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Abstract 

 

Breast cancer largely dominates the global cancer burden statistics, 
however, there are striking disparities in mortality rates across countries. 
While socioeconomic factors contribute to population-based differences in 
mortality, they do not fully explain disparity among women of African (AA) 
and Arab (ArA) ancestry compared to women of European ancestry (EA). In 
this study, we sought to identify molecular differences that could provide 
insight into the biology of ancestry-associated disparities in clinical outcome. 
We applied a unique approach that combines the use of curated survival 
data from the TCGA Pan-Cancer clinical data resource, improved SNP-
based inferred ancestry assignment and a novel breast cancer subtype 
classification to interrogate the TCGA and a local Arab breast cancer 
dataset. We observed an enrichment of BasalMyo tumors in AA patients 
(38% vs 16.5% in EA, p=1.30E-10), associated with a significant worse 
overall (HR=2.39, p=0.02) and disease specific survival (HR=2.57, p=0.03). 
Gene set enrichment analysis of BasalMyo AA and EA samples revealed 
differences in the abundance of T regulatory and T helper type 2 cells, and 
enrichment of cancer-related pathways with prognostic implications (AA: 
PI3K-Akt-mTOR and ErbB signaling; EA: EGF, estrogen dependent and 
DNA repair signaling). Strikingly, AMPK signaling was associated with 
opposing prognostic connotation (AA: 10yr-HR=2.79, EA: 10yr-HR=0.34). 
Analysis of ArA patients suggests enrichment of BasalMyo tumors with a 
trend for differential enrichment of T regulatory cells and AMPK signaling. 
Together, our findings suggest that the disparity in clinical outcome of AA 
breast cancer patients is likely related to differences in cancer-related and 
microenvironmental features.   
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Introduction 
 

As we enter an era of personalized medicine in oncology, large-scale studies have been 
instrumental in deciphering the pathogenesis and evolution of tumors. Public data repositories 
such as The Cancer Genome Atlas (TCGA) have enabled researchers to define the genomic 
landscape of different types of cancers, including breast cancer. The public availability of large-
scale datasets has led to a surge in candidate drug targets and novel prognostic and/or predictive 
gene signatures. However, it is important to note that the majority of patients in public datasets 
are of European ancestry and hence, the knowledge gained from such studies might not be 
applicable to patients of a different ancestry1. Given the global disparities in clinical behavior of 
breast cancer, it has become imperative to investigate ancestry-associated differences in tumor 
biology. 

Breast cancer in women of African ancestry (AA) presents at a younger age, and is 
associated with more advanced disease and higher mortality rates as compared to breast cancer 
in age-matched patients of European (EA) or Asian (AsA) ancestry2–10. Several reports have 
demonstrated an increased frequency of the more aggressive triple negative breast cancer 
(TNBC) subtype and of the PAM50-molecular basal subtype in AA women7–16. Moreover, African 
American women with early stage TNBCs have been shown to exhibit a lower pathological 
complete response to neoadjuvant chemotherapy17. Interestingly, this discrepancy in clinical 
outcome remains after correcting for socioeconomic factors, suggesting the presence of 
molecular differences by ancestry18,19. The African American breast cancer epidemiology and risk 
consortium identified few rare germline single nucleotide polymorphisms (SNPs) that are 
associated with an increased risk of hormone receptor negative breast cancer and/or TNBC in 
African-American women20,21. Analysis of genotypic traits revealed that most somatic mutations 
and copy number variations are subtype specific rather than ancestrally determined22,23. Very few 
mutations showed dissimilar frequencies across African, African American or European American 
patient subgroups when considering a specific breast cancer subtype. Likewise, numerous 
differentially expressed genes have been identified between breast tumors of patients of African 
and European ancestry24–28, however, there is little to no evidence linking these findings to 
differences in breast cancer survival or subtype-specific survival in relation to ancestry. Therefore, 
differential expression of genes involved in biological processes such as differentiation, cell cycle, 
DNA repair, invasion, metastasis, and angiogenesis could be related to the higher proportion of 
triple negative breast tumors in the African-American population. To address this, several studies 
investigated molecular differences within TNBC tumors of African American and European 
American patients. TNBC tumors of African American women were shown to display enrichment 
of gene sets related to a high proliferative rate, high genomic grade index, BRCA1 deficiency, 
increased activation of insulin-like growth factor 1 receptor (IGF1R) and increased angiogenesis, 
closely resembling the basal like-1 TNBC subtype gene signature as described by Lehmann et 
al23,28–33. In addition, it has been suggested that an abundance of cancer stem cells might in part 
contribute to the worse survival of African American women with TNBC tumors34–38. 

Given the importance of immune cell infiltration in determining the prognosis and treatment 
response of breast cancer, and especially in TNBC, it is important to investigate whether 
differences in anti-tumor immunity may contribute to the divergent clinical behavior of breast 
cancer across populations39–42. To date, this phenotypic aspect of breast cancer is largely 
unexplored in the context of ancestry. Interestingly, systemic levels of pro-inflammatory cytokines 
such as IFN-γ and IL-6 have been found to be elevated in both healthy African American women 
and those affected with breast cancer as compared to European American women, suggesting 
ancestry-inferred differences in the immune response that might affect anti-tumor immunity and 
ultimately breast cancer clinical outcome43,44. In contrast, only subtle differences in immune gene 
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signatures related to immune cell infiltration were found in TNBC tumors of women of African 
ancestry22,45. 

In this study, we applied a unique approach to explore ancestry-associated heterogeneity of 
breast cancer outcome. First, we used improved and curated survival information from the TCGA 
Pan-Cancer clinical data resource (TCGA-CDR)46. Second, we applied SNP-based inference of 
ancestry47,48 to improve ancestry assignment, enabling us to include a substantial number of 
additional patients from the TCGA dataset in our analysis thereby increasing the power of our 
study. Third, we performed a comprehensive transcriptomic analysis of both immunological and 
cancer-cell intrinsic parameters within breast cancer subtypes as defined by a novel PAM50 
classification. This refined classifier utilizes a combination of Topological Data Analysis (TDA) 
signatures of normal mammary cell types (basal epithelial cells, luminal epithelial cells, 
myoepithelial cells, and Her2-related expression) to subgroup breast tumors into 7 distinct 
molecular subtypes with prognostic value49. Using this combined novel approach, we interrogated 
the TCGA breast cancer dataset, comprising of patients of African (n=184), European (n=811) 
and Asian (n=56) ancestry; and a local Arab/Asian breast cancer dataset from Qatar (n=24) for 
ancestry-specific molecular differences in breast cancer. 
 
 
Methods 
 
Patient cohorts 

Two different breast cancer cohorts were included in this study; the public available TCGA 
breast cancer dataset and a local cohort from Qatar. 

RNA sequencing data from the TCGA breast cancer cohort (n=1082 patients) was 
downloaded using R (v3.5.1) and TCGA Assembler (v2.0.3,50). Sample data were extracted 
ensuring a single primary tumor sample per patient using the TCGA Assembler 
“ExtractTissueSpecificSamples” function. Clinical data for all patients were obtained from the 
TCGA-CDR46. Patient ancestry was obtained using SNP-based inferred ancestry data, focusing 
on the European, Asian, and African clusters47,48. To visualize major ancestry clusters within the 
TCGA BRCA cohort PCA results of Jian Carrot-Zhang were used to plot PC1 versus PC2 using 
ggplot 48. Using these data, we were able to include 108 patients that previously had no reported 
ancestry. As SNP-based ancestry had a very high concordance with reported ancestry (99.1%), 
we decided to also include 63 patients for which only self-reported ancestry was available. We 
excluded 31 patients from our ancestry-based analyses. Firstly, 16 patients with American 
inferred ancestry as the number of samples in this cluster is limited as well as one patient who 
self-identified as not Hispanic or Latino. Secondly, six patients without self-reported or inferred 
ancestry and thirdly exceptional cases of discordance between self-reported and SNP-based 
ancestry (n=8; 0.9%) were excluded. The final TCGA breast cancer cohort used for analysis 
comprised of 1051 patients (811 of European, 184 of African and 56 of Asian ancestry). The tumor 
non-silent mutation rate, predicted neoantigen load, and aneuploidy score were obtained from 
Thorsson et al.51, and predicted versus expected neoantigen values were extracted from Rooney 
et al.52. 

The RA-QA patient cohort constitutes a breast cancer cohort from Qatar (n=24 of which 16 
of Arab ancestry) with patients that were newly diagnosed with breast cancer between 2004-2010 
at the National Centre for Cancer Care and Research in Doha. Clinical information and self-
reported ancestry were extracted from the medical records. The study was approved by the local 
ethical committees of the Hamad Medical Corporation (study approval number #14027/14), the 
Qatar Biomedical Research Institute (study approval number #2016-002), and Sidra Medicine 
(study approval number #1711015664), and was performed in accordance with the ethical 
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standards of the institutional and/or national research committee and with the 1964 Helsinki 
Declaration and its later amendments or comparable ethical standards. The study protocol was 
granted waiver of informed consent under the condition of anonymization and no additional 
intervention for the participants. 
 
Total RNA sequencing 

RNA was isolated from four 20 μm sections of Formalin Fixed Paraffin Embedded (FFPE) 
tumor samples of the RA-QA cohort using the AllPrep DNA/RNA FFPE kit (Qiagen, Germany), 
followed by a quality control for purity and integrity by the Agilent Bioanalyzer system. Total RNA 
was depleted from ribosomal RNA and random primed for cDNA synthesis using the TruSeq 
stranded total RNA kit (Illumina, USA). RNA sequencing was performed on the Illumina 
HiSeq2500 platform (Illumina) with Paired End 25X coverage (PE100-125). The FASTQ files were 
trimmed to remove adaptor sequences using flexbar (v3.0.3,53) and aligned to GRCh37/hg19 
reference genome using hisat2 (v2.0.5,54), resulting in an average 10-15M aligned reads. Reads 
were counted to genomic features using subreads (v1.5.5,55). For both the TCGA and RA-QA 
cohort, RNA-seq data was corrected for GC content and normalized within and between lanes 
using the R package EDASeq (v2.12.0,56), and quantile normalized using the preprocessCore 
(v1.36.0,57). 
 
Intrinsic molecular subtype classification 

The intrinsic molecular subtype of each tumor sample was defined by the differential 
expression of a set of 50 genes (PAM50) using two distinct algorithms. First, the R package 
bioclassifier_R  was used to predict sample subtype according to the Parker et al subtype 
predictor58. Second, a more recent classification model was applied using a robust classifier that 
integrates the PAM50 gene signature with Topological Data Analysis, resulting in 7 subgroups 
with well-defined gene expression patterns49. The TDA classifier is based on the observed 
expression of five gene groups, basal (a), myo1 (b), myo2 (c), luminal (d), and Her2 (e) (Figure 
1A). The nomenclature of the identified TDA classes directly reflects the observed gene groups, 
e.g., BasalHer2 samples are characterized by increased expression of the basal (a) and the Her2 
(e) gene groups, and LumBasal samples by basal (a) and luminal (d) gene expression etc. An 
explanatory summary of the characteristics of the different TDA classes is included in Figure 1A. 
Sample clustering according to both classification methods was visualized in a PAM50-based 
heatmap using the R package ComplexHeatmap (v1.20.0,59). Circos plots using the R package 
circlize (v0.4.6, 60) depicted TDA reclassification of samples in comparison to PAM50 subtyping.  
The distribution of TDA subtypes within ancestries was assessed using stacked barplots and chi 
square tests. 
 
Immunologic Constant of Rejection consensus clustering 

Consensus clustering of samples according to the expression values of 20 ICR genes was 
performed using the ConsensusClusterPlus (v1.42.0,61) R package with the following parameters: 
5.000 repeats, and agglomerative hierarchical clustering with ward criterion (Ward.D2) inner and 
complete outer linkage as previously described62,63. The optimal number of clusters for best 
segregation of samples was determined using the Calinski-Harabasz criterion with samples in 
intermediate clusters defined as “ICR Medium”. Samples of the TCGA dataset were clustered into 
3 groups; ICR low (cluster 1), ICR medium (clusters 2 and 3) and ICR high (cluster 4). Due to the 
small number of samples, the RA-QA cohort was divided into 2 groups; ICR Low (cluster 1, 2, 3) 
and ICR High (cluster 4). 
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Single sample gene set enrichment analysis 
Enrichment of specific gene sets, reflecting either abundance of immune cell populations or 

expression of tumor related pathways, was defined by single sample gene set enrichment 
analysis (ssGSEA) using R package GSVA (v.1.30.0, 64)65. Gene set signatures of 24 distinct 
immune cell types or leukocyte subgroup enrichment scores were used to deconvolute immune 
cell abundance66. Gene sets comprising numerous tumor-related pathways were obtained from 
multiple sources, including the Molecular Signatures Hallmark67 and Ingenuity Pathway Analysis 
(IPA) gene set collections and several signatures that have been associated with tumor immune 
escape68–71. Gene signature enrichment scores were compared based on ancestry using the 2-
tailed unpaired t-test. 
 
XGBoost model 

We utilized an optimized version of the white-box, non-linear, ensemble gradient boosting 
machine called XGBoost to build our cox-regression model for survival analysis72,73. Gradient 
Boosting is a machine learning technique based on a constructive strategy by which the learning 
procedure will additively fit new models, typically decision trees74 and repetitively leverage the 
patterns in residuals to provide a more accurate estimate of the response variable or time to event 
i.e. death in case of survival analysis. The patients who are alive are considered as right censored 
and since the XGBoost model takes only one label for the response variable as input, the 
censored survival information is converted to negative labels while performing the cox 
proportional hazards modelling75. XGBoost is a scalable machine learning technique for tree 
boosting, a learning technique to improve the regression performance of weak regressors by 
repeatedly adding new decision trees to the ensembles, which enhances performance in 
comparison to other boosting algorithms72. The main components of XGBoost algorithm are the 
objective function and its iterative solution. The objective function is initialized to describe the 
model’s performance. Given the training dataset, � � ��� ��������  where �� � ��, d = 54, ��� �,  N 
denotes the total number of training samples, R depicts the set of real numbers and D represents 
the training set. The predicted output ��� obtained from the ensemble model can be represented 
as: ��� � � ������
��� , where ������ represents the prediction score of the tth decision tree for the 
ith patient in the training dataset. If the decision trees are allowed to grow unregulated, then the 
resulting model is bound to overfit72. Hence, the following objective has to be minimized: 
 
���
 � � 	��� ���� � � � ����

����

���      Eq. 1 
 
where L is the loss function and �() is the penalty that is used to prevent overfitting and is defined 
as ����
 � �� � �

� �� ����
��� , where γ and ƛ are the parameters that control the penalty for number 

of leaf nodes (A) and leaf weights (w) respectively in the decision tree ��. 
The objective function can be re-written as ���
 � � 	 ��� ���� ��� � ������� � � ����

����

��� . After 
applying a Taylor expansion 76 and expanding ����
, we obtain: 
 
����
 � � ��������� � �

� ��
�������� � �� � �

� �� ����
���

�
���    Eq. 2 

 
where �� � ����� �	��� ���� ����� and �� � ������ �	��� ���� ����� are the first and second order 
gradient statistics for the loss function L. For a fixed tree structure H(x), where �� � ���� ������ � � 
is an instance of leaf node j, the optimal weight ���for leaf node j is given by: 
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��� �
��������
������� � �

 

 
The corresponding optimal objective function becomes: 

����� � ��
� �

���������
�

�����������
� ���

�
�     Eq. 3 

 
Equation 3 can be used as a scoring function to measure the quality of a tree structure ��during 
iteration t. This score is equivalent to the impurity score used for evaluating decision trees in 
random forests77. We build our XGBoost model using the fast, greedy and iterative algorithm by 
Chen et al to identify the optimal tree structures72. 
 
SHAP model 

One of the disadvantages of the feature importance scores obtained from the XGBoost 
model is that the directionality is not apparent. For instance, when a particular pathway attains a 
high enrichment score it is not clear whether this corresponds to a higher or lower risk of death. 
Moreover, at the test phase, it is a challenge for traditional white-box, tree-based, machine-
learning techniques to provide information about the top 5 features driving the prediction to better 
or poorer survival prognosis. Recently, several techniques have been proposed to overcome 
aforementioned limitations, including LIME (Local Interpretable Model-agnostic Explanations)78 
and SHAP (SHapley Additive exPlanations)79. These methods have the ability to interpret feature 
importance scores from complex training models and provide interpretable predictions for a test 
sample based on the top k features for that particular test instance. In our work, we used the 
SHAP method as it has been shown to outperform the LIME method and to be better aligned with 
human intuition79. The SHAP method is an additive feature attribution method where a test 
instance prediction is defined as a linear function of features that satisfies 3 critical properties: 
local accuracy, missingness and consistency. 

The explicit SHAP regression values are derived from a game-theory framework80,81 and can 
be computed as: 

�� � ��������
�
�� ����� �
� � ���

���� �������
	������ � ���	��� 
 
where Q represents the set of all d features, S represents the subsets obtained from Q after 
removing the ith feature and �� is an estimate of the importance of feature i in the model. In order 
to refrain from undergoing ����differences to estimate ��, the SHAP method approximates the 
Shapley value by either performing Shapley sampling82 or Quantitative Input Influence83. A 
detailed description of model interpretation using the SHAP method has been outlined by Samek 
W et al79. In our work, SHAP values associated with a particular pathway in the XGBoost model 
provide information on the change in log (risk of death) for each feature of the Cox proportional 
hazards model. 
 
Survival analysis 

Kaplan-Meier curves were generated using the ggsurvplot function from R package 
“survminer” (v0.4.8) to compare overall survival and disease specific survival between ancestries, 
ICR clusters, and AMPK subgroups. Univariate Cox proportional hazards regression analysis was 
performed with the R package “survival”. AJCC pathologic tumor stage as described in the TCGA-
CDR was used for stratified analysis within the BasalMyo class. Forest plots were generated using 
the R package forestplot (v1.7.2). 



577451-L-bw-Roelands577451-L-bw-Roelands577451-L-bw-Roelands577451-L-bw-Roelands
Processed on: 25-5-2022Processed on: 25-5-2022Processed on: 25-5-2022Processed on: 25-5-2022 PDF page: 114PDF page: 114PDF page: 114PDF page: 114

Chapter 5 

 
114 

Results 
 
Ancestry of patient populations  

To date, studies investigating molecular differences between ancestries have been solely 
based on self-identified ancestry. In our study, we applied a novel approach combining self-
reported ancestry and SNP-based inference of ancestry47,48. Ancestries were assigned using 
principal component analysis (PCA) of SNP array genotyping calls following the method as 
described by Carrot-Zhang et al48 (Supplementary Figure 1). As such, we included 1051 patients 
from the TCGA breast cancer dataset in our analysis of which 811 EA, 184 AA, and 56 AsA 
patients (Table 1). Ancestry of patients in the local Retrospective Arab cohort from Qatar (RA-
QA) was solely based on self-reported ancestry, subgrouping 16 patients as Arab ancestry (ArA), 
five as AsA, two as EA and one as Persian (Table 2). 

Table 1. Cohort demographics TCGA breast cancer cohort. 

TCGA BRCA cohort (n=1082) 
   
Median FU (yrs) 2.37   
   
Events   
OS 151  
DSS 83  
   
Age (yrs)   
median 58  
range 26-90  
   
 n % 
Ancestry1   
European 811 75 
African 184 17 
Asian 56 5.2 
Undefined 31 2.9 
   
AJCC stage   
I 179 16.8 
II 613 56.6 
III 247 22.7 
IV 19 1.8 
NA 24 2.2 
   
PAM50 subtype   
Basal 233 22 
Her2-enriched 160 14 
Luminal A 337 31 
Luminal B 241 22 
Normal-like 111 10 
     
TDA subtype   
BasalHer2 82 8 
BasalMyo 219 20 
BasalLumHer2 90 8 
Lum 283 26 
LumBasal 209 19 
MyoLumA 102 9 
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MyoLumB 35 3 
MyoLumHer2 62 6 
   

1SNP-based ancestry 

Table 2. Cohort demographics RA-QA breast cancer cohort. 

RA-QA cohort (n=24) 
   
Median FU (yrs) 8.02  
   
Events   
OS 7  
   
Age (yrs)   
median 48.5  
range 28-63  
 
 

  

 n % 
Ancestry1   
Arab 16 66.7 
Asian 5 20.8 
Caucasian 2 8.4 
Persian 1 4.2 
   
AJCC stage   
I 4 16.7 
II 10 41.7 
III 4 16.7 
IV 0 0 
NA 6 25 
   
PAM50 subtype   
Basal 9 37.5 
Her2-enriched 3 12.5 
Luminal A 7 29.2 
Luminal B 2 8.3 
Normal-like 3 12.5 
     
TDA subtype   
BasalHer2 2 8.3 
BasalMyo 7 29.2 
BasalLumHer2 2 8.3 
Lum 6 25 
LumBasal 2 8.3 
MyoLumA 1 4.2 
MyoLumB 1 4.2 
MyoLumHer2 3 12.5 
   

1Self-reported ancestry 
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Distribution of molecular breast cancer subtypes 

Numerous studies have demonstrated a higher prevalence of TNBC and of tumors of the 
molecular basal subtype among AA women and have linked the increased frequency of these 
aggressive breast tumors to ancestry-associated disparity in breast cancer clinical outcome. 
Using our novel combined approach, we interrogated the TCGA and RA-QA datasets to subgroup 
patients according to TDA-defined molecular subtype and ancestry49. Heatmaps of TCGA and 
RA-QA samples based on TDA gene signatures (basal, myo1, myo2, luminal, and Her2) show a 
clear segregation of samples in 7 molecular subtypes, each defined by a unique combination of 
expression of five distinct gene groups, demonstrating the accuracy and robustness of the novel 
classifier (Figure 1A). As can be seen in the circos plots in Figure 1B, and in accordance with 
the METABRIC analysis by Mathews et al.49, we found that Luminal A tumors are mainly 
reclassified into Lum and MyoLum subgroups, while luminal B tumors are mainly subgrouped into 
LumBasal and Lum tumors. In addition, tumors of the normal-like PAM50-subtype are mainly 
reclassified into the Myo classes. Her2 enriched tumors are predominantly subdivided into 
BasalHer2, BasalLumHer2 and LumBasal tumors. Further, the vast majority of basal tumors are 
reclassified as BasalMyo (88%). Figure 1C clearly demonstrates differences in molecular subtype 
frequency across ancestries, with a strong enrichment in AA patients of BasalMyo (38.0% vs 
16.5% in EA, X-squared = 41.3, p=1.30E-10) and a reduced proportion of MyoLumA (2.7% vs 
11% in EA, X-squared = 11.7, p=0.0006) and Lum (17% vs 29% in EA, X-squared = 10.9, 
p=0.001) tumors, and in AsA patients an enrichment of BasalHer2 tumors (21.7% vs 6.4% in EA, 
X-squared = 19.0, p=1.33E-05). While several studies reported an increase in basal tumors with 
worse outcome in AA patients7,9,11,12,29,84, we were able to fine-tune this observation to a strong 
increase of BasalMyo tumors, accounting for the majority of basal tumors. Furthermore, we 
observed an increase in the proportion of BasalMyo tumors in ArA patients (25.0% vs 16.5% in 
EA, X-squared = 1.0E-4, ns), although this did not reach statistical significance as a likely result 
of the small cohort size. 

Next, we explored ancestry-related differences in clinical outcome using curated survival 
data from the TCGA-CDR46. Clinical outcome of breast cancer patients, irrespective of molecular 
subtype, was not different between EA and AA patients (Figure 1D). Among all seven TDA 
subtypes, BasalMyo tumors were the only tumors that were associated with significant different 
10-year overall survival (OS, p= 0.020) and disease specific survival (DSS, p=0.033) rates for AA 
versus EA patients (Figure 1D and Supplementary Figure 2). The 5-year OS rates for BasalMyo 
tumors were 85.5% for EA and 70.1% for AA patients (p=0.07), and the 5-year DSS rates were 
90.1% for EA and 73.6% for AA patients (p=0.05). Interestingly, compared to TNBC and basal 
tumors, we observed a larger disparity in 10-year OS (HR=2.39, p=0.020) and 10-year DSS 
(HR=2.57, p=0.033) by ancestry in BasalMyo tumors (Figure 1D). To exclude that this survival 
difference results from a higher frequency of more advanced stage BasalMyo tumors in AA 
patients, we compared the AJCC pathological stage between EA and AA patients and found no 
significant difference in stage distribution by ancestry (X-squared=2.83, p=0.092) 
(Supplementary Figure 3). Additionally, we performed survival analysis stratified by early (Stage 
I and II) and advanced (Stage III and IV) stage and found rather large hazard ratios, although not 
significant, indicating worse overall survival of AA patients within strata (Supplementary Figure 
3). Adjustment for tumor stage and/or age in multivariate analysis showed similar results with 
African ancestry being associated with worse survival (Supplementary Figure 3), albeit with 
borderline significance, implying that additional factors beyond pathological stage contribute to 
the divergent clinical outcome of AA patients with BasalMyo tumors compared to EA patients.  
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Figure 1. Distribution of breast cancer molecular subtypes defined by topological data analysis 
(TDA) signatures across ancestries. A. Heatmap of expression of PAM50 genes organized by TDA 
signature classes in TCGA breast cancer and RA-QA cohort. Samples are annotated by TDA signature 
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class (upper annotation bar) and classical PAM50 intrinsic molecular subtype (lower annotation bar). The 
combination patterns of upregulated expression of 5 distinct gene groups defining each TDA class are 
summarized in a table on the right (Summary TDA).  B. Re-classification of breast cancer samples from 
classical PAM50 intrinsic molecular subtypes (upper part of circos) to TDA signature classes (lower part of 
circos) in TCGA and RA-QA breast cancer cohorts. C. Stacked barchart of distribution of TDA classes by 
ancestry.  D. Kaplan Meier plots showing overall survival (upper panels) and disease specific survival (lower 
panels) by ancestry. Difference between survival of patients with European and African ancestry is shown 
for the complete TCGA breast cancer cohort (left), patients with TNBC according to hormone receptor 
status (middle left), patients with PAM50-defined basal breast cancer (middle right), and patients with 
tumors classified as BasalMyo by TDA classification (right). Censor points are indicated by vertical lines. 
 
 
Ancestry-associated differences in immunological parameters 

In an effort to elucidate potential ancestry-inferred differences in tumor biology, we compared 
the immune microenvironment of tumors from patients with different ancestry. More specifically, 
we assessed tumor immune disposition using the prognostic Immunologic Constant of Rejection 
(ICR) immune gene signature62,85 and deconvoluted immune cell abundance using leukocyte 
subgroup enrichment scores (LES)66. The ICR 20-gene signature consists of genes encoding 
CXCR3/CCR5 chemokine ligands (CXCL9, CXCL10, and CCL5), genes encoding molecules 
involved in Th1 signaling (IFNG, TXB21, CD8B, CD8A, IL12B, STAT1, and IRF1) and effector 
immune functions (GNLY, PRF1, GZMA, GZMB, and GZMH), as well as counter regulatory 
molecules (IDO1, PDCD1/PD-1, CD274/PD-L1, CTLA4, FOXP3). Using the ICR gene signature, 
we previously classified breast cancer samples into four classes with the highest activation of the 
anti-tumor immune response in the ICR4 class62. In a follow-up study of more than 8000 non-
metastatic breast cancer cases, we demonstrated that the ICR signature was the strongest 
independent prognostic predictor for metastatic relapse, in particular for patients with Her2+-
enriched and triple negative breast tumors86. Since we didn’t consider ancestry in our previous 
findings, the present study aimed to investigate whether the prognostic value of ICR holds true 
across ancestries or whether there could be immune-related dysregulations that in part explain 
the disparity in clinical outcome of AA breast cancer patients. First, we used the ESTIMATEscore, 
ImmuneScore and StromalScore to compare tumor cellularity, proportion of the stromal 
component and level of infiltration of immune cells of all TDA subtypes in EA versus AA patients87. 
We did not observe significant differences within subtypes by ancestry, indicating that any 
potential changes in immune-related gene expression in AA versus EA patients is not caused by 
differences in stromal and immune cell composition (Supplementary Figure 4).  

The ICR gene signature clearly clusters breast tumors of the TCGA dataset into three 
immune phenotypes with varying degrees of immune activation (ICR low, ICR medium and ICR 
high), while tumors of the RA-QA cohort were subdivided into two immune phenotypes (ICR low 
and ICR high) (Figure 2A). In accordance with our previous work, tumors with an ICR low immune 
phenotype were associated with a worse survival in EA patients (p=0.028) (Figure 2B). Likewise, 
we observed a large, although not significant, difference in survival between ICR low and ICR 
high patients within the AA and ArA groups. In line with these findings, the prognostic value of 
gene signatures that reflect abundance of individual immune cell populations was overall similar 
across ancestries with leukocyte subpopulations classically associated with better prognosis such 
as CD8+ T cells and cytotoxic cells having the same trends in EA and AA patients 
(Supplementary Figure 5). Next, we investigated whether the immune disposition, inferred from 
the ICR enrichment score, varies within TDA subtypes by ancestry (Figure 2C). Comparison of 
the continuous ICR enrichment score demonstrated modest variation between TDA subtypes with 
overall higher scores in non-luminal tumors (BasalHer2 and BasalMyo), which was not affected 
by ancestry. For instance, no significant difference in ICR enrichment score was found in 
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BasalMyo tumors by ancestry, suggesting a similar overall immune disposition across ancestries. 
In accordance, we did not find any significant differences in expression of individual ICR genes 
based on ancestry (data not shown). Further analysis of BasalMyo tumors, however, revealed 
differences within ICR clusters whereby ICR low and ICR medium patients were grouped into one 
subgroup due to limited sample size of each cluster within BasalMyo tumors. Although BasalMyo 
tumors of AA patients were overall associated with worse overall survival, this was more 
pronounced in ICR medium+low tumors (10y OS, p=0.03; 5y OS, p=0.07) (Figure 2D). In 
multivariate analysis, African ancestry remained significantly associated with worse survival when 
adjusted for tumor stage, and reached borderline significance when adjusted for tumor stage and 
age (Supplementary Figure 3). 
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Figure 2. Tumor immune phenotypes and clinical outcome by ancestry. A. Heatmap of ICR gene 
expression in TCGA and RA-QA breast cancer cohorts. Classification of samples by ICR consensus 
clustering segregates TCGA samples in ICR Low, ICR Medium, and ICR High groups. Samples of RA-QA 
cohort were classified as ICR High or ICR Low. B. Kaplan Meier plots showing overall survival across ICR 
groups in breast cancer TCGA patients of EA (left), TCGA patients of AA (middle), and RA-QA patients of 
ArA (right). C. ICR enrichment scores across ancestries within TDA signature classes. Box plots indicate 
medians and interquartile range, whiskers represent 10th and 90th percentile. All data points are plotted 
individually. D. Overall survival of EA and AA patients in TCGA BasalMyo samples classified as ICR 
Medium+Low (left), and ICR High (right). Censor points are indicated by vertical lines. 
 
 
 

This finding raised the question whether the worse outcome of AA patients with BasalMyo 
tumors is linked to molecular differences in ICR medium+low tumors also known as cold tumors. 
For this purpose, we determined the LES of 24 distinct immune cell types (Figure 3A). Focused 
analysis of BasalMyo cold (ICR medium+low) tumors revealed a significant decrease in T 
regulatory cell (Tregs) and T helper 2 cell (Th2) enrichment scores (p=0.036; p=3.36E-4, 
respectively), and a small increase in B cell enrichment score (p=0.039) in AA versus EA patients, 
whereas dendritic cell enrichment scores were reduced in ICR hot (ICR high) tumors (p=0.009).  

In order to identify which LES may harbor prognostic value, we focused on BasalMyo tumors 
irrespective of ICR class due to sample size limitations and adopted a machine-learning strategy 
which has empirically been shown to work efficiently on small size datasets88–90, despite a slight 
tendency for overfitting (EA, n=134; AA, n=70).  First, we performed a sensitivity model analysis 
that enabled us to identify the XGboost models that have an optimal set of hyper-parameters 
(Harrell’s C index EA=0. 58, AA =0.63) with relatively small variance (data not shown). Next, we 
used XGBoost modeling for nonlinear multivariate cox-regression survival analysis followed by 
the SHapley Additive exPlanations (SHAP) method for the AA and EA subgroups separately 
(Supplementary Figure 6). This approach provided information on which features or gene 
signatures are the most important and their range of effects over the dataset, including the breadth 
(SHAP value) and the direction of the effect (positive or negative). Both the Treg and Th2 
signature were classified as features with more importance for predicting outcome in AA patients 
as compared to outcome in EA patients, with reduced enrichment scores being associated with 
increased risk of death. In accordance, we found that AA, but not EA, patients could be stratified 
into different risk groups based on the expression of the Treg and Th2 cell signatures with 
borderline statistically different clinical outcome (Figure 3B). More specifically, stratification by 
Treg LES subgrouped AA patients with BasalMyo tumors in a low-risk group with higher 
expression and 5-year OS rate of 77%, and a high-risk group with low expression and 5-year OS 
rate of 59% (10y-HR=2.99, 95%-CI=1.02-8.77). Th2 LES-based stratification grouped AA patients 
with BasalMyo tumors into a low-risk/high expression group with 5-year survival rate of 84% and 
a high-risk/low expression group with 5-year survival rate of 55% (10y-HR=3.13, 95%-CI= 0.98-
10.00). No differences in survival were noted for DC and B cell LES (data not shown), which 
supports their lower rank of importance in the SHAP plot of AA patients (Supplementary Figure 
6). 
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Figure 3. Enrichment of immune cell subpopulations in AA and EA patients with BasalMyo breast 
tumors. A. Enrichment scores of signatures reflecting abundance of dendritic cells (DC), T-regulatory cells 
(TReg), T-helper 2 (Th2), and B cells in BasalMyo tumor samples of EA and AA patients. Boxplots are 
facetted by ICR groups, ICR High (upper panels), ICR Medium+Low (middle panels), and across all 
samples (lower panels). Box plots indicate medians and interquartile range, whiskers represent 10th and 
90th percentile. All data points are plotted individually. T-test (two-sided): *p < 0.05, ** p < 0.01, *** p < 
0.001 and ns; not significant. Adjusted p-value (FDR) by Benjamini & Hochberg method. B. Kaplan Meier 
plots of overall survival in EA and AA patients with BasalMyo breast cancer dichotomized by enrichment 
scores of TReg (left panels) and Th2 cell signatures (right panels). Cutoff for dichotomization in “High” and 
“Low” categories is based on optimal enrichment cutoff determined by XGBoost model used for survival 
analysis. Censor points are indicated by vertical lines. 
 
Ancestry-associated differences in cancer-cell intrinsic features 

Next, we investigated whether specific cancer-cell intrinsic features might contribute to the 
worse survival of AA patients with BasalMyo tumors. First, we examined potential changes in 
common cancer-associated genomic aberrations, including mutational load, neoantigen load and 
tumor aneuploidy. Remarkbly, non-silent mutation rate was significantly lower in AA patients 
compared to EA (p=0.025), while the number of predicted single nucleotide variant (SNV) 
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neoantigens was similar between both patient populations (Supplementary Figure 7). Therefore, 
we speculated that AA BasalMyo tumors undergo less immunoediting and immune-mediated 
elimination of neoantigens compared to EA BasalMyo tumors. To address this hypothesis, we 
used an “immunoediting score”, defined as the observed ratio (number of point mutations 
predicted to generate neo-epitopes divided by the total count of non-silent point mutations) 
compared to the expected ratio (expected numbers based on silent mutation rate) 52. Indeed, the 
ratio of the observed/expected neoantigens was increased in AA patients (p=0.033), suggesting 
reduced immunoediting in AA samples (Supplementary Figure 7). However, we did not observe 
any survival difference between tumors with a high observed/expected neoantigen ratio compared 
to tumors with a low ratio (HR=1.1, 95%-CI= 0.43-2.79, p=0.842), suggesting that this tumor 
attribute does not explain the observed survival differences between AA and EA BasalMyo 
tumors. Similarly, while we observed a significantly increased tumor aneuploidy score in samples 
of AA patients (p=0.008, Supplementary Figure 7), this tumor characteristic was not associated 
with a difference in survival (HR=0.691, 95%-CI=0.32-1.48, p=0.34). 

To further explore tumor intrinsic features that could contribute to the divergent survival 
outcomes, we explored the differential enrichment of 54 cancer-associated pathways (Figure 4A). 
A total of 16 pathways were found to be differentially enriched between BasalMyo tumors of AA 
versus EA patients. Of note, only 2 out of 16 pathways, DNA repair and oxidative phosphorylation, 
were associated with an increased enrichment in AA patients. A number of enriched pathways 
were identified multiple times as they were included in more than one database, including 
estrogen response and estrogen-dependent breast cancer signaling, ErbB signaling and 
ErbB2/ErbB3 signaling, PI3K Akt mTOR signaling and PI3K AKT signaling or mTOR signaling, 
and ERK MAPK signaling, UVB-induced MAPK signaling and MAPK up genes. Furthermore, the 
pathways defined as angiogenesis, AMPK signaling, EGF signaling and PTEN signaling were 
significantly less enriched in BasalMyo tumors of AA versus EA patients. Using the same 
approach we applied to explore the prognostic value of immune gene signatures, we used 
XGBoost modeling and the SHAP method to identify which cancer-associated pathways are the 
most powerful indicators of poor survival in AA versus EA patients with BasalMyo tumors (Figure 
4B-C). Based on the summary SHAP plots, we observed that among the top 10 pathways 
affecting survival in EA patients, the majority displayed an inverse correlation of enrichment with 
survival including barrier genes, reactive oxygen species pathway, EGF signaling, hedgehog 
signaling, UVC-induced MAPK signaling, AMPK signaling, estrogen-dependent breast cancer 
signaling and UV response up genes (Figure 4B). In contrast, increased enrichment of DNA 
repair and VEGF signaling pathways were associated with better survival in EA patients. In AA 
patients, the majority of the top 10 pathways determining survival exhibited better survival with 
increased enrichment including PI3K Akt mTOR signaling, proliferation, G2M checkpoint, PI3K 
AKT signaling, AMPK signaling, ERK5 signaling, and ErbB signaling (Figure 4B). On the other 
hand, we found that pathway enrichment for telomere extension by telomerase, barrier genes and 
UV response down corresponded to worse survival. 

In analogy with our analysis of the prognostic value of enriched immune gene signatures, we 
performed a combined analysis of differentially enriched pathways and the top 10 pathways with 
importance for prediction of survival (Figure 4C). Using this approach we identified three 
differentially enriched pathways with prognostic value in EA patients with higher enrichment of 
EGF signaling (p=0.02, optimal enrichment cutoff=0.334) and estrogen-dependent breast cancer 
signaling (p=0.076, optimal enrichment cutoff=0.268) being associated with worse prognosis, 
while a better survival was observed for enrichment of DNA repair (p=0.03, optimal enrichment 
cutoff=0.304). Focusing on AA patients, we found three differentially enriched pathways with 
prognostic connotation whereby enrichment of PI3K-Akt-mTOR signaling (p=9.00E-04, optimal 
enrichment cutoff=0.307), PI3K-Akt signaling (p=0.006, optimal enrichment cutoff=0.328), and 
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ErbB signaling (p=0.053, optimal enrichment cutoff=0.232) was associated with better outcome 
(Figure 4B-C). Interestingly, we found AMPK signaling to be the sole pathway to be differentially 
enriched between BasalMyo tumors of AA and EA patients with prognostic value in patients of 
both ancestries. Further analyses revealed an inverse correlation of AMPK enrichment with 
overall survival in AA versus EA patients. While in EA patients, pathway enrichment was 
associated with worse survival, it bestowed a survival advantage for AA patients (Figure 4D). The 
5-year OS rate of EA patients with BasalMyo tumors enriched for AMPK signaling was reduced 
by 12% from 91% to 79% (10y-HR=0.343, 95% CI=0.11-1.10), while the opposite was observed 
in AA patients where the 5-year OS rate was increased by 21% from 57% to 78% (10y-HR= 3.598, 
95% CI=1.18-10.94). 
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Figure 4. Differentially enriched oncogenic pathways with prognostic connotation in EA and AA 
patients with BasalMyo breast tumors. A. Enrichment scores of signatures of tumor-associated 
pathways that are differentially regulated between AA and EA patients with BasalMyo tumors. Box plots 
indicate medians and interquartile range, whiskers represent 10th and 90th percentile. All data points are 
plotted individually.  T-test (two-sided): *p < 0.05, ** p < 0.01, *** p < 0.001 and ns; not significant. Adjusted 
p-value (FDR) by Benjamini & Hochberg method. B. SHAP plots of tumor-associated pathways that are 
associated with overall survival in EA (left) and AA (right) patients with BasalMyo breast tumors. Pathways 
are ranked by p-value to reflect the importance of each feature in the survival model. Each dot represents 
a single sample and is colored by relative enrichment score. Corresponding impact on model output (SHAP 
value) ranges from -1 (indicating absence of an event) to +1 (indicating occurrence of an event, in this case 
death). C. Intersection of differentially enriched tumor-associated pathways with ten most important 
pathways in AA and EA patients with BasalMyo breast tumors. AMPK signaling is differentially regulated in 
AA versus EA and is of importance in survival models of both AA and EA patients. D. Kaplan Meier curves 
visualizing the prognostic value of AMPK signaling in EA (upper) and AA (lower) BasalMyo patients. 
Dichotomization of samples by AMPK signaling is based on optimal enrichment score cutoff as determined 
by XGBoost model. Censor points are indicated by vertical lines. 
 
 
 
 
Molecular alterations in Arab breast cancer patients 

Given the similarity in TDA subtype distribution of ArA and AA patients (Figure 1C), we 
investigated whether the increased frequency of BasalMyo tumors in ArA patients was associated 
with differential enrichment of LES and cancer-associated pathways. Specifically, we focused our 
analyses on Treg, Th2 and AMPK signaling signatures that showed differentially enrichment with 
prognostic value in AA patients. Due to limited cohort size, we assessed enrichment patterns in 
all Arab patients without subgrouping by TDA subtype. Compared to AsA patients, ArA patients 
showed a trend towards lower enrichment scores of the Treg and AMPK signature (Figure 5A). 
In order to compare patterns of enrichment between ancestries of both cohorts, we performed a 
similar analysis across TCGA ancestries (EA, AA, AsA) without TDA subgrouping (Figure 5B). 
Out of the three signatures, only the differential enrichment of AMPK signaling holds true when 
comparing the overall AA versus EA patient population. Since BasalMyo tumors constitute a large 
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proportion of breast tumors in the AA patients (38%) and are associated with a strong reduction 
in AMPK signaling (p=1.78E-04), we cautiously speculate that the overall reduced enrichment of 
AMPK signaling in AA patients might be related to our findings in BasalMyo tumors. Similarly, it 
could be plausible that our findings in Arab patients might be related to differential enrichment 
signatures in BasalMyo tumors, supporting the need for larger Arab patient cohorts to enable 
statistically powered subanalysis of TDA subgroups. 

 
 
 
Figure 5. Enrichment of selected immune cell subpopulations and oncogenic pathways in Arab 
breast cancer patients. Enrichment scores for signatures for T regulatory cells (Tregs, left), T-helper 2 
cells (Th2, middle), and AMPK signaling (right) in A. RA-QA cohort comparing ArA to AsA breast cancer 
patients, independent of molecular subtype. B. TCGA breast cancer cohort comparing AA, EA, and AsA 
breast cancer patients, independent of intrinsic molecular subtype. Box plots indicate medians and 
interquartile range, whiskers represent 10th and 90th percentile. All data points are plotted individually. T-
test (two-sided): *p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, and ns; not significant. 
 

Discussion 
 

An increasing effort is expended to decipher the molecular differences that are associated 
with global disparities in breast cancer outcome. Several studies have investigated the 
presentation of breast tumors in patients of African ancestry in comparison to women of European 
origin. A consensus across studies is that women of African ancestry display a higher prevalence 
of the unfavorable triple negative breast cancer subtype and of the molecular PAM50-defined 
basal subtype7–15. We interrogated the TCGA breast cancer cohort using curated survival data, 
improved ancestry assignment and a refined classifier that reclassifies breast tumors into 7 
subgroups using the PAM50 signature in combination with topological data analysis. Comparison 
of the classical PAM50 and the TDA classifier revealed that the large majority of basal tumors 
belong to the BasalMyo TDA subgroup, and that the reported enrichment of basal tumors in 
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patients of African ancestry is largely dominated by the BasalMyo subtype. Moreover, we were 
able to demonstrate that BasalMyo tumors are the only TDA subgroup that is associated with an 
ancestry-associated disparity in clinical outcome, underlining the clinical relevance of BasalMyo 
tumors in African patients. 

In order to elucidate the underlying biological processes contributing to the worse survival of 
AA patients with BasalMyo tumors as compared to EA patients, we assessed transcriptomic 
differences in immunological parameters and cancer-cell intrinsic features. To date, only few 
population-based studies have considered ancestry-related changes in the immune response of 
breast cancer patients22,43–45. Overall, very few immunological differences in tumor tissues have 
been reported between patients of African and European ancestry22,45. Pitt et al reported subtle 
differences in tumor immune signatures when adjusting for PAM50-defined subtype22.  They 
found an enrichment of the type I IFN signature in luminal A and luminal B tumors of patients of 
African ancestry, including African-American and Nigerian women, as compared to patients of 
European ancestry. A study by O’Meara et al. reported no significant differences in the expression 
of 14 immune metagenes in TNBC tumors of AA and EA patients, whereas the proportion of 
resting CD4+ memory cells, as determined by CIBERSORT, was significantly higher in TNBC 
tumors of EA patients45. Based on the notion that the CIBERSORT algorithm determines the 
relative abundance of immune cell subpopulations within a tumor rather than between tumors, we 
did not include CIBERSORT in our analyses. We explored ancestry-related differences in immune 
disposition using the ICR classifier of tumor immune phenotypes and leukocyte subgroup 
enrichment scores. As such, we found that the prognostic value of the ICR immune gene signature 
holds true across ancestries and that the lower enrichment of T regulatory and T helper 2 immune 
cells in patients of African ancestry negatively correlated with outcome. Although this seems a 
counterintuitive finding, it is important to note that the presence of immunosuppressive cells could 
be a result of prior immune activation. In line with this, we previously found that FoxP3 expression 
heavily correlates with T-cell infiltration as a counter regulatory signal and hence is an important 
marker of the ICR signature85. In addition, a number of studies have reported that increased 
expression of immunosuppressive gene signatures supports chemotherapy sensitivity and hence 
better clinical outcome in (triple negative) breast cancer92–95.  

Subsequently, we explored whether we could identify ancestry-specific enriched oncogenic 
pathways with prognostic relevance in BasalMyo tumors. In support of this concept, a recent 
transcriptome-wide association study of the Caroline Breast Cancer Study transcriptomic dataset, 
comprised of self-identified African American and European American women, demonstrated that 
ancestry-stratified predictive risk models did not perform across ancestries and/or subtype96. 
Through integrative analysis of differential enrichment and prognostic connotation we identified 7 
differentially enriched signaling pathways with prognostic connotation in patients of European 
and/or African ancestry. Enrichment of EGF and estrogen-dependent signaling was associated 
with worse clinical outcome in patients of European ancestry, while enrichment of DNA repair 
genes correlated with better outcome. Conversely, enrichment of PI3K-Akt/PI3K-AKT-mTOR and 
ErbB signaling was associated with better prognosis in patients of African ancestry. Although this 
survival-favorable correlation appears contradictory in relation to mTOR and ErbB-mediated 
oncogenic signaling, recent studies have demonstrated enrichment of PI3K-AKT signaling in 
immunogenic TNBC tumors suggesting that hyperactivation of this signaling pathway might 
promote immunogenic activity and result in better prognosis92,97,98. This raises the question 
whether BasalMyo tumors enriched in PI3K and ErbB signaling could similarly infer an immune 
favorable tumor phenotype in a subset of AA patients. Furthermore, analysis of the individual 
molecules constituting the ErbB signaling pathway revealed a reduced enrichment of ErbB2, 
ErbB3 and ErbB4 and downstream signaling, irrespective of ancestry, in hormone receptor 
negative tumors and in particular BasalMyo tumors compared to hormone receptor positive 
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tumors (data not shown). On the other hand, hormone receptor negative tumors and BasalMyo 
tumors feature a higher enrichment of ErbB1/EGFR and its downstream molecules, which may 
be driving the overall increased enrichment of ErbB signaling in those tumors (data not shown). 
These findings highlight the importance of obtaining a more granular view of the changes in the 
ErbB pathway in BasalMyo tumors such as the relative effect of individual EGFR ligands on ErbB 
signaling enrichment. Notably, AMPK signaling was associated with opposing prognostic 
significance in EA and AA patients, with a positive connotation in the latter group. AMP-activated 
protein kinase or AMPK is a key regulator of cancer metabolism and oncogenic signaling, is 
frequently upregulated in TNBC versus non-TNBC tumors and is generally associated with poor 
clinicopathological factors and shorter survival99,100. Several lines of evidence however point 
towards a more complex role for AMPK in cancer whereby AMPK activation has been associated 
with both pro-tumorigenic and anti-tumorigenic effects depending on specific metabolic cues101. 
For example, activation of AMPK signaling has been shown to inhibit the PI3K-AKT-mTOR 
pathway, the expression of EGFR and cyclins, and the phosphorylation of Src, STAT3 and MAPK, 
culminating in reduced tumorigenic potential and better clinical outcome102–104. It remains to be 
determined if metabolic-mediated dysregulation of AMPK signaling could be regulated by 
ancestry-specific traits. Indeed, few studies have reported ancestral disparity in cancer 
metabolomics105–107. Our finding illustrates that metabolic pathways might be governed by 
different regulators depending on ancestry, and hence reiterates the need to account for ancestry 
in biomarker and cancer target research. 
To conclude, the rapidly evolving technological landscape and refinement of cancer treatment 
towards precision cancer medicine has led to the recognition that breast cancer is not a single 
disease but should be studied and clinically managed as multiple distinct disease entities. It is 
now well appreciated that the complexity and heterogeneity of breast cancer arises from 
differences in cancer-cell intrinsic mechanisms as well as from dysregulation of the interplay with 
the stromal and immune microenvironment. Our findings support the notion of an additional level 
of complexity introduced by ancestry-associated traits and urge for more studies on 
underrepresented populations such as patients of Arab ancestry. Therefore, we advocate 
accounting for ancestry-specific molecular features in breast cancer research and in clinical 
decision making in order to guide precision cancer medicine.  
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