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Chapter 5

Abstract

Breast cancer largely dominates the global cancer burden statistics,
however, there are striking disparities in mortality rates across countries.
While socioeconomic factors contribute to population-based differences in
mortality, they do not fully explain disparity among women of African (AA)
and Arab (ArA) ancestry compared to women of European ancestry (EA). In
this study, we sought to identify molecular differences that could provide
insight into the biology of ancestry-associated disparities in clinical outcome.
We applied a unique approach that combines the use of curated survival
data from the TCGA Pan-Cancer clinical data resource, improved SNP-
based inferred ancestry assignment and a novel breast cancer subtype
classification to interrogate the TCGA and a local Arab breast cancer
dataset. We observed an enrichment of BasalMyo tumors in AA patients
(38% vs 16.5% in EA, p=1.30E-10), associated with a significant worse
overall (HR=2.39, p=0.02) and disease specific survival (HR=2.57, p=0.03).
Gene set enrichment analysis of BasalMyo AA and EA samples revealed
differences in the abundance of T regulatory and T helper type 2 cells, and
enrichment of cancer-related pathways with prognostic implications (AA:
PIBK-Akt-mTOR and ErbB signaling; EA: EGF, estrogen dependent and
DNA repair signaling). Strikingly, AMPK signaling was associated with
opposing prognostic connotation (AA: 10yr-HR=2.79, EA: 10yr-HR=0.34).
Analysis of ArA patients suggests enrichment of BasalMyo tumors with a
trend for differential enrichment of T regulatory cells and AMPK signaling.
Together, our findings suggest that the disparity in clinical outcome of AA
breast cancer patients is likely related to differences in cancer-related and
microenvironmental features.
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Introduction

As we enter an era of personalized medicine in oncology, large-scale studies have been
instrumental in deciphering the pathogenesis and evolution of tumors. Public data repositories
such as The Cancer Genome Atlas (TCGA) have enabled researchers to define the genomic
landscape of different types of cancers, including breast cancer. The public availability of large-
scale datasets has led to a surge in candidate drug targets and novel prognostic and/or predictive
gene signatures. However, it is important to note that the majority of patients in public datasets
are of European ancestry and hence, the knowledge gained from such studies might not be
applicable to patients of a different ancestry'. Given the global disparities in clinical behavior of
breast cancer, it has become imperative to investigate ancestry-associated differences in tumor
biology.

Breast cancer in women of African ancestry (AA) presents at a younger age, and is
associated with more advanced disease and higher mortality rates as compared to breast cancer
in age-matched patients of European (EA) or Asian (AsA) ancestry?-1°. Several reports have
demonstrated an increased frequency of the more aggressive triple negative breast cancer
(TNBC) subtype and of the PAM50-molecular basal subtype in AA women”-6. Moreover, African
American women with early stage TNBCs have been shown to exhibit a lower pathological
complete response to neoadjuvant chemotherapy'’. Interestingly, this discrepancy in clinical
outcome remains after correcting for socioeconomic factors, suggesting the presence of
molecular differences by ancestry'819. The African American breast cancer epidemiology and risk
consortium identified few rare germline single nucleotide polymorphisms (SNPs) that are
associated with an increased risk of hormone receptor negative breast cancer and/or TNBC in
African-American women2021, Analysis of genotypic traits revealed that most somatic mutations
and copy number variations are subtype specific rather than ancestrally determined?223. Very few
mutations showed dissimilar frequencies across African, African American or European American
patient subgroups when considering a specific breast cancer subtype. Likewise, numerous
differentially expressed genes have been identified between breast tumors of patients of African
and European ancestry?+-28, however, there is little to no evidence linking these findings to
differences in breast cancer survival or subtype-specific survival in relation to ancestry. Therefore,
differential expression of genes involved in biological processes such as differentiation, cell cycle,
DNA repair, invasion, metastasis, and angiogenesis could be related to the higher proportion of
triple negative breast tumors in the African-American population. To address this, several studies
investigated molecular differences within TNBC tumors of African American and European
American patients. TNBC tumors of African American women were shown to display enrichment
of gene sets related to a high proliferative rate, high genomic grade index, BRCAT1 deficiency,
increased activation of insulin-like growth factor 1 receptor (IGF1R) and increased angiogenesis,
closely resembling the basal like-1 TNBC subtype gene signature as described by Lehmann et
al?328-33_|n addition, it has been suggested that an abundance of cancer stem cells might in part
contribute to the worse survival of African American women with TNBC tumors34-38.

Given the importance of immune cell infiltration in determining the prognosis and treatment
response of breast cancer, and especially in TNBC, it is important to investigate whether
differences in anti-tumor immunity may contribute to the divergent clinical behavior of breast
cancer across populations®-4. To date, this phenotypic aspect of breast cancer is largely
unexplored in the context of ancestry. Interestingly, systemic levels of pro-inflammatory cytokines
such as IFN-y and IL-6 have been found to be elevated in both healthy African American women
and those affected with breast cancer as compared to European American women, suggesting
ancestry-inferred differences in the immune response that might affect anti-tumor immunity and
ultimately breast cancer clinical outcome#344. In contrast, only subtle differences in immune gene
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signatures related to immune cell infiltration were found in TNBC tumors of women of African
ancestry2245,

In this study, we applied a unique approach to explore ancestry-associated heterogeneity of
breast cancer outcome. First, we used improved and curated survival information from the TCGA
Pan-Cancer clinical data resource (TCGA-CDR)“6. Second, we applied SNP-based inference of
ancestry4748 to improve ancestry assignment, enabling us to include a substantial number of
additional patients from the TCGA dataset in our analysis thereby increasing the power of our
study. Third, we performed a comprehensive transcriptomic analysis of both immunological and
cancer-cell intrinsic parameters within breast cancer subtypes as defined by a novel PAM50
classification. This refined classifier utilizes a combination of Topological Data Analysis (TDA)
signatures of normal mammary cell types (basal epithelial cells, luminal epithelial cells,
myoepithelial cells, and Her2-related expression) to subgroup breast tumors into 7 distinct
molecular subtypes with prognostic value#®. Using this combined novel approach, we interrogated
the TCGA breast cancer dataset, comprising of patients of African (n=184), European (n=811)
and Asian (n=56) ancestry; and a local Arab/Asian breast cancer dataset from Qatar (n=24) for
ancestry-specific molecular differences in breast cancer.

Methods

Patient cohorts

Two different breast cancer cohorts were included in this study; the public available TCGA
breast cancer dataset and a local cohort from Qatar.

RNA sequencing data from the TCGA breast cancer cohort (n=1082 patients) was
downloaded using R (v3.5.1) and TCGA Assembler (v2.0.3,%°). Sample data were extracted
ensuring a single primary tumor sample per patient using the TCGA Assembler
“ExtractTissueSpecificSamples” function. Clinical data for all patients were obtained from the
TCGA-CDR“. Patient ancestry was obtained using SNP-based inferred ancestry data, focusing
on the European, Asian, and African clusters4748. To visualize major ancestry clusters within the
TCGA BRCA cohort PCA results of Jian Carrot-Zhang were used to plot PC1 versus PC2 using
ggplot “8. Using these data, we were able to include 108 patients that previously had no reported
ancestry. As SNP-based ancestry had a very high concordance with reported ancestry (99.1%),
we decided to also include 63 patients for which only self-reported ancestry was available. We
excluded 31 patients from our ancestry-based analyses. Firstly, 16 patients with American
inferred ancestry as the number of samples in this cluster is limited as well as one patient who
self-identified as not Hispanic or Latino. Secondly, six patients without self-reported or inferred
ancestry and thirdly exceptional cases of discordance between self-reported and SNP-based
ancestry (n=8; 0.9%) were excluded. The final TCGA breast cancer cohort used for analysis
comprised of 1051 patients (811 of European, 184 of African and 56 of Asian ancestry). The tumor
non-silent mutation rate, predicted neoantigen load, and aneuploidy score were obtained from
Thorsson et al.?', and predicted versus expected neoantigen values were extracted from Rooney
et al’s2.

The RA-QA patient cohort constitutes a breast cancer cohort from Qatar (n=24 of which 16
of Arab ancestry) with patients that were newly diagnosed with breast cancer between 2004-2010
at the National Centre for Cancer Care and Research in Doha. Clinical information and self-
reported ancestry were extracted from the medical records. The study was approved by the local
ethical committees of the Hamad Medical Corporation (study approval number #14027/14), the
Qatar Biomedical Research Institute (study approval number #2016-002), and Sidra Medicine
(study approval number #1711015664), and was performed in accordance with the ethical
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standards of the institutional and/or national research committee and with the 1964 Helsinki
Declaration and its later amendments or comparable ethical standards. The study protocol was
granted waiver of informed consent under the condition of anonymization and no additional
intervention for the participants.

Total RNA sequencing

RNA was isolated from four 20 um sections of Formalin Fixed Paraffin Embedded (FFPE)
tumor samples of the RA-QA cohort using the AllPrep DNA/RNA FFPE kit (Qiagen, Germany),
followed by a quality control for purity and integrity by the Agilent Bioanalyzer system. Total RNA
was depleted from ribosomal RNA and random primed for cDNA synthesis using the TruSeq
stranded total RNA kit (llumina, USA). RNA sequencing was performed on the lllumina
HiSeq2500 platform (lllumina) with Paired End 25X coverage (PE100-125). The FASTQ files were
trimmed to remove adaptor sequences using flexbar (v3.0.3,%%) and aligned to GRCh37/hg19
reference genome using hisat2 (v2.0.5,54), resulting in an average 10-15M aligned reads. Reads
were counted to genomic features using subreads (v1.5.5,55). For both the TCGA and RA-QA
cohort, RNA-seq data was corrected for GC content and normalized within and between lanes
using the R package EDASeq (v2.12.0,%), and quantile normalized using the preprocessCore
(v1.36.0,57).

Intrinsic molecular subtype classification

The intrinsic molecular subtype of each tumor sample was defined by the differential
expression of a set of 50 genes (PAM50) using two distinct algorithms. First, the R package
bioclassifier R was used to predict sample subtype according to the Parker et al subtype
predictor58. Second, a more recent classification model was applied using a robust classifier that
integrates the PAM50 gene signature with Topological Data Analysis, resulting in 7 subgroups
with well-defined gene expression patterns*®. The TDA classifier is based on the observed
expression of five gene groups, basal (a), myo1 (b), myo2 (c), luminal (d), and Her2 (e) (Figure
1A). The nomenclature of the identified TDA classes directly reflects the observed gene groups,
e.g., BasalHer2 samples are characterized by increased expression of the basal (a) and the Her2
(e) gene groups, and LumBasal samples by basal (a) and luminal (d) gene expression etc. An
explanatory summary of the characteristics of the different TDA classes is included in Figure 1A.
Sample clustering according to both classification methods was visualized in a PAM50-based
heatmap using the R package ComplexHeatmap (v1.20.0,%9). Circos plots using the R package
circlize (v0.4.6, €°) depicted TDA reclassification of samples in comparison to PAM50 subtyping.
The distribution of TDA subtypes within ancestries was assessed using stacked barplots and chi
square tests.

Immunologic Constant of Rejection consensus clustering

Consensus clustering of samples according to the expression values of 20 ICR genes was
performed using the ConsensusClusterPlus (v1.42.0,8") R package with the following parameters:
5.000 repeats, and agglomerative hierarchical clustering with ward criterion (Ward.D2) inner and
complete outer linkage as previously described®263. The optimal number of clusters for best
segregation of samples was determined using the Calinski-Harabasz criterion with samples in
intermediate clusters defined as “ICR Medium”. Samples of the TCGA dataset were clustered into
3 groups; ICR low (cluster 1), ICR medium (clusters 2 and 3) and ICR high (cluster 4). Due to the
small number of samples, the RA-QA cohort was divided into 2 groups; ICR Low (cluster 1, 2, 3)
and ICR High (cluster 4).
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Single sample gene set enrichment analysis

Enrichment of specific gene sets, reflecting either abundance of immune cell populations or
expression of tumor related pathways, was defined by single sample gene set enrichment
analysis (ssGSEA) using R package GSVA (v.1.30.0, %4)%. Gene set signatures of 24 distinct
immune cell types or leukocyte subgroup enrichment scores were used to deconvolute immune
cell abundance®®. Gene sets comprising numerous tumor-related pathways were obtained from
multiple sources, including the Molecular Signatures Hallmark®” and Ingenuity Pathway Analysis
(IPA) gene set collections and several signatures that have been associated with tumor immune
escape®-71. Gene signature enrichment scores were compared based on ancestry using the 2-
tailed unpaired t-test.

XGBoost model

We utilized an optimized version of the white-box, non-linear, ensemble gradient boosting
machine called XGBoost to build our cox-regression model for survival analysis’>73. Gradient
Boosting is a machine learning technique based on a constructive strategy by which the learning
procedure will additively fit new models, typically decision trees’# and repetitively leverage the
patterns in residuals to provide a more accurate estimate of the response variable or time to event
i.e. death in case of survival analysis. The patients who are alive are considered as right censored
and since the XGBoost model takes only one label for the response variable as input, the
censored survival information is converted to negative labels while performing the cox
proportional hazards modelling’. XGBoost is a scalable machine learning technique for tree
boosting, a learning technique to improve the regression performance of weak regressors by
repeatedly adding new decision trees to the ensembles, which enhances performance in
comparison to other boosting algorithms?2. The main components of XGBoost algorithm are the
objective function and its iterative solution. The objective function is initialized to describe the
model’s performance. Given the training dataset, D = {x!,y})*, where x' € R%, d =54, y'e R, N
denotes the total number of training samples, R depicts the set of real numbers and D represents
the training set. The predicted output y*obtained from the ensemble model can be represented

v = Y1_, He(x'), where H,(x") represents the prediction score of the ti" decision tree for the
it patient in the training dataset. If the decision trees are allowed to grow unregulated, then the
resulting model is bound to overfit2. Hence, the following objective has to be minimized:

JH) =L, L(yL yY) + 2ii 2(H) Eq. 1

where L is the loss function and £2() is the penalty that is used to prevent overfitting and is defined
as(H,) =yA+ %ZZj‘zl wjz, where y and A are the parameters that control the penalty for number
of leaf nodes (A) and leaf weights (w) respectively in the decision tree H,.

The objective function can be re-written as J(H) = ¥~ L (yi,ﬁlt_l + Ht(xi)) +¥7T_, Q(H,). Aiter
applying a Taylor expansion 7¢ and expanding 2(H,), we obtain:

J(He) = By [gie (x) + 5 hEH ()] + vA + AT, w} Eq. 2
where g; =d,,_ (L(y‘};’/“t_l)) and h; =92,_, (L(y",g’/‘lt_l)) are the first and second order

gradient statistics for the loss function L. For a fixed tree structure H(x), where I; = {i}, VH(x") = j
is an instance of leaf node j, the optimal weight w/for leaf node jis given by:
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The corresponding optimal objective function becomes:
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(Zieljgi)

J(H) = _712;1:1 (Ziel .hi+7\)
J

+vA Eq. 3

Equation 3 can be used as a scoring function to measure the quality of a tree structure H.during
iteration t. This score is equivalent to the impurity score used for evaluating decision trees in
random forests””. We build our XGBoost model using the fast, greedy and iterative algorithm by
Chen et al to identify the optimal tree structures?2.

SHAP model

One of the disadvantages of the feature importance scores obtained from the XGBoost
model is that the directionality is not apparent. For instance, when a particular pathway attains a
high enrichment score it is not clear whether this corresponds to a higher or lower risk of death.
Moreover, at the test phase, it is a challenge for traditional white-box, tree-based, machine-
learning techniques to provide information about the top 5 features driving the prediction to better
or poorer survival prognosis. Recently, several techniques have been proposed to overcome
aforementioned limitations, including LIME (Local Interpretable Model-agnostic Explanations)?®
and SHAP (SHapley Additive exPlanations)”. These methods have the ability to interpret feature
importance scores from complex training models and provide interpretable predictions for a test
sample based on the top k features for that particular test instance. In our work, we used the
SHAP method as it has been shown to outperform the LIME method and to be better aligned with
human intuition™. The SHAP method is an additive feature attribution method where a test
instance prediction is defined as a linear function of features that satisfies 3 critical properties:
local accuracy, missingness and consistency.

The explicit SHAP regression values are derived from a game-theory framework&8' and can
be computed as:

ISiEdel—Is = 1!
lQl! [Hsugiy (xsu) — Hs (xs)]

b = Ysco-(y

where Q represents the set of all d features, S represents the subsets obtained from Q after
removing the it" feature and ¢;is an estimate of the importance of feature i in the model. In order
to refrain from undergoing 2!°!differences to estimate ¢;, the SHAP method approximates the
Shapley value by either performing Shapley sampling® or Quantitative Input Influencess. A
detailed description of model interpretation using the SHAP method has been outlined by Samek
W et al™®. In our work, SHAP values associated with a particular pathway in the XGBoost model
provide information on the change in log (risk of death) for each feature of the Cox proportional
hazards model.

Survival analysis

Kaplan-Meier curves were generated using the ggsurvplot function from R package
“survminer” (v0.4.8) to compare overall survival and disease specific survival between ancestries,
ICR clusters, and AMPK subgroups. Univariate Cox proportional hazards regression analysis was
performed with the R package “survival”. AJCC pathologic tumor stage as described in the TCGA-
CDR was used for stratified analysis within the BasalMyo class. Forest plots were generated using
the R package forestplot (v1.7.2).
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Results

Ancestry of patient populations

To date, studies investigating molecular differences between ancestries have been solely
based on self-identified ancestry. In our study, we applied a novel approach combining self-
reported ancestry and SNP-based inference of ancestry4’48. Ancestries were assigned using
principal component analysis (PCA) of SNP array genotyping calls following the method as
described by Carrot-Zhang et al*é (Supplementary Figure 1). As such, we included 1051 patients
from the TCGA breast cancer dataset in our analysis of which 811 EA, 184 AA, and 56 AsA
patients (Table 1). Ancestry of patients in the local Retrospective Arab cohort from Qatar (RA-
QA) was solely based on self-reported ancestry, subgrouping 16 patients as Arab ancestry (ArA),
five as AsA, two as EA and one as Persian (Table 2).

Table 1. Cohort demographics TCGA breast cancer cohort.

TCGA BRCA cohort (n=1082)

Median FU (yrs) 2.37
Events
oS 151
DSS 83
Age (yrs)
median 58
range 26-90

n Y%
Ancestry!
European 811 75
African 184 17
Asian 56 5.2
Undefined 31 2.9
AJCC stage
| 179 16.8
Il 613 56.6
11} 247 22.7
\% 19 1.8
NA 24 2.2
PAMS50 subtype
Basal 233 22
Her2-enriched 160 14
Luminal A 337 31
Luminal B 241 22
Normal-like 111 10
TDA subtype
BasalHer2 82 8
BasalMyo 219 20
BasalLumHer2 90 8
Lum 283 26
LumBasal 209 19
MyoLumA 102 9
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MyoLumB 35 3
MyoLumHer2 62 6

'SNP-based ancestry

Table 2. Cohort demographics RA-QA breast cancer cohort.

RA-QA cohort (n=24)

Median FU (yrs) 8.02
Events
(O] 7
Age (yrs)
median 48.5
range 28-63

n Y%
Ancestry!
Arab 16 66.7
Asian 5 20.8
Caucasian 2 8.4
Persian 1 4.2
AJCC stage
| 4 16.7
Il 10 1.7
1] 4 16.7
v 0 0
NA 6 25
PAM50 subtype
Basal 9 375
Her2-enriched 3 12.5
Luminal A 7 29.2
Luminal B 2 8.3
Normal-like 3 125
TDA subtype
BasalHer2 2 8.3
BasalMyo 7 29.2
BasalLumHer2 2 8.3
Lum 6 25
LumBasal 2 8.3
MyoLumA 1 4.2
MyoLumB 1 4.2
MyoLumHer2 3 125

'Self-reported ancestry
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Distribution of molecular breast cancer subtypes

Numerous studies have demonstrated a higher prevalence of TNBC and of tumors of the
molecular basal subtype among AA women and have linked the increased frequency of these
aggressive breast tumors to ancestry-associated disparity in breast cancer clinical outcome.
Using our novel combined approach, we interrogated the TCGA and RA-QA datasets to subgroup
patients according to TDA-defined molecular subtype and ancestry*?. Heatmaps of TCGA and
RA-QA samples based on TDA gene signatures (basal, myo1, myo2, luminal, and Her2) show a
clear segregation of samples in 7 molecular subtypes, each defined by a unique combination of
expression of five distinct gene groups, demonstrating the accuracy and robustness of the novel
classifier (Figure 1A). As can be seen in the circos plots in Figure 1B, and in accordance with
the METABRIC analysis by Mathews et al#?, we found that Luminal A tumors are mainly
reclassified into Lum and MyoLum subgroups, while luminal B tumors are mainly subgrouped into
LumBasal and Lum tumors. In addition, tumors of the normal-like PAM50-subtype are mainly
reclassified into the Myo classes. Her2 enriched tumors are predominantly subdivided into
BasalHer2, BasalLumHer2 and LumBasal tumors. Further, the vast majority of basal tumors are
reclassified as BasalMyo (88%). Figure 1C clearly demonstrates differences in molecular subtype
frequency across ancestries, with a strong enrichment in AA patients of BasalMyo (38.0% vs
16.5% in EA, X-squared = 41.3, p=1.30E-10) and a reduced proportion of MyoLumA (2.7% vs
11% in EA, X-squared = 11.7, p=0.0006) and Lum (17% vs 29% in EA, X-squared = 10.9,
p=0.001) tumors, and in AsA patients an enrichment of BasalHer2 tumors (21.7% vs 6.4% in EA,
X-squared = 19.0, p=1.33E-05). While several studies reported an increase in basal tumors with
worse outcome in AA patients”.911.122984 we were able to fine-tune this observation to a strong
increase of BasalMyo tumors, accounting for the majority of basal tumors. Furthermore, we
observed an increase in the proportion of BasalMyo tumors in ArA patients (25.0% vs 16.5% in
EA, X-squared = 1.0E-4, ns), although this did not reach statistical significance as a likely result
of the small cohort size.

Next, we explored ancestry-related differences in clinical outcome using curated survival
data from the TCGA-CDR“. Clinical outcome of breast cancer patients, irrespective of molecular
subtype, was not different between EA and AA patients (Figure 1D). Among all seven TDA
subtypes, BasalMyo tumors were the only tumors that were associated with significant different
10-year overall survival (OS, p= 0.020) and disease specific survival (DSS, p=0.033) rates for AA
versus EA patients (Figure 1D and Supplementary Figure 2). The 5-year OS rates for BasalMyo
tumors were 85.5% for EA and 70.1% for AA patients (p=0.07), and the 5-year DSS rates were
90.1% for EA and 73.6% for AA patients (p=0.05). Interestingly, compared to TNBC and basal
tumors, we observed a larger disparity in 10-year OS (HR=2.39, p=0.020) and 10-year DSS
(HR=2.57, p=0.033) by ancestry in BasalMyo tumors (Figure 1D). To exclude that this survival
difference results from a higher frequency of more advanced stage BasalMyo tumors in AA
patients, we compared the AJCC pathological stage between EA and AA patients and found no
significant difference in stage distribution by ancestry (X-squared=2.83, p=0.092)
(Supplementary Figure 3). Additionally, we performed survival analysis stratified by early (Stage
I and II) and advanced (Stage Il and 1V) stage and found rather large hazard ratios, although not
significant, indicating worse overall survival of AA patients within strata (Supplementary Figure
3). Adjustment for tumor stage and/or age in multivariate analysis showed similar results with
African ancestry being associated with worse survival (Supplementary Figure 3), albeit with
borderline significance, implying that additional factors beyond pathological stage contribute to
the divergent clinical outcome of AA patients with BasalMyo tumors compared to EA patients.
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Figure 1. Distribution of breast cancer molecular subtypes defined by topological data analysis
(TDA) signatures across ancestries. A. Heatmap of expression of PAM50 genes organized by TDA
signature classes in TCGA breast cancer and RA-QA cohort. Samples are annotated by TDA signature
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class (upper annotation bar) and classical PAM50 intrinsic molecular subtype (lower annotation bar). The
combination patterns of upregulated expression of 5 distinct gene groups defining each TDA class are
summarized in a table on the right (Summary TDA). B. Re-classification of breast cancer samples from
classical PAM50 intrinsic molecular subtypes (upper part of circos) to TDA signature classes (lower part of
circos) in TCGA and RA-QA breast cancer cohorts. C. Stacked barchart of distribution of TDA classes by
ancestry. D. Kaplan Meier plots showing overall survival (upper panels) and disease specific survival (lower
panels) by ancestry. Difference between survival of patients with European and African ancestry is shown
for the complete TCGA breast cancer cohort (leff), patients with TNBC according to hormone receptor
status (middle left), patients with PAM50-defined basal breast cancer (middle right), and patients with
tumors classified as BasalMyo by TDA classification (right). Censor points are indicated by vertical lines.

Ancestry-associated differences in immunological parameters

In an effort to elucidate potential ancestry-inferred differences in tumor biology, we compared
the immune microenvironment of tumors from patients with different ancestry. More specifically,
we assessed tumor immune disposition using the prognostic Immunologic Constant of Rejection
(ICR) immune gene signature®28 and deconvoluted immune cell abundance using leukocyte
subgroup enrichment scores (LES)%. The ICR 20-gene signature consists of genes encoding
CXCRS3/CCR5 chemokine ligands (CXCL9, CXCL10, and CCL5), genes encoding molecules
involved in Th1 signaling (IFNG, TXB21, CD8B, CD8A, IL12B, STAT1, and IRF1) and effector
immune functions (GNLY, PRF1, GZMA, GZMB, and GZMH), as well as counter regulatory
molecules (IDO1, PDCD1/PD-1, CD274/PD-L1, CTLA4, FOXP3). Using the ICR gene signature,
we previously classified breast cancer samples into four classes with the highest activation of the
anti-tumor immune response in the ICR4 class®. In a follow-up study of more than 8000 non-
metastatic breast cancer cases, we demonstrated that the ICR signature was the strongest
independent prognostic predictor for metastatic relapse, in particular for patients with Her2+-
enriched and triple negative breast tumors®. Since we didn’t consider ancestry in our previous
findings, the present study aimed to investigate whether the prognostic value of ICR holds true
across ancestries or whether there could be immune-related dysregulations that in part explain
the disparity in clinical outcome of AA breast cancer patients. First, we used the ESTIMATEscore,
ImmuneScore and StromalScore to compare tumor cellularity, proportion of the stromal
component and level of infiltration of immune cells of all TDA subtypes in EA versus AA patients®”.
We did not observe significant differences within subtypes by ancestry, indicating that any
potential changes in immune-related gene expression in AA versus EA patients is not caused by
differences in stromal and immune cell composition (Supplementary Figure 4).

The ICR gene signature clearly clusters breast tumors of the TCGA dataset into three
immune phenotypes with varying degrees of immune activation (ICR low, ICR medium and ICR
high), while tumors of the RA-QA cohort were subdivided into two immune phenotypes (ICR low
and ICR high) (Figure 2A). In accordance with our previous work, tumors with an ICR low immune
phenotype were associated with a worse survival in EA patients (p=0.028) (Figure 2B). Likewise,
we observed a large, although not significant, difference in survival between ICR low and ICR
high patients within the AA and ArA groups. In line with these findings, the prognostic value of
gene signatures that reflect abundance of individual immune cell populations was overall similar
across ancestries with leukocyte subpopulations classically associated with better prognosis such
as CD8+ T cells and cytotoxic cells having the same trends in EA and AA patients
(Supplementary Figure 5). Next, we investigated whether the immune disposition, inferred from
the ICR enrichment score, varies within TDA subtypes by ancestry (Figure 2C). Comparison of
the continuous ICR enrichment score demonstrated modest variation between TDA subtypes with
overall higher scores in non-luminal tumors (BasalHer2 and BasalMyo), which was not affected
by ancestry. For instance, no significant difference in ICR enrichment score was found in
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BasalMyo tumors by ancestry, suggesting a similar overall immune disposition across ancestries.
In accordance, we did not find any significant differences in expression of individual ICR genes
based on ancestry (data not shown). Further analysis of BasalMyo tumors, however, revealed
differences within ICR clusters whereby ICR low and ICR medium patients were grouped into one
subgroup due to limited sample size of each cluster within BasalMyo tumors. Although BasalMyo
tumors of AA patients were overall associated with worse overall survival, this was more
pronounced in ICR medium+low tumors (10y OS, p=0.03; 5y OS, p=0.07) (Figure 2D). In
multivariate analysis, African ancestry remained significantly associated with worse survival when
adjusted for tumor stage, and reached borderline significance when adjusted for tumor stage and
age (Supplementary Figure 3).
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Figure 2. Tumor immune phenotypes and clinical outcome by ancestry. A. Heatmap of ICR gene
expression in TCGA and RA-QA breast cancer cohorts. Classification of samples by ICR consensus
clustering segregates TCGA samples in ICR Low, ICR Medium, and ICR High groups. Samples of RA-QA
cohort were classified as ICR High or ICR Low. B. Kaplan Meier plots showing overall survival across ICR
groups in breast cancer TCGA patients of EA (leff), TCGA patients of AA (middle), and RA-QA patients of
ArA (right). C. ICR enrichment scores across ancestries within TDA signature classes. Box plots indicate
medians and interquartile range, whiskers represent 10th and 90th percentile. All data points are plotted
individually. D. Overall survival of EA and AA patients in TCGA BasalMyo samples classified as ICR
Medium+Low (leff), and ICR High (right). Censor points are indicated by vertical lines.

This finding raised the question whether the worse outcome of AA patients with BasalMyo
tumors is linked to molecular differences in ICR medium-+low tumors also known as cold tumors.
For this purpose, we determined the LES of 24 distinct immune cell types (Figure 3A). Focused
analysis of BasalMyo cold (ICR medium+low) tumors revealed a significant decrease in T
regulatory cell (Tregs) and T helper 2 cell (Th2) enrichment scores (p=0.036; p=3.36E-4,
respectively), and a small increase in B cell enrichment score (p=0.039) in AA versus EA patients,
whereas dendritic cell enrichment scores were reduced in ICR hot (ICR high) tumors (p=0.009).

In order to identify which LES may harbor prognostic value, we focused on BasalMyo tumors
irrespective of ICR class due to sample size limitations and adopted a machine-learning strategy
which has empirically been shown to work efficiently on small size datasets®®-9°, despite a slight
tendency for overfitting (EA, n=134; AA, n=70). First, we performed a sensitivity model analysis
that enabled us to identify the XGboost models that have an optimal set of hyper-parameters
(Harrell’s C index EA=0. 58, AA =0.63) with relatively small variance (data not shown). Next, we
used XGBoost modeling for nonlinear multivariate cox-regression survival analysis followed by
the SHapley Additive exPlanations (SHAP) method for the AA and EA subgroups separately
(Supplementary Figure 6). This approach provided information on which features or gene
signatures are the most important and their range of effects over the dataset, including the breadth
(SHAP value) and the direction of the effect (positive or negative). Both the Treg and Th2
signature were classified as features with more importance for predicting outcome in AA patients
as compared to outcome in EA patients, with reduced enrichment scores being associated with
increased risk of death. In accordance, we found that AA, but not EA, patients could be stratified
into different risk groups based on the expression of the Treg and Th2 cell signatures with
borderline statistically different clinical outcome (Figure 3B). More specifically, stratification by
Treg LES subgrouped AA patients with BasalMyo tumors in a low-risk group with higher
expression and 5-year OS rate of 77%, and a high-risk group with low expression and 5-year OS
rate of 59% (10y-HR=2.99, 95%-CI=1.02-8.77). Th2 LES-based stratification grouped AA patients
with BasalMyo tumors into a low-risk/high expression group with 5-year survival rate of 84% and
a high-risk/low expression group with 5-year survival rate of 55% (10y-HR=3.13, 95%-Cl= 0.98-
10.00). No differences in survival were noted for DC and B cell LES (data not shown), which
supports their lower rank of importance in the SHAP plot of AA patients (Supplementary Figure
6).
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Figure 3. Enrichment of immune cell subpopulations in AA and EA patients with BasalMyo breast
tumors. A. Enrichment scores of signatures reflecting abundance of dendritic cells (DC), T-regulatory cells
(TReg), T-helper 2 (Th2), and B cells in BasalMyo tumor samples of EA and AA patients. Boxplots are
facetted by ICR groups, ICR High (upper panels), ICR Medium+Low (middle panels), and across all
samples (lower panels). Box plots indicate medians and interquartile range, whiskers represent 10th and
90th percentile. All data points are plotted individually. T-test (two-sided): *p < 0.05, ** p < 0.01, *** p <
0.001 and ns; not significant. Adjusted p-value (FDR) by Benjamini & Hochberg method. B. Kaplan Meier
plots of overall survival in EA and AA patients with BasalMyo breast cancer dichotomized by enrichment
scores of TReg (left panels) and Th2 cell signatures (right panels). Cutoff for dichotomization in “High” and
“Low” categories is based on optimal enrichment cutoff determined by XGBoost model used for survival
analysis. Censor points are indicated by vertical lines.

Ancestry-associated differences in cancer-cell intrinsic features

Next, we investigated whether specific cancer-cell intrinsic features might contribute to the
worse survival of AA patients with BasalMyo tumors. First, we examined potential changes in
common cancer-associated genomic aberrations, including mutational load, neoantigen load and
tumor aneuploidy. Remarkbly, non-silent mutation rate was significantly lower in AA patients
compared to EA (p=0.025), while the number of predicted single nucleotide variant (SNV)
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neoantigens was similar between both patient populations (Supplementary Figure 7). Therefore,
we speculated that AA BasalMyo tumors undergo less immunoediting and immune-mediated
elimination of neoantigens compared to EA BasalMyo tumors. To address this hypothesis, we
used an “immunoediting score”, defined as the observed ratio (number of point mutations
predicted to generate neo-epitopes divided by the total count of non-silent point mutations)
compared to the expected ratio (expected numbers based on silent mutation rate) %2. Indeed, the
ratio of the observed/expected neoantigens was increased in AA patients (p=0.033), suggesting
reduced immunoediting in AA samples (Supplementary Figure 7). However, we did not observe
any survival difference between tumors with a high observed/expected neoantigen ratio compared
to tumors with a low ratio (HR=1.1, 95%-Cl= 0.43-2.79, p=0.842), suggesting that this tumor
attribute does not explain the observed survival differences between AA and EA BasalMyo
tumors. Similarly, while we observed a significantly increased tumor aneuploidy score in samples
of AA patients (p=0.008, Supplementary Figure 7), this tumor characteristic was not associated
with a difference in survival (HR=0.691, 95%-CI=0.32-1.48, p=0.34).

To further explore tumor intrinsic features that could contribute to the divergent survival
outcomes, we explored the differential enrichment of 54 cancer-associated pathways (Figure 4A).
A total of 16 pathways were found to be differentially enriched between BasalMyo tumors of AA
versus EA patients. Of note, only 2 out of 16 pathways, DNA repair and oxidative phosphorylation,
were associated with an increased enrichment in AA patients. A number of enriched pathways
were identified multiple times as they were included in more than one database, including
estrogen response and estrogen-dependent breast cancer signaling, ErbB signaling and
ErbB2/ErbB3 signaling, PI3BK Akt mTOR signaling and PI3K AKT signaling or mTOR signaling,
and ERK MAPK signaling, UVB-induced MAPK signaling and MAPK up genes. Furthermore, the
pathways defined as angiogenesis, AMPK signaling, EGF signaling and PTEN signaling were
significantly less enriched in BasalMyo tumors of AA versus EA patients. Using the same
approach we applied to explore the prognostic value of immune gene signatures, we used
XGBoost modeling and the SHAP method to identify which cancer-associated pathways are the
most powerful indicators of poor survival in AA versus EA patients with BasalMyo tumors (Figure
4B-C). Based on the summary SHAP plots, we observed that among the top 10 pathways
affecting survival in EA patients, the majority displayed an inverse correlation of enrichment with
survival including barrier genes, reactive oxygen species pathway, EGF signaling, hedgehog
signaling, UVC-induced MAPK signaling, AMPK signaling, estrogen-dependent breast cancer
signaling and UV response up genes (Figure 4B). In contrast, increased enrichment of DNA
repair and VEGF signaling pathways were associated with better survival in EA patients. In AA
patients, the majority of the top 10 pathways determining survival exhibited better survival with
increased enrichment including PIBK Akt mTOR signaling, proliferation, G2M checkpoint, PI3K
AKT signaling, AMPK signaling, ERKS5 signaling, and ErbB signaling (Figure 4B). On the other
hand, we found that pathway enrichment for telomere extension by telomerase, barrier genes and
UV response down corresponded to worse survival.

In analogy with our analysis of the prognostic value of enriched immune gene signatures, we
performed a combined analysis of differentially enriched pathways and the top 10 pathways with
importance for prediction of survival (Figure 4C). Using this approach we identified three
differentially enriched pathways with prognostic value in EA patients with higher enrichment of
EGF signaling (p=0.02, optimal enrichment cutoff=0.334) and estrogen-dependent breast cancer
signaling (p=0.076, optimal enrichment cutoff=0.268) being associated with worse prognosis,
while a better survival was observed for enrichment of DNA repair (p=0.03, optimal enrichment
cutoff=0.304). Focusing on AA patients, we found three differentially enriched pathways with
prognostic connotation whereby enrichment of PIBK-Akt-mTOR signaling (p=9.00E-04, optimal
enrichment cutoff=0.307), PI3K-Akt signaling (p=0.006, optimal enrichment cutoff=0.328), and
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ErbB signaling (p=0.053, optimal enrichment cutoff=0.232) was associated with better outcome
(Figure 4B-C). Interestingly, we found AMPK signaling to be the sole pathway to be differentially
enriched between BasalMyo tumors of AA and EA patients with prognostic value in patients of
both ancestries. Further analyses revealed an inverse correlation of AMPK enrichment with
overall survival in AA versus EA patients. While in EA patients, pathway enrichment was
associated with worse survival, it bestowed a survival advantage for AA patients (Figure 4D). The
5-year OS rate of EA patients with BasalMyo tumors enriched for AMPK signaling was reduced
by 12% from 91% to 79% (10y-HR=0.343, 95% Cl=0.11-1.10), while the opposite was observed
in AA patients where the 5-year OS rate was increased by 21% from 57% to 78% (10y-HR= 3.598,
95% Cl1=1.18-10.94).
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Figure 4. Differentially enriched oncogenic pathways with prognostic connotation in EA and AA
patients with BasalMyo breast tumors. A. Enrichment scores of signatures of tumor-associated
pathways that are differentially regulated between AA and EA patients with BasalMyo tumors. Box plots
indicate medians and interquartile range, whiskers represent 10th and 90th percentile. All data points are
plotted individually. T-test (two-sided): *p < 0.05, ** p < 0.01, *** p < 0.001 and ns; not significant. Adjusted
p-value (FDR) by Benjamini & Hochberg method. B. SHAP plots of tumor-associated pathways that are
associated with overall survival in EA (leff) and AA (right) patients with BasalMyo breast tumors. Pathways
are ranked by p-value to reflect the importance of each feature in the survival model. Each dot represents
a single sample and is colored by relative enrichment score. Corresponding impact on model output (SHAP
value) ranges from -1 (indicating absence of an event) to +1 (indicating occurrence of an event, in this case
death). C. Intersection of differentially enriched tumor-associated pathways with ten most important
pathways in AA and EA patients with BasalMyo breast tumors. AMPK signaling is differentially regulated in
AA versus EA and is of importance in survival models of both AA and EA patients. D. Kaplan Meier curves
visualizing the prognostic value of AMPK signaling in EA (upper) and AA (lower) BasalMyo patients.
Dichotomization of samples by AMPK signaling is based on optimal enrichment score cutoff as determined
by XGBoost model. Censor points are indicated by vertical lines.

Molecular alterations in Arab breast cancer patients

Given the similarity in TDA subtype distribution of ArA and AA patients (Figure 1C), we
investigated whether the increased frequency of BasalMyo tumors in ArA patients was associated
with differential enrichment of LES and cancer-associated pathways. Specifically, we focused our
analyses on Treg, Th2 and AMPK signaling signatures that showed differentially enrichment with
prognostic value in AA patients. Due to limited cohort size, we assessed enrichment patterns in
all Arab patients without subgrouping by TDA subtype. Compared to AsA patients, ArA patients
showed a trend towards lower enrichment scores of the Treg and AMPK signature (Figure 5A).
In order to compare patterns of enrichment between ancestries of both cohorts, we performed a
similar analysis across TCGA ancestries (EA, AA, AsA) without TDA subgrouping (Figure 5B).
Out of the three signatures, only the differential enrichment of AMPK signaling holds true when
comparing the overall AA versus EA patient population. Since BasalMyo tumors constitute a large
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proportion of breast tumors in the AA patients (38%) and are associated with a strong reduction
in AMPK signaling (p=1.78E-04), we cautiously speculate that the overall reduced enrichment of
AMPK signaling in AA patients might be related to our findings in BasalMyo tumors. Similarly, it
could be plausible that our findings in Arab patients might be related to differential enrichment
signatures in BasalMyo tumors, supporting the need for larger Arab patient cohorts to enable
statistically powered subanalysis of TDA subgroups.
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Figure 5. Enrichment of selected immune cell subpopulations and oncogenic pathways in Arab
breast cancer patients. Enrichment scores for signatures for T regulatory cells (Tregs, left), T-helper 2
cells (Th2, middle), and AMPK signaling (right) in A. RA-QA cohort comparing ArA to AsA breast cancer
patients, independent of molecular subtype. B. TCGA breast cancer cohort comparing AA, EA, and AsA
breast cancer patients, independent of intrinsic molecular subtype. Box plots indicate medians and
interquartile range, whiskers represent 10th and 90th percentile. All data points are plotted individually. T-
test (two-sided): *p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, and ns; not significant.

Discussion

An increasing effort is expended to decipher the molecular differences that are associated
with global disparities in breast cancer outcome. Several studies have investigated the
presentation of breast tumors in patients of African ancestry in comparison to women of European
origin. A consensus across studies is that women of African ancestry display a higher prevalence
of the unfavorable triple negative breast cancer subtype and of the molecular PAM50-defined
basal subtype”'5. We interrogated the TCGA breast cancer cohort using curated survival data,
improved ancestry assignment and a refined classifier that reclassifies breast tumors into 7
subgroups using the PAMS50 signature in combination with topological data analysis. Comparison
of the classical PAM50 and the TDA classifier revealed that the large majority of basal tumors
belong to the BasalMyo TDA subgroup, and that the reported enrichment of basal tumors in
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patients of African ancestry is largely dominated by the BasalMyo subtype. Moreover, we were
able to demonstrate that BasalMyo tumors are the only TDA subgroup that is associated with an
ancestry-associated disparity in clinical outcome, underlining the clinical relevance of BasalMyo
tumors in African patients.

In order to elucidate the underlying biological processes contributing to the worse survival of
AA patients with BasalMyo tumors as compared to EA patients, we assessed transcriptomic
differences in immunological parameters and cancer-cell intrinsic features. To date, only few
population-based studies have considered ancestry-related changes in the immune response of
breast cancer patients?243-45_ Qverall, very few immunological differences in tumor tissues have
been reported between patients of African and European ancestry?245, Pitt et al reported subtle
differences in tumor immune signatures when adjusting for PAM50-defined subtype??. They
found an enrichment of the type I IFN signature in luminal A and luminal B tumors of patients of
African ancestry, including African-American and Nigerian women, as compared to patients of
European ancestry. A study by O’Meara et al. reported no significant differences in the expression
of 14 immune metagenes in TNBC tumors of AA and EA patients, whereas the proportion of
resting CD4+ memory cells, as determined by CIBERSORT, was significantly higher in TNBC
tumors of EA patients*s. Based on the notion that the CIBERSORT algorithm determines the
relative abundance of immune cell subpopulations within a tumor rather than between tumors, we
did not include CIBERSORT in our analyses. We explored ancestry-related differences in immune
disposition using the ICR classifier of tumor immune phenotypes and leukocyte subgroup
enrichment scores. As such, we found that the prognostic value of the ICR immune gene signature
holds true across ancestries and that the lower enrichment of T regulatory and T helper 2 immune
cells in patients of African ancestry negatively correlated with outcome. Although this seems a
counterintuitive finding, it is important to note that the presence of immunosuppressive cells could
be a result of priorimmune activation. In line with this, we previously found that FoxP3 expression
heavily correlates with T-cell infiltration as a counter regulatory signal and hence is an important
marker of the ICR signature®®. In addition, a number of studies have reported that increased
expression of immunosuppressive gene signatures supports chemotherapy sensitivity and hence
better clinical outcome in (triple negative) breast cancer9-%.

Subsequently, we explored whether we could identify ancestry-specific enriched oncogenic
pathways with prognostic relevance in BasalMyo tumors. In support of this concept, a recent
transcriptome-wide association study of the Caroline Breast Cancer Study transcriptomic dataset,
comprised of self-identified African American and European American women, demonstrated that
ancestry-stratified predictive risk models did not perform across ancestries and/or subtype®.
Through integrative analysis of differential enrichment and prognostic connotation we identified 7
differentially enriched signaling pathways with prognostic connotation in patients of European
and/or African ancestry. Enrichment of EGF and estrogen-dependent signaling was associated
with worse clinical outcome in patients of European ancestry, while enrichment of DNA repair
genes correlated with better outcome. Conversely, enrichment of PIBK-Akt/PISK-AKT-mTOR and
ErbB signaling was associated with better prognosis in patients of African ancestry. Although this
survival-favorable correlation appears contradictory in relation to mTOR and ErbB-mediated
oncogenic signaling, recent studies have demonstrated enrichment of PIBK-AKT signaling in
immunogenic TNBC tumors suggesting that hyperactivation of this signaling pathway might
promote immunogenic activity and result in better prognosis®297:%8. This raises the question
whether BasalMyo tumors enriched in PI3K and ErbB signaling could similarly infer an immune
favorable tumor phenotype in a subset of AA patients. Furthermore, analysis of the individual
molecules constituting the ErbB signaling pathway revealed a reduced enrichment of ErbB2,
ErbB3 and ErbB4 and downstream signaling, irrespective of ancestry, in hormone receptor
negative tumors and in particular BasalMyo tumors compared to hormone receptor positive
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tumors (data not shown). On the other hand, hormone receptor negative tumors and BasalMyo
tumors feature a higher enrichment of ErbB1/EGFR and its downstream molecules, which may
be driving the overall increased enrichment of ErbB signaling in those tumors (data not shown).
These findings highlight the importance of obtaining a more granular view of the changes in the
ErbB pathway in BasalMyo tumors such as the relative effect of individual EGFR ligands on ErbB
signaling enrichment. Notably, AMPK signaling was associated with opposing prognostic
significance in EA and AA patients, with a positive connotation in the latter group. AMP-activated
protein kinase or AMPK is a key regulator of cancer metabolism and oncogenic signaling, is
frequently upregulated in TNBC versus non-TNBC tumors and is generally associated with poor
clinicopathological factors and shorter survival®®1%. Several lines of evidence however point
towards a more complex role for AMPK in cancer whereby AMPK activation has been associated
with both pro-tumorigenic and anti-tumorigenic effects depending on specific metabolic cues?0'.
For example, activation of AMPK signaling has been shown to inhibit the PISK-AKT-mTOR
pathway, the expression of EGFR and cyclins, and the phosphorylation of Src, STAT3 and MAPK,
culminating in reduced tumorigenic potential and better clinical outcome'°2-104, |t remains to be
determined if metabolic-mediated dysregulation of AMPK signaling could be regulated by
ancestry-specific traits. Indeed, few studies have reported ancestral disparity in cancer
metabolomics'5-197, Our finding illustrates that metabolic pathways might be governed by
different regulators depending on ancestry, and hence reiterates the need to account for ancestry
in biomarker and cancer target research.

To conclude, the rapidly evolving technological landscape and refinement of cancer treatment
towards precision cancer medicine has led to the recognition that breast cancer is not a single
disease but should be studied and clinically managed as multiple distinct disease entities. It is
now well appreciated that the complexity and heterogeneity of breast cancer arises from
differences in cancer-cell intrinsic mechanisms as well as from dysregulation of the interplay with
the stromal and immune microenvironment. Our findings support the notion of an additional level
of complexity introduced by ancestry-associated traits and urge for more studies on
underrepresented populations such as patients of Arab ancestry. Therefore, we advocate
accounting for ancestry-specific molecular features in breast cancer research and in clinical
decision making in order to guide precision cancer medicine.

Data availability

TCGA-BRCA cohort is available through GDC data portal (https://gdac.broadinstitute.org/)
or by using TCGA-Assembler as detailed in the method section. TCGA-Assembler is open-source
and freely available at http://www.compgenome.org/TCGA-Assembler/. The downloaded data
product name is “illuminahiseq_rnaseqv2-RSEM_genes_normalized”.

Data pertaining to the RA-QA cohort can be downloaded via figshare:
10.6084/m9.figshare.12901928. Scripts used in this manuscript can be found on zenodoo/github
: 10.5281/zen0do.3707660