, which contrasts

to MELD(-Na). Little attention is given in literature to the fact that

MELD is a Cox model constructed and validated to first listing

data.7,9,10 However, most patients on the waiting list are months

away from first listing. When assessing JM and MELD performance

over time, a decline in discrimination and accuracy was shown. The

patients who survived longest on the waiting list despite their MELD

scores likely had a better condition beyond what MELD measured,

or vice versa. However, since only MELD was measured, over time it

became more difficult to predict survival in the resulting population.

Still, JM performance was significantly better than MELD perfor-

mance for most follow-up times. Also, in our analysis, all patients

started from the same moment in time (first listing). However, on

the actual waiting list, patients are constantly added and removed.

In other words, survival prediction for liver graft allocation is based

on cross-sections, not a cohort. In real waiting list data, MELD’s

discrimination is therefore likely to be lower, as the sickest patients

are transplanted quickly and ranking the remaining less ill patients

is more difficult. The JM accuracy increases with more available

measurements over time. Because of this, we would not expect a

similar decrease in performance if the JM would be applied to the

actual waiting list.
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Joint modeling acute-on-chronic liver failure

ACLF and MELD-Na

Liver disease is constantly changing. In clinical practice, the rate at

which a patient changes directly influences medical urgency and pos-

sible intervention. This might be especially true for patients with

acute-on-chronic liver failure (ACLF). ACLF is characterized by ini-

tially stable and chronic liver disease, which rapidly deteriorates af-

ter a predisposing event and leads to multi-organ failure and often

death.36 Timely transplantation can save a subset of these patients,37

but MELD-Na underestimates ACLF mortality and therefore the need

for transplantation.38,39

In supplement chapter 10.2, we hypothesized that JMs would be

suited for predicting ACLF survival.40 First, because each individual

patient’s condition can change rapidly. Therefore, it is relevant

to predict survival based on both past and current data. It is also

relevant to place the individual disease and survival in context to the

population average. Second, by using both measured disease severity

and its rate of change over time, the acceleration in ACLF severity is

linked to future survival. Third, updating future predictions at each

new measurement is relevant in patients with increasing disease

severity.

In Chapter 5, we approximated liver disease severity in ACLF pa-

tients based on repeated MELD-Na values, corrected for baseline

ACLF grade and other predictors (sex, age, presence of cirrhosis,

life-support dependency, and presence of bacterial peritonitis).

However, predicting ACLF survival based on MELD-Na measure-

ments was suboptimal. This is because ACLF involves inflammation

and multi-organ failure,36 which are not captured by MELD-Na

scores. Therefore, ACLF survival prediction could be improved

further by modeling more organ system functions over time. Survival
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prediction based on simultaneous consideration of multiple organ

systems is possible in multivariate JMs. It would make sense to

separately consider the role of each organ system. Unfortunately,

such data is not readily available for both the Eurotransplant and

UNOS regions. Therefore, like others,37,38,41 we could only correct for

ACLF grade at baseline. However, within the European Foundation

for the study of Chronic Liver Failure (EF CLIF) consortium data,

longitudinal CLIF ACLF scores measurements per patients could be

available. Therefore, future application of JMs in this data might

result in JMs that better represent changes in ACLF and let failure of

each organ system correlate to mortality.

Underlying MELD rate of change

Despite using MELD-Na as basis, we still hypothesized that im-

provement was possible, mainly because baseline ACLF severity

and MELD-Na rate of change would be considered. For the rate

of change, the term ‘slope’ is often used, as the rate of change is

the derivative of the function of MELD-Na values over time. The

concept of MELD-Na’s rate of change (or slope) over time is not new.

Most notably, delta-MELD has been proposed previously.25 However,

the slope generated by the JM differs notably from delta-MELD.

Firstly, the JM slope is based on the assumed true underlying disease

development (see above). Secondly, the JM slope is the derivative

of the measured value at one specific moment in time. In contrast,

delta-MELD is defined as the difference between the current MELD

score and the lowest MELD score in the previous 30 days, divided by

the number of days between the current and lowest scores.25 Thus,

the obtained delta-MELD slopes are averaged over a varying number

of days for different patients and time points. Also, using the lowest

previously measured value overestimates the rate of change, unless

the previous value actually is the lowest. This way, delta-MELD could
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Figure 8.2: Illustration of delta-MELD slope overestimation of disease in-

crease.

indicate increasing disease severity even though a patient was in 
stable condition, see Figure 8.2. Basing treatment decisions on such 
estimates therefore seems inappropriate. In the example, the JM 
slope would be approximately horizontal at 30 days and therefore 
the instantaneous slope at each moment is a better representation 
changing disease.

Lastly, the effect of delta-MELD on waiting list mortality depends on

the number of previous MELD measurements.42 This causes bias for

survival prediction on the LT waiting list, as the severity of disease

determines the number of measurements. For example, a clinician

could increase the frequency of measurement after a patient’s dis-

ease worsens, or vice versa. Thus, measuring MELD and delta-MELD

in sick patients corresponds with death, but an improvement would

likely be less easily observed. Therefore, Delta-MELD depends on the
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number of measurements, which causes bias that will increase its ap-

parent usefulness.26 Despite this bias, the concept of delta-MELD is

used often.5,28,43–48 In our view, this stipulates the need to adequately

incorporate MELD’s rate of change in survival prediction. The JM is

not biased by the number of measurements, as it estimates a contin-

uous underlying trajectory. Still, with increasing measurements avail-

able, the trajectory of the patient will be more accurately reflected.

Personalized predictions

Because JMs consider both the average and individual development

of disease, survival predictions can be personalized. Consider that a

Cox model uses coefficients, derived from a studied population, to

predict outcome. These coefficients can be viewed as the average

parameter-mortality relationships of a studied population. However,

applying these coefficients on an individual level will give only an av-

erage prediction of survival. A patient could ask her physician: “ How

long will I survive with my current disease?” Based on a MELD score,

e.g. 20, the physician could give a prognosis estimate based on pop-

ulation averages counted from baseline. In other words, a correct

answer would be: “ If there would be 100 patients with your MELD

score 20, we estimate that on average 10% will have died within three

months after first waiting list registration.” After this clarification,

questions and uncertainty remain for the patient and possibly also

for the physician, because of several reasons.

First, the patient does not know how ‘average’ she is, that is how well

the average parameter-mortality relation will apply to her. This is why

considering individual patient trajectories through joint-modeling is

valuable. Second, the patient is most likely not at the moment of first

registration but beyond that, at some later point in time, which is why

it is better to use accumulating data over time and update predictions

accordingly. Third, clinicians could also miss that MELD’s predictions

were only validated on baseline populations.7,9,10
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We believe that the personalized predictions can benefit both

the patient and the clinician. The main reason being that the

patient is recognized as unique entity and is not abstracted into

population averages. The clinician can also be more confident

that the predicted prognosis applies to the individual patient.

Therefore, personalized JM predictions were made available at

https://predictionmodels.shinyapps.io/meld-jm/.

Part III: Survival with and without transplantation

Benefit from liver transplantation

The final part of this thesis studies a simple question: “does trans-

plantation improve survival?” In Chapter 6, we investigated whether

LT caused survival improvement for patients on the waiting list. The

difficulty is that such causal effects, that is the difference between

transplanting and not transplanting, cannot be observed, as each pa-

tient is either transplanted or not. It would be considered unethical to

conduct a randomized trial on LT survival benefit. Therefore, coun-

terfactual waiting list survival of transplanted patients was estimated

through inverse probability of censoring weighting (IPCW) analysis.49

Benefit scores were calculated as the difference between survival with

and without LT.

We used sequential stratification and IPCW to predict counterfactual

waiting list survival, which is the waiting list survival of a transplanted

patient if LT would not have been done. We applied these techniques

because patients on the waiting list are transplanted after baseline

and the donor graft is allocated depending on the severity of disease.

See Figure 8.3 below, where four hypothetical patients on the waiting

list are shown (three severely ill, one less ill). In this example, patient 2

is dependently censored at transplantation and therefore survival of
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cross−section transplantation
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Figure 8.3: An illustration of IPCW. Note the change from w=1 to w=2 for

patient 3. D: death, T: transplantation.

remaining and comparable patients is given more weight. Each pa-

tient was listed at a different point in time (t0) and therefore spent

a variable amount of time waiting at the cross-section. Survival is

counted from the moment of cross-section and all patients receive

equal weights (w=1). Due to high disease severity, patient 1 died be-

fore a liver graft became available. Patient 2 survived long enough

and was transplanted. After transplantation of patient 2, patient 3

received more weight (w=2) to compensate for the missing survival

time of patient 2 after censoring. Patient 4 (medium MELD) did not

receive higher weight as its condition was not comparable to patient

2.
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Validity

In the literature, benefit is often defined as the difference between

post-transplant survival and waiting list survival counted from

baseline.50–54 The idea is to match patients with a similar disease

state (e.g., MELD score) either at waiting list registration or trans-

plantation. However, this definition of benefit assumes that two

different patients at two different moments in time will yield survival

curves that can be compared. We argue against these assumptions.

Firstly, the fact that two patients have the same MELD score, perhaps

with some more similarities like age and sex, does not make their

state of disease comparable. We showed this to be true in Part II,

where we showed that 1) previous disease development is different

between two persons and 2) the rate of change in disease severity

significantly influences future survival. This is perhaps best illus-

trated in Figure 4.1. Secondly, following from the previous arguments

and the fact that liver disease typically progresses over time, survival

predictions based on two different moments in time should not be

compared to estimate benefit. Third argument is that the decision

to transplant or not is made at the moment of liver graft offering,

not baseline. Fourth, the fact that MELD and other predictors can

be measured at baseline or at transplantation does not mean that

it is right to use only these, which is the law of the instrument.55

Therefore, by comparing survival within patients based on previous

disease and slope, we provided a more precise and valid definition of

patient disease. Still, the validity of the time-dependent Cox benefit

estimates could have been improved further by using JMs to better

define disease severity.

Reliability

The reliability of benefit estimates was also improved. Firstly, be-

cause we estimated survival from a certain calendar moment in time
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Validity
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(cross-section). This is important, as liver grafts are offered to cross-

sections of patients, where each patient has previously waited a vari-

able amount of time and survival is predicted from that moment on.

Counting survival from baseline instead makes all patients start from

the same moment in time. Secondly, we used weighting to 1) cor-

rect waiting list survival for dependent censoring bias and 2) estimate

waiting list survival as if LT was not available as treatment. Care-

ful consideration of which question is answered by which statistical

method is important when estimating benefit.56 In clinical terms: an

example is making a distinction between the survival before LT and

survival without LT, which are very different (Figure 6.1 ).

Careful consideration argues against using competing risks (CR) anal-

yses to approximate waiting list survival without LT.50–52 CR analy-

sis estimates survival before LT and should be used to evaluate wait-

ing list outcomes: transplantation, death, or removal.56 It would be

wrong to base allocation on CR-predicted future waiting list survival.

To illustrate, consider a patient with MELD 40 (very ill) and a patient

with MELD 20 (reasonably ill). A physician might predict correctly

that the MELD 40 patient has a (much) higher chance of receiving a

LT the next 90 days than the MELD 20 patient, as transplant chances

increase with disease severity. In CR reasoning, we would then argue

that the risk of death for the MELD 40 patient is lowered, as trans-

plantation competes with death. However, it would be perverse to de-

crease allocation priority based on this reasoning, as the high chance

of transplantation for the MELD 40 patient is a result of the high risk

of death. Instead, priority should be based on the risk of death with-

out LT,49,56 which we properly modeled using censorship with adjust-

ment for dependent censoring.

By correctly modeling waiting list survival without LT in the last part

of this thesis, we must acknowledge, due to progressive insight, that

the reliability of the previous survival prediction models in Part I

and II could have been improved further. We modeled survival in
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a censorship framework but did not adjust dependent censoring

bias through IPCW. This should have been done, as the priority for

LT depends on MELD and the Cox model assumes that censored

patients have the same chance of dying as patients who remain on

the waiting list, which is not the case for transplanted patients. Since

transplantation chances increase with MELD, the sickest patients

typically spend the least time on the waiting list, because they are

transplanted (and censored) more frequently and faster. Through

IPCW, after a (high MELD) patient is transplanted, more weight is

given to the remaining and comparable (high MELD) patients, who

can survive some more time on the waiting list. Censoring without

weights, which MELD(-Na) does, therefore leads to an increasing

underestimation of mortality for patients with increasing disease

severity, as death is more frequently prevented through transplanta-

tion (and after censoring outcomes and survival times are unknown).

In other words, by using the unweighted MELD(-Na), current liver

allocation is biased where it matters most, as it underestimates

mortality in the sickest patients.

Logical continuation

Although the clinical relevance of causal models is evident, a prob-

lem is that their prediction performance cannot be assessed (yet).57

Consider for example calibration, where predicted and observed risks

are compared. This comparison cannot be done, as counterfactual

waiting list survival is not observed. We are however confident about

the obtained estimates. Firstly, because simulation studies showed

that the used methods are valid.49,58 Secondly, the future waiting list

survival estimates of transplanted patients are a logical continuation

of observed and corrected waiting list survival. An illustrative analo-

gous example from mathematics is analytic continuation, where the

domain of a function is extended in the only way possible that is pre-
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(a) Right half can be defined (b) Left half cannot be defined, but it can

be continued.

Figure 8.4: Analytic continuation of the Riemann zeta function.

serving certain requirements. Consider Figure 8.4A, where the lines 
in the right half of the plot represent a certain function (Riemann Zeta 
function, source: https://www.3blue1brown.com/lessons/zeta). 
Only the right half is shown, as only this side can be defined by the 
function. The left half of the plot in Figure 8.4B shows the analyti-

cally continued right half, which is continued from the right based on 
requirements such as line angles. However, the left half cannot be de-

fined by the function that plots the right half, even though its continu-

ation is logical and can be visualized. This is analogous to estimating 
without LT survival (left half) based on observed waiting list survival 
(right half), which is a logical continuation based on available data, 
but by definition cannot be observed nor validated.

Although causal models currently cannot be validated, benefit

allocation policy has been based on these methods, most notably

the MELD-Na implementation for patients with MELD>11 and

UK benefit-based allocation.6,30,59 We believe that the predicted

survival without LT as possible treatment best serves as guide for

transplantation assignment in future patients.56,57,60
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Further improvements of causal liver allocation models are possible.

We performed a retrospective study of benefit. However, for prospec-

tive use in allocation, IPCW could be replaced by IPTW, that is in-

verse probability treatment weighting. IPTW differs from IPCW in

that both survival with and without LT are estimated as future hy-

pothetical risks, whereas in the IPCW analysis of Chapter 6 the with

LT survival was retrospectively observed. IPTW further approximates

clinical decision making based on expected outcomes with and with-

out transplantation, as in reality both outcomes are hypothetical at

the moment of liver graft offering. This requires clinicians to be com-

fortable with basing treatment decisions on hypothetical risks from

models that cannot be validated (yet). However, this is what experi-

enced clinicians do intuitively when evaluating an offered donor liver

graft for a LT candidate. Indeed, the statistical machinery required

to approximate clinical decision making is complex. This highlights

the capabilities and intuition required from an experienced physician

who is faced with the decision to transplant or not.

Two principles

We compared LT survival benefit of patients with and without HCC.

This comparison is relevant because different allocation principles

are applied to patients with and without HCC. The group of HCC pa-

tients is intended to be exemplary for other exception patients. With

increasing HCC incidence,61 already inequal LT access might be wors-

ened further.12 For non-HCC patients, LT listing is based on expected

waiting list survival, or the principle of urgency (sickest first). HCC

patients are listed based on Milan criteria, which represent accept-

able post-transplant survival.62 Considering post-transplant survival

is the principle of utility, which ignores HCC waiting list survival and

alternative pre-LT HCC treatment options.63 Moreover, instead of pa-

tient characteristics, artificial exception points are used to express
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HCC waiting list priority, which further worsened the already inequal

LT access between non-HCC and HCC patients.50,64,65 Lastly, HCC pa-

tients within Milan criteria and within one region are prioritized on

waiting time, which is inherently flawed, as waiting longest does not

equal to highest waiting list mortality.66,67 To resolve these issues, we

proposed the use of survival benefit as single equalizing metric. Previ-

ous simulation showed that benefit-based allocation resulted in more

life-years gained from the same number of available liver grafts.30

However, if physicians and policy makers do not endorse benefit as

metric, at least (non-)HCC waiting list survival should be estimated

by a single pre-transplant survival model, which could be similar to

our proposed weighted waiting list model. The use of actual patient

characteristics to estimate both waiting list and post-transplant sur-

vival removes the need for the inherently flawed exception points.

With the availability of HCC waiting list survival prediction models,

there is no need for arbitrary and artificial inadequacy through excep-

tion points, as these are solely needed to compensate MELD(-Na)’s

inability to predict waiting list survival in patients with preserved liver

function. Policy and research should focus on collecting data and

establishing models that adequately predict survival. This would re-

move the ongoing time-consuming arbitrary changes required for the

exception point system. Survival prediction and liver graft alloca-

tion should be based on actual patient characteristics, not arbitrary

points.
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Simulation

Throughout this thesis, several methods were applied to estimate

new model impact on the LT waiting list. We used reclassification

tables, new-to-old score differences, or estimated changes in waiting

list priority. These methods were used because reviewers and poli-

cymakers requested evidence of possible model impact on current

waiting list outcomes. Although understandable, it is difficult and

likely impossible to reliably estimate the impact of a new model on

the allocation system. The best way to evaluate the effects of a new

model is to implement it. The next best option is evaluation through

simulation. For the Eurotransplant region, a simulation program

is currently missing. An important future direction of research

could therefore be the construction of what could be called the

Simulation of the Eurotransplant Liver Allocation System (SELAS).

SELAS would improve both Eurotransplant allocation research and

policy. It would also help Eurotransplant regain its leading role in

organ allocation and development. Realization of SELAS seems

feasible given the existing collaboration between Eurotransplant

International Foundation and the Technical University Eindhoven,

as the latter has considerable experience with simulation models.

The longstanding cooperation between Eurotransplant and the

Leiden University Medical Center would then ensure integration of

allocation, statistical methodology, and clinical knowledge.

In the U.S.A., a liver simulation program is available, that is the

Liver Simulated Allocation Model (LSAM). LSAM lets users change

existing allocation rules and simulate the effects in historical US data.

Indeed, US allocation research is often complemented by simulation

evidence. Still, simulated results should be interpreted with care.

Evaluation of LSAM showed that although trends were adequately

estimated, exact numbers of waiting list deaths and transplants

were over- and underestimated, respectively.68 Also, simulation
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performance was significantly w orse for p ediatric p atients,69 which 

indicates that simulations might be unreliable for yet undefined 

subgroups.

Even simulation programs have limitations. Therefore, researchers 

should rely on their methodology and clinical experience. Consider 
for example the refit coefficients in Chapter 3. We presented signi-

ficant improvements in fit, discrimination, and accuracy. 

Although these metrics are important evidence, improvement was 

most intu-itively shown through visual representation of new and 

old coefficients Figure 3.3. These clearly showed that reMELD(-Na) 

better represents the Eurotransplant population and therefore will 

likely better predict risk in future LT candidates. Simulation of 

evidence therefore has a role in the path of implementation, but 

sound methods and reasoning should be considered most important.

New model implementation

Possibilities are investigated to alleviate the shortage of available 

donor organs, such as more liberal donor criteria, living donation, 

machine perfusion, organoids, and xenotransplantation. Whatever 

improvements might be made, survival prediction will remain 

paramount to decide which patient should be treated. For example, 

with machine perfusion techniques, a larger number of liver grafts 

will likely become available and will be preserved longer outside the 

donor. This could imply more widespread allocation of organs to find 

the best match with the recipient. Also, with more time available, 

more complex calculations could be done to estimate outcomes of 

possible donor-recipient combinations. These calculations could be 

based on causal inference models, JMs, or ideally a combination of 

both.

For now, the shortage of donor organs persists. As mentioned, cur-

rently the principle of urgency is used for liver allocation, by prioritiz-
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ing the sickest patients first. Eurotransplant has maintained this basis

since 2006. In this thesis, we showed that significant improvements

in survival prediction are possible. Understandably, reasons beyond

clinical relevance and statistical significance determine model im-

plementation. Because of (inter)national interests within Eurotrans-

plant, changes in allocation are not easily implemented. Still, in our

view, refit MELD (reMELD) would be relatively easy to implement, as

no changes in the data structure of Eurotransplant would be required.

We therefore urge Eurotransplant policy makers to consider that the

refit models were a significantly better fit to the current Eurotrans-

plant population, that ranking patients from most to least ill (discrim-

ination) was significantly improved, and that refit model mortality

risk estimates were more accurate. Implementation of (refit) MELD-

Na would also not be very difficult, since sodium is a readily available

laboratory measurement, that is almost always assessed in combina-

tion with creatinine. Again, the significant prediction improvements

should form sufficient rationale for further allocation improvements.

Other additions to MELD could also be considered, such as serum

albumin, von Willebrand factor and C-reactive protein.18,20,70 A prob-

lem is that these variables are not collected within Eurotransplant.

Several aspects of MELD, that are not evidence based, can however be

improved without changing existing data registries.19 Arguably one

of the most important and counter-intuitive aspects is MELD’s up-

per bound of 40, which means that patients with MELD>40 receive a

score of 40. Therefore, allocation stops considering disease severity

in the sickest patients. Already in the first validation study of MELD,

MELD’s relation to 90-day risk of death was plotted and showed an

increasing waiting list mortality above MELD 40.7 Recent evaluation

confirmed this finding, without increased post-transplant mortality

for recipients with MELD>40.71 It therefore makes clinical sense to

remove the upper border of MELD in order to improve allocation for

the sickest patients. Other suggestions to improve MELD were men-
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tioned previously in this thesis, like removing arbitrary lower and up-

per bounds and using survival probabilities as primary metric.

The implementation of JMs for allocation would require more effort.

Eurotransplant would need to ensure that longitudinal data of each

listed patient is available every time a liver graft is offered. However,

if using one measurement per patient is possible, it should also be

possible to use multiple, as these longitudinal data are stored by Eu-

rotransplant. The computation of JM survival predictions would re-

quire notably more time than calculating MELD, as simulations are

done for each patient. However, we believe that the advantages of

correctly specified JMs are convincing. Also, although the JMs were

trained in large patient cohorts, their practical application for the Eu-

rotransplant waiting list would mean calculating survival for several

hundred patients, which is done within minutes. Considering previ-

ous and current data for each patient on the waiting list would be a

major improvement.

From urgency to benefit

Deciding how to allocate scarce medical interventions is relevant, as

the recent COVID pandemic has shown for vaccines and ICU beds.

The COVID pandemic also showed that with increasing resource

scarcity, a shift in allocation principle could be warranted, that is

from a ‘first come first served’ to a benefit-based approach.72

In the field of LT, organ demand persistently exceeds supply, which

argues against sickest-first allocation.67 This is because prioritizing

the sickest ignores currently less ill patients that might gain more

from treatment or who could be worse off in the future as disease

progresses. Therefore, sickest-first allocation can only be just if

the scarcity is temporary, which is not the case. This does evoke

questions on how to handle high-urgency patients, as these patients

are the pinnacle of urgency-based allocation and receive priority
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over other patients that have higher waiting list mortality.31,49,73 

Another extreme of urgency are multi-organ transplants. These 

possibly save only one life, whereas each of the organs could have 

saved a patient. Saving more lives is arguably more just. Finally, 

re-transplantations would require similar reconsideration of urgency 

and benefit,73 as the highest priority is given to patients who might 

gain little and, perhaps more importantly, the liver is then denied 

to another recipient. Although benefit will not resolve all allocation 

issues, it is an inherently more just and therefore a better principle 

than urgency alone.67

We devised methods that predict survival benefit from LT. This opens 

the possibility for the change from urgency- to benefit-based alloca-

tion. It is however important to recognize that US data were used 

for the calculation of benefit. These US data encompass more LT 

candidate variables, that allow better estimation of future waiting list 
survival. Currently, Eurotransplant registers fewer LT candidate va-

riables. It is easy to see that this will cause delay in allocation 

development, especially compared to other regions. This is arguably 

already the case, as the Eurotransplant liver allocation was 

last majorly revised in 2006. During this period, survival 

prediction models in US liver graft allocation were investigated and 

significantly improved. In our view, Eurotransplant should strive for a 

data registry structured much like UNOS, which allows researchers 

easy access to anonymized data. This in turn generates evidence 

upon which policy can be based. In our view, Eurotransplant 

should also provide a central platform where professionals and 

patients can gain insight in allocation policy and evidence. 

Transparency created through inter-active statistics and accessible 

prediction models would greatly improve Eurotransplant’s scientific 

basis and would perhaps place more trust in the organization. Most 

importantly, patients deserve to know their estimated prognosis of 

waiting for or accepting an organ. 
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To this end, in this thesis, we provided several prediction models in 

interactive online applications. The aim was to increase insight for 

both clinicians and patients.

Another possible solution for the advancement of liver allocation, 

despite the missing data across Eurotransplant, could be detailed 

national allocation based on more detailed hospital data. This alloca-

tion could be either benefit- or urgency-based, as long as one model 

is used to calculate future waiting list survival, preferably corrected 

for dependent censoring. Most organs are allocated nationally, that 

is 83.4% of MELD-allocated liver grafts in Belgium, Germany, and 

The Netherlands ( data not published ), which also ignores possibly 

sicker recipients abroad. Therefore, it seems feasible to abandon the 

sickest-first principle and to implement benefit-based allocation on 

a national level. This way, each country would be responsible for 

the method and accuracy of its survival prediction and subsequent 

allocation. International organ exchange would then be based on 

Eurotransplant standards.

Conclusion

In conclusion, this thesis investigated survival prediction models in 

the setting of LT, where organ scarcity and allocation necessitates 

continuous development of such methods. Statistically signifi-

cant and clinically relevant advancements were demonstrated that 

could improve liver allocation through better survival prediction for 

patients on the waiting list.
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Letter

With great interest we read the study by Kim et al.1 In this work, the

authors showed that MELD-Na performance is improved by includ-

ing serum albumin levels, LT candidate sex, a creatinine cap set to 3

mg/dL, and significant interactions. Most notably, the MELD 3.0 con-

cordance statistic (c-index) was 0.869, versus a MELD-Na c-index of

0.862. However, we have some concerns regarding this study.

First, the authors report only discrimination (c-index) as model per-

formance indicator. Indeed, high discrimination is important when

ranking patients for LT, as it ensures that the model prioritizes the

sickest patients. However, when basing treatment decisions on esti-

mated mortality risks, it is vital to assess and report how accurate risks

are estimated, i.e., model calibration. This is because a badly cali-

brated model can still have a high c-index, but treatment decisions

should not be based on such a model.2 Model calibration is typically

reported with calibration plots, that give insight in possible over- or

underestimation of risk. Previous work showed that MELD-Na over-

estimated risks for the sickest patients.3,4 More importantly, recent

study found that MELD predicted risks inaccurately.5 Therefore, the

authors cannot conclude that “MELD 3.0 affords more accurate mor-

tality prediction,” as calibration was not reported. It would be inter-

esting to assess and report MELD 3.0 calibration, especially for male

versus female LT candidate sex.

Second, the authors report net 8.8% reclassification of deceased pa-

tients from a lower MELD-Na stratum to a higher MELD 3.0 stratum,

for women this number was 14.9%. The idea is that higher MELD 3.0

scores thus better reflect mortality risks. The first important concern

with proving MELD 3.0 prediction improvement through reclassifi-

cation methods is that a poorly calibrated model can show improved

prediction performance, even when this is not possible.6 These false

effects can be found both in actual cohorts and simulated data. In
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part, this is due to the fact that the actual waiting list population

cannot be separated into the suggested MELD strata (6-9, 10-19, etc.).

Instead, when evaluating added biomarkers, measures like the Brier

score, that simultaneously assess discrimination and calibration,

should be used in independent validation data.6 A second concern is

that reclassification allows for ‘stage migration bias,’7 i.e., assigning

patients to new strata improves strata-specific survival, even though

survival of individual patients has not changed. The sickest patients

from a lower MELD-Na stratum are moved to a higher MELD 3.0

stratum and survival is better in both strata. Therefore, stating that

MELD 3.0 will lower deaths on the waiting list based on reclassifica-

tion tables must be done cautiously, as this can inflate within-strata

survival rates.

Third, the authors keep the lower borders of bilirubin, creatinine,

and INR set to 1. These borders were chosen 20 years ago, to prevent

negative logarithm transformation in the linear MELD formula. The

more pressing clinical fact is that a substantial number of patients on

the waiting list had creatinine (55%) and bilirubin (24%) values below

1 mg/dL at first registration.8 Including these lower measurements

when predicting survival would be a better representation of the

actual waiting list and would place the higher values in a more appro-

priate context, especially considering the lower creatinine values for

women. Also, even though linear models are more easily understood

and used, non-linear effects are clearly present (creatinine, sodium,

and albumin). Therefore, flexible models could be considered to

model more measurements and their non-linear effect on mortality.

In conclusion, MELD 3.0’s accuracy must be proven before it can be

considered as new allocation model, e.g., with calibration plots and

Brier scores. Reclassification cannot be used alone to prove clinical

improvement. We agree with the authors that efforts should be made

to continuously improve MELD and liver graft allocation, but appro-

priate evidence must be presented.
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Letter

With great interest we read the article by Hernaez et al.1 The authors

showed that predicted survival by the Model for End-stage Liver Dis-

ease sodium (MELD-Na) score underestimated the observed survival

in acute-on-chronic liver failure (ACLF) patients. As a result, ACLF

patients might be underserved in the MELD-Na-based allocation of

donor livers. We agree with the authors that the MELD-Na score is

not optimal for ACLF patients. However, we suggest several consider-

ations for this paper.

First, the authors state that “it is unclear whether MELD-Na captures

clinical severity” in ACLF patients. Considering the available liter-

ature, it is clear that the disease course of ACLF is not captured by

MELD-Na, especially for ACLF-3 patients.2 In their large UNOS anal-

ysis, Sundaram et al. already showed ACLF death and removal rate to

be independent of MELD-Na score, as mortality rates were highest in

MELD-Na <25 and ACLF-3 patients.

Second, the MELD-Na accuracy of mortality prediction in ACLF pa-

tients is questioned. The CLIF score, specifically developed for ACLF

patients, achieved a 90-day mortality concordance statistic (c-index)

of 0.76, whereas the MELD-Na had a c-index of 0.67.3 The c-index

shows how accurate the model can discern between life and death,

by pairwise patient comparisons in the given data. The discrimina-

tion of both scores is not optimal. Given that the MELD-Na was not

developed for ACLF patients, but for chronically-ill patients at listing

for liver transplantation (LT), its discrimination seems respectable.

The current allocation system is based on MELD-Na because, for the

majority of patients with chronic liver disease, MELD-Na offers ex-

cellent performance.4,5 Still, the authors showed that MELD-Na and

thus transplant chances increased with higher ACLF grades, with me-

dian MELD scores of 24, 27 and 32 for ACLF grade 1-3 respectively.

The authors do not focus on the c-index as the main model perfor-



210 CHAPTER 10. THE ROLE OF JM

mance indicator but assess the calibration instead. The expected and

observed mortality rates in ACLF patients were compared. One could

question the assessment and main focus of calibration if the model

captures few relevant factors in these patients. Even in cirrhotic pa-

tients, for whom MELD-Na was designed, the MELD-Na becomes less

reliable with increasing disease severity.4,5

Third, the authors showed that LT was not often considered/performed

in ACLF patients. Many patient-specific and center-level factors in-

fluence the evaluation for LT. Still, ACLF showed a positive association

with LT, which was higher than for non-ACLF patients. Patient ex-

clusion from transplantation is most likely due to expected futile

efforts. The fact that the allocation system is MELD-Na based, does

not change that. As Nadim et al. stated: “while scoring systems

for ACLF may help centers decide who to transplant, the scores do

not affect organ allocation; it is still the MELD score that ultimately

determines organ allocation in most countries, including the US.”6

Granting exception points or status 1 may be the best option for the

small number of ACLF patients listed for LT.

Finally, Hernaez et al. note that “future research should also focus

on developing and validating prognostic scores that incorporate dy-

namic changes in patients clinical course” and that they “did not cap-

ture longitudinal changes of ACLF scores over time.” Traditional Cox

models, like the MELD-Na, make assumptions that often do not hold

in the data and use only one measurement in time for survival pre-

diction. Thus, dynamic changes are not modeled and longitudinal

data is ignored. For dynamic prognostic modeling of longitudinal

data, joint models (JM) present an appropriate method of captur-

ing changing disease severity.7 The JM adequately links longitudinal

measurements to survival analysis by combining mixed-effect and

Cox models. It considers all past measurements, changes in values

and the rate of change at every point in time and uses this for patient-

specific predictions that are updated based on every new available
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measurement. This is valuable for ACLF patients. In simulation stud-

ies, the JM outperformed Cox models with less biased results.8–10

In conclusion, the MELD-Na underestimates survival in ACLF pa-

tients because it uses only some of the relevant prognostic factors

for ACLF patient survival. Joint models should be considered to

dynamically predict patient-specific survival based on repeated

measurements.
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216 SUMMARY IN DUTCH

Verbetering van voorspellingsmodellen voor 
levertransplantatiekandidaten

Een levertransplantatie is levensreddend voor patiënten met een 

leverziekte. Omdat niet iedere patiënt (direct) kan worden geholpen, 

worden patiënten op een wachtlijst geplaatst. Op deze wachtlijst 

wordt de volgorde bepaald door de ernst van de ziekte: de ziekste 

patiënten gaan eerst. De ziekte-ernst wordt ingeschat door de 

toekomstige wachtlijstoverleving te berekenen. Hoe lager de toe-

komstige wachtlijstoverleving, hoe hoger de prioriteit. De methode 

van het inschatten van overleving is dus van levensbelang voor deze 

patiënten. Dit proefschrift onderzoekt nieuwe modellen voor het 

voorspellen van de overleving rond levertransplantatie.

Deel I

In Hoofdstuk 2 werd een verbetering onderzocht van het huidige mo-

del dat de wachtlijstvolgorde bepaalt: de ‘Model for End-stage Liver 

Disease’ (MELD) score. Specifiek werd onderzocht of het uitbreiden 

van de MELD score met natrium (MELD-Na) een verbetering zou ge-

ven van de sterftevoorspelling op de wachtlijst. We vonden dat een 

laag natrium (hyponatriëmie) de kans op wachtlijststerfte verhoogt. 

Patiënten met een natrium van 125 mmol/L hebben een 2.9 (95%CI 

2.30-3.53; p<0.001) keer grotere kans op sterfte binnen 90 dagen dan 

patiënten met een normaal (140 mmol/L) natrium. Vergeleken met 

de MELD score was de MELD-Na score een significant betere voor-

speller van overleving, met een een c-index van respectievelijk 0.832 

en 0.847. Een c-index waarde dichter bij de 1.0 is beter en betekent 

dat een model beter patiënten kan rangschikken op de wachtlijst van 

meest naar minst ziek. Waarschijnlijk zal het gebruik van de MELD-

Na score voor leverallocatie de wachtlijststerfte verlagen omdat de
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mate van hyponatriëmie wordt meegenomen en dus wachtlijststerfte 
preciezer wordt ingeschat.

Aangezien de huidige vorm van de MELD score 20 jaar geleden werd 
ontworpen in de Verenigde Staten, werd in Hoofdstuk 3 onderzocht 
of het herwegen van de MELD score in de Eurotransplant regio een 
betere overlevingsvoorspelling zou geven. Het lijkt gek om een Ame-

rikaans model te gebruiken om Europese patiënten te prioriteren. We 
onderzochten de relatie van de MELD parameters (serum kreatinine, 
bilirubine en de INR) en het natrium met de 90-daagse sterftekans 
op de wachtlijst. We vonden dat nieuwe afkapwaardes voor de 
MELD parameters en het natrium resulteerden in significant betere 
modellen: de refit MELD en refit MELD-Na. De nieuwe modellen 
waren preciezer in het rangschikken van patiënten op de wachtlijst. 
Vergeleken met de MELD, prioriteerde de refit MELD-Na score pa-

tiënten met een 1.6 keer hogere 90-daagse wachtlijststerfte. Op basis 
van de refit modellen zouden donorlevers dus beter verdeeld kun-

nen worden omdat de ziekste patiënten beter geïdentificeerd kunnen 
worden. Hierdoor zou sterfte op de wachtlijst kunnen worden voor-

komen.

Deel II

In het tweede deel van dit proefschrift werden metingen over de tijd 

gebruikt om tegelijkertijd ziekte en overleving te modelleren. Het idee 

was om een betere benadering te geven van de manier waarop een 

arts de prognose van een patiënt inschat. Een arts zal altijd het ziek-

teverloop uit het verleden meenemen om de prognose in te schatten. 

Het is daarom onlogisch dat de huidige modellen die wachtlijstvolg-

orde bepalen alle voorgaande beschikbare metingen negeren, net als 

een arts die niet meer weet wat er gisteren is gebeurd. Met de tech-

niek van joint models (JMs) namen we alle beschikbare data over de 

tijd mee in voorspellingen van overleving. Hierbij werd gekeken naar
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zowel de gemeten ziekte-ernst als de mate van verandering. Een ana-

logie voor ziekte-ernst en verandering is hardlopen. Je kunt met een 

bepaalde snelheid rennen (bijvoorbeeld 3 m/s) en daarbij versnellen 

(bijvoorbeeld met 1 m/s2) of vertragen. De verandering geeft dus mo-

gelijk belangrijke informatie over ziekte.

Hoofdstuk 4 toont de eerste toepassing van JMs in levertransplan-

tatiekandidaten. De analyse van MELD(-Na) metingen over de tijd 

werd gecombineerd met overlevingsanalyse. Hierdoor kon het ef-

fect van ziekteverandering over de tijd op overleving worden bestu-

deerd. We vonden dat zowel de gemeten MELD(-Na) score als de 

mate van verandering over de tijd een belangrijke invloed hadden 

op wachtlijstoverleving. De JMs waren significant beter in het voor-

spellen van wachtlijststerfte dan de huidige modellen die wachtlijst-

volgorde bepalen. De JMs zijn een belangrijke verbetering omdat alle 

beschikbare metingen over de tijd werden gebruikt, waarbij zowel de 

ziekte-ernst als de mate van verandering werden meegenomen, zodat 

persoonlijke voorspellingen konden worden gedaan. Ook werden de 

voorspellingsmodellen in een online applicatie geplaatst, waarmee 

gebruikers data van individuele patiënten kunnen uploaden om JM 

voorspellingen te krijgen voor wachtlijstoverleving.

In Hoofdstuk 5 onderzochten we hoe JMs, die nieuwe voorspelling-

en maken voor elke nieuwe meting over de tijd, overleving voorspel-

den in patiënten met Acute-on-Chronic Liver Failure (ACLF). ACLF is 

een dodelijke ziekte die snel verandert over de tijd. Daarom is het be-

langrijk dat een voorspellingsmodel meeverandert, hetgeen een JM 

kan. We vonden dat een aanzienlijk deel van de patiënten op de le-

verwachtlijst een vorm van ACLF had. Het huidige model dat overle-

ving voorspelt (MELD-Na score) had een slechte c-index (capaciteit 

tot rangschikken op de wachtlijst) met oplopende ziekte-ernst. Hier-

door wordt de huidige wachtlijstprioriteit minder nauwkeurig in zie-

kere patiënten. Dit is ongewenst. De JMs waren nauwkeuriger en ble-

ven dat ook in de ziekste patiënten. Met de JMs konden nauwkeuri-
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gere voorspellingen worden gegeven, voor zowel de populatie als het

individu.

Deel III

In het laatste deel en Hoofdstuk 6 onderzochten we hoeveel le-

venswinst patiënten kregen door levertransplantatie. Het verschil 
in overleving met en zonder levertransplantatie werd berekend 
en vergeleken tussen patiënten met en zonder hepatocellulair 
carcinoom (HCC). We vonden dat patiënten met HCC een hogere 
wachtlijststerfte hadden en meestal bij lagere MELD(-Na) scores 
werden getransplanteerd dan niet-HCC patiënten. Doordat HCC 
patiënten bij lagere MELD(-Na) werden getransplanteerd, haalden ze 
minder levenswinst uit levertransplantatie datn  niet-HCC patiënten, 
die vooral bij hogere MELD(-Na) scores werden getransplanteerd. 
Leverfunctie was de belangrijkste voorspeller van overlevingswinst 
en daarom kregen patiënten zonder HCC gemiddeld meer levens-

jaren van transplantatie. Gezien de schaarste van donorlevers zou 
men dus kunnen overwegen om HCC patiënten zoveel als mogelijk 
zonder levertransplantatie te behandelen.

In conclusie werden er in dit proefschrift modellen onderzocht die

overleving voorspellen in levertransplantatie. De statistisch signifi-

cante en klinisch relevante verbeteringen kunnen worden gebruikt

om de huidige leverallocatie te verbeteren.
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