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Abstract 
 
The increased application of high-throughput approaches in translational 
research has expanded the number of publicly available data repositories. 
Gathering additional valuable information contained in the datasets 
represents a crucial opportunity in the biomedical field. To facilitate and 
stimulate utilization of these datasets, we have recently developed an 
interactive data browsing and visualization web application, the Gene 
Expression Browser (GXB). In this note, we describe a curated compendium 
of 13 public datasets on human breast cancer, representing a total of 2142 
transcriptome profiles. We classified the samples according to different 
immune based classification systems and integrated this information into the 
datasets. Annotated and harmonized datasets were uploaded to GXB. Study 
samples were categorized in different groups based on their immunologic 
tumor response profiles, intrinsic molecular subtypes and multiple clinical 
parameters. Ranked gene lists were generated based on relevant group 
comparisons. In this data note, we demonstrate the utility of GXB to evaluate 
the expression of a gene of interest, find differential gene expression 
between groups and investigate potential associations between variables 
with a specific focus on immunologic classification in breast cancer. This 
interactive resource is publicly available online at: 
http://breastcancer.gxbsidra.org/dm3/geneBrowser/list.  

http://breastcancer.gxbsidra.org/dm3/geneBrowser/list.
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Introduction 
 
 Technological progress in the field of biomedical research has resulted in an increased 
utilization of platforms generating information on a system-scale, e.g., genome, transcriptome and 
proteome. As researchers are typically willing and often required to share their data collections, 
the availability of ‘big data’ is expanding rapidly. At this moment, the NCBI Gene Expression 
Omnibus (GEO), a public repository of transcriptome profiles, holds over 2 million individual 
transcriptome profiles from more than 76,000 studies1. This large amount of available 
transcriptomic data provides major opportunities as well as challenges to researchers. 
Identification of differential gene expression in healthy versus diseased individuals, for example, 
has the potential to increase our understanding of the disease process, can lead to the 
identification of novel disease biomarkers or to the recognition of potential therapeutic targets. 
However, utilization of the available system-scale information can be challenging, since data 
repositories often lack the analytical and visualization tools needed for data assessment and 
interpretation. For this reason, proper analysis relies on elevated bioinformatics skills. 
 To overcome the challenges faced when analyzing transcriptomic data, we previously 
developed a web application called gene expression browser (GXB), which makes datasets more 
accessible and interactive2. The application graphically visualizes gene expression data in bar 
chart or box plot representation and is capable of dynamically changing its interface views upon 
user input. GXB allows users to upload microarray data, add data annotations, which enables 
overlay of clinical data, explore gene rank lists based on their differential expression patterns 
between groups, view the data on a gene-by-gene basis and compare different datasets and 
diseases. These capabilities stimulate the acquisition of new knowledge from public datasets, as 
demonstrated by the first paper that employed GXB to identify a previously unknown role of a 
specific transcript during immune-mediated processes3. 
 In recent years, a large number of transcriptional studies have been conducted with the aim 
to characterize breast cancer on a genetic basis. GEO holds about 1297 datasets relating to 
breast cancer. One of the main impacts gene expression profiling has had on our understanding 
of breast cancer has been through the classification of breast cancer into intrinsic molecular 
subtypes (IMS). Three main methods have been described to achieve this, which have the same 
subtypes, but actually use different gene sets to stratify the patients4–6. Four major IMS of breast 
cancer have been identified: Luminal A, Luminal B, HER2-enriched and Basal-like. A less 
common molecular subtype called Claudin-low has been characterized at a later time point7. 
Stratified IMS groups present critical differences in incidence, survival and response to treatment, 
and most importantly add prognostic information that is not provided by classical stratifications, 
like estrogen receptor status, histologic grade, tumor size, and node status6.  
 Recent breakthroughs in the field of cancer immunotherapy and especially the application of 
checkpoint blockade inhibitors has ignited a fierce drive to understand the genetic basis for the 
huge differences observed between patients with different immune phenotypes. Several papers 
have shown that expression profiles are able to distinguish between those patients that have an 
active immune environment and those that do not8–12. A clear correlation can be seen both 
regarding prognosis (survival) and prediction of therapeutic effectiveness of immune regulatory 
therapies. The expression of genes observed in association with tissue-specific destruction in a 
broader context, defined as the immunological constant of rejection (ICR), can distinguish 
between breast cancer patients with different prognosis. This immunological classification is 
based on the consensus clustering of ICR genes12, e.g. genes underlying Th1 polarization, related 
chemokines, adhesion molecules and cytotoxic factors, in combination with immune regulatory 
genes IDO1 and  FOXP3, PDCD1, CTLA4 and CD274/PD-L1 (Figure 1A)13. In Miller et al14, a 
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novel survival-based immune classification system was devised for breast cancer based on the 
relative expression of immune gene signatures that reflect different effector immune cell 
subpopulations, namely antibody-producing plasma B cells (the B/P metagene), cytotoxic T 
and/or NK cells (the T/NK metagene), and antigen-presenting myeloid/dendritic cells (the M/D 
metagene). The system defines a tumor’s immune subclass based on its survival-associated 
immunogenic disposition status (IDS), which discriminates between poor immunogenic 
disposition (PID), weak immunogenic disposition (WID) and favorable immunogenic disposition 
(FID). The ability of IDS to distinguish patients with differential prognosis is dependent on the 
tumor’s immune benefit status (IBS), which is defined by IMS and the expression of cell 
proliferation markers. The IBS classification segregates immune benefit-enabled (IBE) and 
immune benefit-disabled (IBD) tumors. In IBE tumors, but not IBD tumors, FID status confers a 
protective survival benefit compared to WID and PID status (Figure 1B)14,15. In this data note, we 
demonstrate the use of GXB to evaluate cancer gene expression across immunologic 
classifications of breast cancer.   
 Since the amount of possible datasets to be included in GXB is enormous, we chose to start 
with the GEO datasets underlying the immunologically classified breast cancer datasets by Miller 
et al.14. In Hendrickx et al.16, these same datasets were classified according to ICR. This will allow 
us to share our immune related classifications in a comprehensible way and allow others to reuse 
them. A harmonization effort of the other available clinical data had been undertaken and should 
help the downstream analysis of the expression data. Therefore, gathering these datasets with 
their detailed study and sample information will facilitate the identification of clinically relevant 
genetic signatures for biomarker and/or therapeutic purposes. 
 In this data note, using GXB, we have made available a curated compendium of 13 public 
datasets relevant to human breast cancer, representing a total of 2142 cases. 
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Figure 1. Basis of ICR and IDS/IBS classifications and prognostic value. 
(A) Consensus clustering based on ICR genes segregates breast cancer patient in four different groups: 
ICR1, 2, 3 and 4. Patients with tumors categorized as ICR4 have the highest expression of the ICR gene 
signature and have a better prognosis compared with other ICR groups. (B) Immune metagene model 
based on the relative expression of immune metagenes (B/P, T/NK and M/D) distinguishes PID, WID and 
FID tumors (horizontal axis: genes, vertical axis: individual cases). This classification has prognostic value 
in IBE tumors, and not in IBD tumors. Diagrams are based on Hendrickx et al.16 (A) and Miller et al.14 (B). 
This figure is for explanatory purposes only and does not serve as a demonstration of the GXB web 
application. ICR, Immunologic Constant of Rejection; IBE/D, Immune Benefit Enabled OR Disabled; 
F/P/WID, Favorable OR Poor OR Weak Immune Disposition.
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Methods 
 
Selection of breast cancer datasets 

The starting point of our selection of breast cancer datasets are the patient cohorts included 
in the multi-study breast cancer database described by Nagalla et al.15. These 13 NCBI GEO 
datasets (GEO accession numbers: GSE45255, GSE2034, GSE5327, GSE12093, GSE9195, 
GSE11121, GSE1456, GSE2603, GSE6532, GSE7390, GSE7378 and GSE4922) resulted in 
2142 cases initially uploaded in GXB. 22 of these cases reflect data from breast cancer cell lines 
and were therefore excluded from our data collection. A total of 1839 cases represent primary 
invasive breast tumors sampled at the time of surgical resection without prior neoadjuvant 
treatment and were therefore annotated with survival data, IMS, IBS, IDS and ICR status14,16. 281 
of the cases did not fulfill these criteria and were therefore not annotated. Of note, 115 cases of 
original meta-cohort used Nagalla’s study (n=1954) were not shared within GEO, but shared 
within other platforms (caArray and ArrayExpress). For this reason, these samples were not 
included in our GXB collection (Figure 2). 

The datasets that comprise our collection are listed in Table 1 and can be searched 
interactively in GXB. All GEO datasets consist of unique cases with the exception for 36 cases 
from NUH Singapore, which are both present in the Bordet Radcliff NUH (GSE45255) dataset 
and the Uppsala and Singapore (GSE4922) dataset. 

Data of the 1839 GEO-cases annotated with survival data that were previously combined and 
used in the Nagalla study, have been uploaded to GXB in the dataset “Nagalla 2013 reconstituted 
public dataset”. 

 

 
 

Figure 2. Schematic representation of dataset selection and annotation. 
Breast cancer cases included in 13 NCBI GEO datasets were uploaded in GXB (n=2142). 22 cases 
described data from breast cell lines and were excluded from our data collection. We annotated 1839 cases 
with survival data, IMS, IBS, IDS and ICR status. 281 cases were either neoadjuvant treated, did not 
represent a primary invasive tumor, were not sampled at the time of surgery or without available survival 
data and were therefore not annotated. The total collection includes 1839 cases from the original cohort 
described in Nagalla et al.15 (n=1954). Of note, 115 cases of this cohort are not included in our collection 
as these were not shared via GEO.   
*251/1839 cases have been classified for IMS “Normal-like”. IDS is not applicable for normal-like breast 
cancer tissue; therefore, IDS is non-classified for these samples. DMFS, Distant Metastasis Free Survival; 
GXB, Gene Expression Browser; IMS, intrinsic molecular subtype; IBS, immune benefit status; IDS, 
immune disposition status; ICR, immunologic constant of rejection. 17–27 
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Dataset Platforms Disease 
Number 

of 
samples 

GEO ID Reference 

Bordet Radcliffe NUH dataset - 
GSE45255.GPL96 

Affymetrix Human 
Genome U133A 

Array 

Breast 
Cancer 

139 GSE45255 15 

Erasmus Medical Center (EMC) 
dataset 1 - GSE2034.GPL96 

Affymetrix Human 
Genome U133A 

Array 

Lymph 
Node 

Negative 
Breast 
Cancer 

286 GSE2034 17 

Erasmus Medical Center (EMC) 
dataset 2 - GSE5327.GPL96 

Affymetrix Human 
Genome U133A 

Array 

Lymph 
Node 

Negative 
Breast 
Cancer 

58 GSE5327 18 

Europe and Cleveland (EMCT) 
dataset - GSE12093.GPL96 

Affymetrix Human 
Genome U133A 

Array 

ER + 
Breast 
Cancer 

136 GSE12093 19 

Guy's hospital dataset (GUYT2) - 
GSE9195.GPL570.fCEL 

Affymetrix Human 
Genome U133 
Plus 2.0 Array 

ER+ 
Breast 
Cancer 

77 GSE9195 20 

Johannes Gutenberg University 
(MAINZ) dataset - 
GSE11121.GPL96 

Affymetrix Human 
Genome U133A 

Array 

LN- 
Breast 
Cancer 

200 GSE11121 21 

Karolinska (STO) dataset - 
GSE1456.GPL96 +GPL97 

Affymetrix Human 
Genome U133A 

Array 
& 

Affymetrix Human 
Genome U133B 

Array 

Breast 
Cancer 

159 GSE1456 22 

Memorial Sloan-Kettering Cancer 
Center (MSKCC) dataset - 
GSE2603.GPL96_Clinical samples 

Affymetrix Human 
Genome U133A 

Array 

Breast 
Cancer 

99 GSE2603 23 

Nagalla 2013 reconstituted public 
dataset 

Affymetrix Human 
Genome U133A 

Array 
& 

Affymetrix Human 
Genome U133A2 

Array 
& 

Breast 
Cancer 

1839 multiple 15 
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Affymetrix Human 
Genome U133 
Plus 2.0 Array 

 
Princess Margaret Cancer Centre 
dataset (GUYT) - 
GSE6532.GPL570 

Affymetrix Human 
Genome U133 
Plus 2.0 Array 

ER+ 
Breast 
Cancer 

87 GSE6532 24 

Princess Margaret Cancer Centre 
dataset - GSE6532.GPL96 
+GPL97 

Affymetrix Human 
Genome U133A & 

U133B Array 

ER+ 
Breast 
Cancer 

327 GSE6532 24 

TRANSBIG (TBIG) dataset - 
GSE7390.GPL96 

Affymetrix Human 
Genome U133A 

Array 

Lymph 
Node 

Negative 
Breast 
Cancer 

198 GSE7390 25 

University of California San 
Francisco (YAU) dataset - 
GSE7378.GPL4685 

Affymetrix 
GeneChip HT-

HG_U133A Early 
Access Array 

ER+ 
Breast 
Cancer 

54 GSE7378 26 

Uppsala and Singapore dataset - 
GSE4922.GPL96 +GPL97 

Affymetrix Human 
Genome U133A & 

U133B Array 

Breast 
Cancer 

289 GSE4922 27 

 
Table 1. List of datasets uploaded to GXB. 
 
 
Dataset upload into GXB 
 All datasets were downloaded from NCBI GEO in SOFT file format and were uploaded into 
GXB with the exception of the Guy's hospital dataset (GUYT2; GSE9195). Expression data in the 
SOFT file of this dataset was expressed as fold change. Therefore, we had to revert to 
reprocessing of the CEL files found attached to the GSE on GEO. In this case, the cell files were 
read into R (v3.2.2) using the ‘affy’ package (v1.50.0). Data was normalized using the RMA 
(Robust multichip averaging) and gene annotation data was added using the hgu133plus2.db 
package (v3.2.3).  
 GSE records containing data generated with different or multiple platforms have been split 
by platform using the import process of GXB. GSEs containing data from both clinical as in vitro 
origin (GSE2603) have been split manually using the GXB Graphical interface.  
 Metadata of the different studies was added to GXB both from the descriptive information 
found on GEO or from the method sections of the publications linked to these datasets. Short 
links to PMID (Pubmed) and GEO records were added.  
 
Construction of the Nagalla’s dataset 
 The constitution of the complete cohort has previously been described by Nagalla et al.15. 
The dataset “Nagalla 2013 reconstituted public dataset” available in GXB contains only the 
samples that were publicly available via GEO. Briefly, raw data (CEL files) were extracted from 

https://hgu133plus2.db/
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GEO. The array platforms employed for these 13 datasets were Affymetrix U133A, U133A2, and 
U133 PLUS 2.0 gene chips; the 22,268 probe sets present in each of these platforms were 
included in the gene expression file. Data were MAS5.0 normalized using the justMAS function in 
the simpleaffy library from Bioconductor28 using a trimmed mean target intensity of 600 without 
background correction. COMBAT empirical Bayes method was used to correct for batch effects29. 
 
Clinical data annotation 
 Gene expression data is accompanied with clinical data in CSV file format. Gene expression 
data and clinical data are coupled to the sample via variable “Sample ID”. We annotated a total 
of 1839 cases with 10-year survival (time and event), IBS (IBE, IBD), IDS (PID, WID and FID)14 
and ICR (ICR1, ICR2, ICR3 and ICR4) immune classifications16 (Figure 2, Table 2). IMS (i.e., 
Basal-like, HER2-enriched, Luminal A and Luminal B) were defined using the Single Sample 
Predictor (SSP) algorithm by Hu et al.5 utilized by Fan et al.30. Claudin-low tumors were identified 
using the method of Prat et al.7. Of the 1839 samples, 251 samples were “Normal-like” in IMS 
classification. Therefore, these samples are not classified according to IDS. For the separate 
dataset containing samples of in vitro origin (GSE2603), survival annotations and immune 
classifications are not applicable. A final 281 cases were not annotated and non-classified, since 
for these cases either samples were not taken at the time of surgical resection, were neoadjuvant-
treated or cases were not annotated with distant metastasis free survival (DMFS) time and event. 
 
 

Classifications Categories Reference 

Intrinsic Molecular Subtype (IMS) 

Normal-like (Normal);  
HER2-enriched (Her2);  
Basal-like (Basal);  
Luminal A (LumA);  
Luminal B (LumB);  
Claudin low (ClaudinLow) 

5 

Immune Benefit Status (IBS) 

Immune Benefit-Enabled 
(IBE); 
Immune Benefit-Disabled 
(IBD) 

14, 15 

Immunogenic Disposition Status (IDS) 

Poor Immunogenic 
Disposition (PID); 
Weak Immunogenic 
Disposition (WID); 
Favorable Immunogenic 
Disposition (FID) 

14, 15 

 
Immunologic Constant of Rejection (ICR) 

  
ICR1; ICR2; ICR3; ICR4 12, 16 

 
Table 2. Tumor classifications applied to breast cancer datasets. 
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 To enable comparisons between datasets and to facilitate efficient data analysis, the 
clinical data was harmonized to reflect a nomenclature similar to that of The Cancer Genome 
Atlas (TCGA). Clinical variable names and availability in datasets are listed in Table 3. In 
general, variable values have been replaced by descriptive values (e.g. “1” and “0” are replaced 
by “ER+” and “ER-”, respectively). For disease free survival, variable values have been adapted 
to “DiseaseFree” or “Recurred/Progressed”, and for distant metastasis survival to 
“DistantMetastasisFree” and “DistantMetastasis”. Numeric values of variable “tumor size” have 
been converted to units in cm for all datasets. This variable was used to generate the additional 
variable pathology T stage according to the 7th edition of the AJCC staging system for breast 
cancer31. For tumors with a diameter larger than 5 cm, pathology T stage could be either T3 or 
T4, therefore value “T3/T4” has been assigned to these cases. 
  

Clinical variable Available in 
N datasets 

IMS 13 
IBS 13 
IDS 13 
ICR 13 
DMFS 10Y EVENT 13 
DMFS 10Y TIME 13 
Disease free survival event 11 
Disease free survival time 11 
Distant metastasis free survival event 6 
Distant metastasis free survival time 6 
Age at initial pathologic diagnosis 8 
Lymph node status 8 
ER status 8 
PR status 5 
Histology differentiation grade 7 
Tumor size 8 
Pathology T Stage 8 
Type treatment, bone metastasis event, bone metastasis free survival time, 
breast cancer cause of death, HER2 status, histologic diagnosis, lung 
metastasis event,  
lung metastasis free survival time, lung metastasis gene expression 
signature status, vital status, angioinvasion indicator, disease specific 
survival time, genetic grade signature, status sws classifier, GGI indicator, 
lymph nodes examined count, number of lymph nodes positive, lymphocyte 
infiltration, molecular subtype, NPI, overall survival, p53 mutation status, 
probability by sws classifier, RFS 5Y EVENT, risk AOL indicator, risk NPI 
indicator, risk SG, risk veridex indicator, tissue type, van 't Veer signature. 

<2 

 
Table 3. Clinical data availability. 
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 Standardized clinical datasets can be found in the ‘downloads’ tab in GXB under the heading 
“additional files”. All datasets start with the following 21 clinical variables in fixed order: 
"sample.ID", "array sample id", "sample title", "series", "IMS", "IBS", "IDS", "ICR", 
"DMFS_10Y_EVENT", "DMFS_10Y_TIME", "disease free survival event", "disease free survival 
years", "distant met free survival event", "distant met free survival", "age at initial pathologic 
diagnosis", "lymph node status", "ER status", "PR status", "histology differentiation grade", "tumor 
size cm", and "pathology T stage". In case one of these variables is not available in a specific 
dataset, values in this column are all NA.  
 Group sets for IBS/IDS, ICR cluster, Lymph Node (LN) Status, IMS, Histological grade, stage 
and Estrogen Receptor (ER) status were defined with matching differential gene expression rank 
lists. Rank lists are based on differential gene expression between two relevant groups for each 
group set: IBD-FID vs IBE-FID (IBS/IDS); ICR1 vs ICR4 (ICR1/ICR4); LN+ vs LN- (LN status); G1 
vs G3 (histological grade); ER+ vs ER- (ER status). For IMS, no rank list was generated, as this 
variable is not ordered. For tumor stage, no rank list was generated because the spread of 
samples between categories was small. 
 
 
Dataset demonstration 
 
Utilization of GXB 
 The GXB software has been described in detail in a recent publication2. This custom software 
interface provides users with a means to easily navigate and filter the dataset collection available 
at http://breastcancer.gxbsidra.org/dm3/landing.gsp. A web tutorial is also available online: 
http://breastcancer.gxbsidra.org/dm3/tutorials.gsp#gxbtut.  

 
Example case: Expression of HLA-G across ICR groups 
 In GXB, users can search interactively for a specific gene of interest. Differential expression 
across different group sets can be observed in the graphical interface, either in bar or box plots. 
For illustrative purposes, we choose to evaluate the abundance of the HLA-G transcripts across 
ICR groups.  
 HLA-G is a non-classical class I gene of human Major Histocompatibility Complex that is 
primarily expressed on fetal derived placental cells32. In contrast to its classical counterparts, HLA-
G does not initiate immune responses, but instead has immunosuppressive effects33,34. 
Expression of HLA-G has been reported in a variety of cancers, including breast cancer, and has 
been assigned a role in tumor immune escape33–36. Concerning its role in tumor immunity, it may 
be of interest to investigate whether HLA-G expression is elevated in breast tumors of specific 
immune phenotypes. The ICR gene signature segregates breast tumors into four immune 
phenotype groups based on the expression of genes underlying immune-mediated tissue-specific 
destruction, with ICR1 having the lowest and ICR4 the highest expression of this signature13. 
 To compare HLA-G expression across ICR groups using the breast cancer datasets 
uploaded to GXB, we start by selecting a dataset. Users can decide to first explore the Nagalla 
2013 dataset containing the total of 1839 annotated cases from all uploaded datasets to define 
trends to subsequently check their consistency over the different datasets. Alternatively, users 
can first explore the individual datasets. After opening one of the datasets: 1) the gene of interest, 
HLA-G, can be identified using the search box in the upper left corner of the user interface. Upon 
selection of “HLA-G” in the left panel, the central panel displays the expression values of this gene 
for all samples as a bar chart. For some of the transcripts, as is the case for the HLA-G transcript, 
multiple probes are available. Probe ID can be displayed by clicking “Tools” in the central panel 

https://sample.id/
http://breastcancer.gxbsidra.org/dm3/landing.gsp.
http://breastcancer.gxbsidra.org/dm3/tutorials.gsp#gxbtut.
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and clicking “Show Probe ID” in the dropdown list. In this example, which is for illustrative 
purposes only, we selected probe ID 211528_X_AT at random. 2) Sample grouping is default as 
“All sample”, it is changed by selecting “Immunologic Constant of Rejection” and 3) plot type is 
set to “Box Plot” in drop down menus in the central panel. The central panel now presents a 
graphical display of the observed abundance of HLA-G transcripts in breast cancer samples 
across the different ICR groups, each sample is represented by a single point in a boxplot (Figure 
3A). A tendency of increased HLA-G expression in groups with the highest expression of ICR 
genes can be observed. 4) To verify whether this trend can also be observed in other breast 
cancer datasets, GXB’s “Cross Project View” is used. By selecting “Cross Project View” in the 
“Tools” drop-down menu located in the top right corner of the user interface, a list of available 
datasets/projects appears in the left pane. By consecutive selection of single datasets, box plots 
with HLA-G transcripts across ICR groups are displayed for each individual dataset.

Figure 3. Illustrative example of abundance of HLA-G transcripts across ICR groups in multiple 
breast cancer datasets in GXB.
(A) Cross Project View in GXB showing HLA-G expression across ICR groups. ICR represents the immune 
gene signatures observed in association with tissue-specific destruction. In this view of GXB, expression of 

A
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HLA-G can be visualized across projects listed on the left. (B) Boxplots of HLA-G expression across ICR 
groups of three additional representative datasets selected from the dataset collection and the complete 
dataset including all annotated cases (right bottom plot). Plots indicate an increased HLA-G expression in 
breast tumors with a high expression of ICR genes. ICR, Immunologic Constant of Rejection. 
 
 
 Each of the boxplots corresponding to the 13 datasets show a similar pattern, indicating an 
increased HLA-G expression in breast tumors with a high expression of ICR genes 
(representative plots are shown in Figure 3B). In the combined dataset containing the total of 
1839 annotated cases from these datasets, this trend is also observed (Figure 3B). From a 
biological perspective, increased expression of an immunosuppressant in an immunologically 
active tumor would be in line with our current view of the tumor microenvironment. Active immune 
tumor environments, as observed in ICR4 tumors, also show counter regulatory mechanisms to 
suppress the immune system12,13. 
 This observation made by exploring transcriptome data in GXB provides an interesting 
starting point for further analysis. Statistical analysis of this potential association is required and, 
of course, the clinical relevance of the observed difference in abundance of transcripts should be 
determined. Most importantly, the functional relevance of HLA-G expression depends on its 
interaction with inhibitory receptors including ILT2, ILT4 and KIR2DL437. Therefore, combined 
analysis of both HLA-G and these inhibitory receptors is suggested in future analyses.  
 This example illustrates the convenience of exploring gene expression data in GXB. The 
browser facilitates intuitive navigation and visualization of gene expression across different group 
sets. 
  
Differential gene expression between IBS/IDS subgroups 
 The breast cancer datasets uploaded in GXB are provided with a rich context of immune 
classifications and clinical parameters. As opposed to start a search with a specific gene of 
interest, as presented in the HLA-G example case, differential gene expression between groups 
of interest can be explored in GXB by evaluation of gene rank lists. Here, we demonstrate the use 
of GXB to explore differential gene expression across IBS/IDS groups. 
 The IDS group set is based on an immune metagene model segregating breast tumors in 
groups of different immunogenic dispositions: PID, WID and FID15. The prognostic value of this 
classification is dependent on the molecular subtype and the proliferative capacity of the tumor, 
hereby segregating tumors in IBE and IBD groups, with and without prognostic value of the IDS, 
respectively. Since the hypothesis is that IBE-FID tumors confer metastasis-protective potential 
and IBD-FID tumors do not, transcriptional differences between these specific subgroups are of 
particular interest and have systematically been analyzed by Miller et al14.  
 The Nagalla 2013 reconstituted dataset containing all annotated cases of this GXB breast 
cancer instance (n=1839) is used to explore differential gene expression between IBE-FID and 
IBD-FID tumors in GXB. Group set “Immune Benefit Status” is selected and corresponding gene 
rank list “IBD-FID vs IBE-FID” will load in the left panel by default. Filtering for specific immune 
gene categories, e.g. cytokine and chemokine ligands, cytokine and chemokine receptors, B and 
T cell signaling, and antigen presenting cell processing, is possible by selecting gene list category 
in the rank list menu. Exploring the expression of genes with known roles in tumor immunology 
reveals two important observations: 1) markers of immune cell infiltration, including CD8, CD3, 
CD19 and CD2, show similar expression in IBD-FID and IBE-FID subgroups (Figure 4A); while 
(2) markers of immune functional orientation, including CXCL10 (tissue rejection chemokine), 
GZMB (cytotoxic effector molecule), INFG and STAT1 (Th1 polarization), show differential 
expression across IBD-FID and IBE-FID groups (Figure 4B). A comprehensive statistical analysis 
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of expression of these and other immune-related genes confirmed these observations, suggesting 
that while the composition of the immune infiltrate is similar in these tumors, the functional 
molecular orientation determines the metastasis-protective phenotype14.

Figure 4. GXB overview of expression of genes with known roles in tumor immunology across 
IBS/IDS subgroups in reconstituted Nagalla’s breast cancer dataset.
(A) Expression values of CD8 and CD19, indicators of immune cell infiltration, are similar in IBD-FID and 
IBE-FID groups, indicating equal immune cell infiltration in these subgroups. (B) Expression values of 
CXCL10, GNZB, IFNG and STAT1, markers of immune functional orientation, are increased in the IBE-FID 
group compared with IBD-FID, indicating a differential functional orientation of the immune infiltrate between 
IBD-FID and IBE-FID tumors. IBE/D, Immune Benefit Enabled OR Disabled; F/P/WID, Favorable OR Poor 
OR Weak Immune Disposition.

This demonstration indicates that GXB allows for easy and efficient visualization of 
differential gene expression between subgroups. Subsequently, elaborate statistical analysis is 
required to confirm the differences in gene expression observed in GXB.

Overview of breast cancer immune classifications in GXB

Since this GXB data collection is provided with multiple immune classifications of breast 
cancer, it is interesting to visualize the relationship between these classifications in GXB. The 
overlay feature in GXB can be used to visualize the assignment of different classifications to 
individual samples simultaneously.
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 To illustrate this overlay option, we choose to select the Erasmus Medical Center dataset 2 
(EMC2) with CXCL9 expression, as this is one of the chemokines included in the ICR gene 
signature. Graphical representation in GXB is set to bar plot and group set ICR is selected. As 
anticipated, the CXCL9 expression gradually increases from ICR1-ICR4. The drop down menu 
“Overlays” is used to add multiple layers of additional variables, “IBS”, “IDS” and “IMS”. Boxes 
underneath the individual bars (each bar represents a single case) display the assigned 
classifications (Figure 5A). When comparing IBS classifications across ICR groups, it is evident 
that IBE tumors are frequently assigned to the higher ICR clusters, ICR3 and ICR4, while IBD 
tumors tend to concentrate to the clusters with a low expression of the ICR signature (ICR1, ICR2) 
(Figure 5A). This result is consistent with our previous observations: pathways that distinguish 
IBE and IBD are associated with the immune functional orientation of the tumor, and genes in 
these same pathways are crucial components of the ICR signature13,14. 
 IDS relates to the ICR classification in a similar manner. FID tumors are mostly assigned to 
ICR4, while WID tumors are frequently classified to intermediate clusters (ICR2 and ICR3), and 
PID tumors prevail in the ICR1 cluster (Figure 5A). This observation is also in line with our 
expectations, the IDS classification is based on an immune metagene model that relies on 
immune gene subclusters that reflect the relative abundance of tumor-infiltrating immune cells15. 
As markers of immune cell infiltration are also included in the ICR signature, IDS is closely 
associated with ICR. 
 For a more comprehensive overview of the relationship between different immune 
classifications in breast cancer, the overlay of immune classifications was evaluated in the 
Nagalla 2013 reconstituted public dataset (n=1839). The observations made in the EMC2 dataset 
(n=58; Figure 5A) are also apparent in the dataset containing all annotated cases of this GXB 
breast cancer instance (Figure 5B). Moreover, in this dataset it is clearly visible that IBS/IDS 
subgroups with an improved prognosis are more prevalent in the ICR4 cluster. For example, IBE-
FID tumors are relatively more frequently assigned to ICR4 compared with IBD-FID. Vice versa, 
IBD-PID tumors are proportionally more frequently observed in the ICR1 cluster compared with 
IBE-PID tumors, which are in comparison more frequently assigned to ICR2-ICR3. 
 The overlay of the different immune classifications demonstrates a coherency between the 
IBS/IDS classification and the ICR clusters. Bearing in mind that the ICR signature is associated 
with a broader phenomenon of immune-mediated, tissue-specific destruction, this coherency 
strengthens the hypothesis of a common final pathway of tissue destruction. 
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Figure 5. Overlay of immunologic classifications in breast cancer as evaluated in GXB.
(A) Bar graph showing CXCL9 expression in individual samples from Erasmus Medical Center (EMC) 
dataset 2 split by ICR (single bar represents single case). Overlay of additional variables IBS, IDS and IMS 
is shown (http://breastcancer.gxbsidra.org/dm3/miniURL/view/Lv). (B) Frequency plot showing number of 
breast cancer cases across IBS/IDS subgroups split by ICR cluster. ICR, Immunologic Constant of 
Rejection; IBE/D, Immune Benefit Enabled OR Disabled; F/P/WID, Favorable OR Poor OR Weak Immune 
Disposition.

Conclusions

In this data note, we highlighted the opportunities provided by the availability of public 
datasets. We uploaded 13 public datasets on human breast cancer, including a combined dataset, 
with harmonized clinical data annotation and immune classification to GXB to facilitate the reuse 
of gene expression data. The use of GXB to explore gene expression and the different possible 
approaches were illustrated by the following: (1) an example case of a specific gene of interest, 
HLA-G; (2) comparison of gene expression between specific subgroups, IBD-FID vs IBE-FID; and 
(3) the evaluation of the relationship between different categorical variables, IBS/IDS and ICR 
immune classifications. To conclude, GXB provides a convenient environment to explore gene 
expression profiles in the context of breast cancer. 
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Data availability 
�
 All datasets included in our curated collection are available publicly via the NCBI GEO 
website: http://www.ncbi.nlm.nih.gov/geo/, and are referenced throughout the manuscript by their 
GEO accession numbers (e.g. GSE7390). Signal files and sample description files can also be 
downloaded from the GXB tool under the “downloads” tab. 
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