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A B S T R A C T   

Background: QTc-prolongation is an independent risk factor for developing life-threatening arrhythmias. Risk 
management of drug-induced QTc-prolongation is complex and digital support tools could be of assistance. 
Bindraban et al. and Berger et al. developed two algorithms to identify patients at risk for QTc-prolongation. 
Objective: The main aim of this study was to compare the performances of these algorithms for managing QTc- 
prolonging drug-drug interactions (QT-DDIs). 
Materials and Methods: A retrospective data analysis was performed. A dataset was created from QT-DDI alerts 
generated for in- and outpatients at a general teaching hospital between November 2016 and March 2018. ECGs 
recorded within 7 days of the QT-DDI alert were collected. Main outcomes were the performance characteristics 
of both algorithms. QTc-intervals of > 500 ms on the first ECG after the alert were taken as outcome parameter, 
to which the performances were compared. Secondary outcome was the distribution of risk scores in the study 
cohort. 
Results: In total, 10,870 QT-DDI alerts of 4987 patients were included. ECGs were recorded in 26.2 % of the QT- 
DDI alerts. Application of the algorithms resulted in area under the ROC-curves of 0.81 (95 % CI 0.79–0.84) for 
Bindraban et al. and 0.73 (0.70–0.75) for Berger et al. Cut-off values of ≥ 3 and ≥ 6 led to sensitivities of 85.7 % 
and 89.1 %, and specificities of 60.8 % and 44.3 % respectively. 
Conclusions: Both algorithms showed good discriminative abilities to identify patients at risk for QTc- 
prolongation when using ≥ 2 QTc-prolonging drugs. Implementation of digital algorithms in clinical decision 
support systems could support the risk management of QT-DDIs.   

1. Introduction 

Several commonly used drugs prolong the QT or heart-rate corrected 
QT (QTc) interval. A prolonged QTc-interval is an independent risk 
factor for Torsade de Pointes (TdP), a potentially life-threatening 
arrhythmia that may result in ventricular fibrillation or sudden car
diac death (SCD) [1,2]. QTc-prolongation is also associated with an in
crease in hospital stay and overall mortality, which might be indirectly 
related to additional risk factors [3–5]. When QTc-intervals exceed 
500 ms or increase by 60 ms or more from baseline after the initiation of 
a QTc-prolonging drug, the risk of ventricular arrhythmias increases. 

Haugaa et al. found that a QTc-interval > 500 ms was a predictor for 
overall mortality [4]. QTc-prolonging drugs should not be prescribed to 
patients who are likely to develop QTc-intervals above this threshold [6, 
7]. Other risk factors such as electrolyte disturbances, cardiovascular 
diseases, genetic predisposition, increasing age and female gender have 
a substantial role in developing QTc-prolongation as well [2,8,9]. 
Heemskerk et al. showed that increasing numbers of risk factors for 
QTc-prolongation have an increasing effect on the QTc-interval [9]. This 
finding is in line with the theory of Roden et al. regarding the repolar
ization reserve: the more factors reducing the repolarization reserve, the 
higher the risk of QTc-prolongation and TdP [10,11]. The Arizona 
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Centre for Education and Research on Therapeutics (AZCERT) composed 
a list of QTc-prolonging drugs and categorized them into drugs that have 
‘a conditional risk of TdP’, ‘a possible risk of TdP’ and ‘a known risk of 
TdP’ [12]. The use of QTc-prolonging drugs itself will rarely result in a 
QTc-interval above 500 ms. As QTc-prolonging drugs rarely cause a 
prolongation of > 30 ms and normal QTc-intervals are usually < 470 ms, 
other risk factors must be present to develop QTc-intervals > 500 ms. 
Therefore, in patients with little or no risk factors, the additional risk of 
QTc-prolonging drugs on the QTc-interval is most likely negligible and 
the use of these combined drugs is acceptable in clinical practice [2, 
13–15]. However, the Dutch database for healthcare information system 
generates medication surveillance alerts if two or more QTc-prolonging 
drugs with ‘a known risk of TdP’ according to the AZCERT drug list are 
prescribed or dispensed [Table A1]. These alerts are shown to physicians 
and pharmacists as medication surveillance alerts. These 
QTc-prolonging drug-drug interaction (QT-DDI) alerts are generated by 
the support system based on the prescribed drugs, without taking other 
risk factors for developing QTc-prolongation or TdP into account. So, 
these alerts are non-specific and are also shown in patients who do not 
have (many) additional risk factors for QTc-prolongation and for whom 
these alerts will be redundant. With the rising number of 
QTc-prolonging drugs, these QT-DDI alerts can lead to so called alert 
fatigue: ignoring alerts even when they are relevant [16]. 

A clinical decision support system (CDSS) that generates patient- 
specific alerts incorporating other relevant risk factors, will support 
healthcare providers in selecting patients in whom additional ECG 
monitoring or substitution of one of the interacting QTc-prolonging 
drugs is required, and thereby increasing the relevance and reducing 
the number of alerts. Over the years, various algorithms have been 
introduced to identify patients at risk for QTc-prolongation [4,8,17]. 
Tisdale et al. showed that implementation of such an algorithm signif
icantly reduced prescriptions for non-cardiac QTc-prolonging drugs. The 
number of patients with a prolonged QTc-interval (> 500 ms) at the 
cardiac critical care units were also significantly reduced due to 
implementation of such a model [8]. However, these models incorpo
rated diagnoses and characteristics, such as sepsis and smoking status, 
that were not automatically extractable from electronic patients records 
and needed a person’s perspective. Therefore these algorithms are not 
applicable to computerized CDSS. Two previous studies conducted by 
Bindraban et al. [18] and Berger et al. [19] developed algorithms to 
predict patients at risk for QTc-prolongation using characteristics that 
are automatically extractable from hospital information systems; both 
algorithms are shown in Table 1. 

There were substantial differences in the methodology to develop 
these algorithms. Bindraban et al. developed their algorithm 

retrospectively in a patient population from a general teaching hospital 
for whom an ECG was recorded during use of one or more QTc- 
prolonging drugs, whereas Berger et al. developed their algorithm pro
spectively based on ECGs of patients admitted to a university medical 
center using two or more QTc-prolonging drugs. In the algorithm of 
Berger et al., additional risk factors were added based on a literature 
review due to a relatively small sample size. However, similar risk fac
tors are included in both algorithms, which makes it interesting to 
compare the performances of the algorithms in a large dataset. There
fore, the main aim of this study was to evaluate the performance char
acteristics of these two previously developed algorithms for identifying 
patients at risk for QTc-prolongation when two or more QT prolonging 
drugs are prescribed. Secondary aim was to explore the distribution of 
risk scores in the study cohort. 

2. Materials and methods 

2.1. Study design 

This retrospective observational study was conducted at the Spaarne 
Hospital, a general teaching hospital with locations in Haarlem and 
Hoofddorp, the Netherlands. A retrospective data collection and content 
analysis was performed to compare two previously developed algo
rithms for identifying patients at risk for QTc-prolongation in patients 
using two or more QTc-prolonging drugs. No approval of the Medical 
Ethics Committee was needed according to the Dutch Medical Research 
Involving Human Subjects Act because of the retrospective study design. 
All patient data were processed anonymously according to privacy 
legislation. 

2.2. Study cohort 

We selected all QT-DDI alerts that were generated in routine clinical 
practice of ambulatory and hospitalized patients between November 1st, 
2016 and March 5th, 2018. All QT-DDI alerts of patients < 18 years old 
and QT-DDI alerts in which one of the QTc-prolonging drugs was 
temporarily stopped were excluded. 

2.3. Data collection 

Data were processed using Statistical Package for Social Science 
(SPSS, IBM SPSS Statistics version 24.0, Armonk, NY, United States). 
Data were extracted from the hospital information system Epic (Madi
son, WI, USA) using SAP Crystal Reports (Walldorf, Germany). QT-DDI 
alerts were generated based on the information from the Dutch drug 
database which supports the different pharmaceutical processes in 
healthcare, including medication surveillance [20]. 

The following variables were collected for all QT-DDI alerts: inpa
tient/outpatient status, ECGs recorded within 7 days after the QT-DDI 
alerts and ECGs with the longest QTc-interval recorded within a 
maximum of one year prior to the QT-DDI alerts, all active drug orders 
on QTc-prolonging drugs [Table A1] and the following drugs categories 
according the Anatomical Therapeutic Chemical (ATC) classification 
system: cardiac therapy (ATC C01), antihypertensive drugs (ATC C02, 
C03, C07–C09), antidiabetics (ATC A10) and loop diuretics (ATC 
C03CA). The Anatomical Therapeutic Chemical (ATC) classification 
system divides drugs into different groups according their therapeutic, 
pharmacological and chemical properties and to the organ or system on 
which they act. Because the diagnoses were not documented in such a 
way that we could use them in the CDSS or in the analyses of this study, 
these drug orders were used as a proxy for the comorbidities included in 
the algorithms [21]. Many healthcare information systems do not 
document diagnoses in such a way that they are assessable for CDSSs. 
Therefore, drug use associated with the diagnosis was included in the 
risk model. 

For the corresponding patients: age, gender, renal function 

Table 1 
Algorithms of (a) Bindraban et al. and (b) Berger et al. for predicting patients at 
risk for QTc-prolongation.  

Risk factors Score Risk factors Score 

Age (in years)  Age (in years)  
≤ 70 0 51 - 75 1 
> 70 1 ≥ 76 2 

Loop diuretics 3 Loop diuretics 2 
eGFR < 60 mL/min 2 eGFR ≤ 50 mL/min 1 
Serum potassium  Serum potassium  
≤ 2.9 mmol L− 1 7 ≤ 2.5 mmol L− 1 2 
3.0–3.4 mmol L− 1 3 3.0–3.4 mmol L− 1 1 

Serum calcium  Female gender 1 
≤ 2.14 mmol L− 1 3 Comorbidities  

Antiarrhythmic drugs 1 Cardiac comorbidities 2 
Maximal QTc (in ms)  Hypertension 2 

481–500 3 Diabetes Mellitus I/II 1 
> 500 7 QTc-prolonging drugs† 1 per drug 

†QTc-prolonging drugs with a known risk of TdP [12]. 
a Bindraban et al. 
b Berger et al. 

F.A. Berger et al.                                                                                                                                                                                                                                
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(estimated Glomerular Filtration Rate, eGFR, based on the Chronic 
Kidney Disease Epidemiology Collaboration, CKD-EPI), recent potas
sium and calcium levels (within 7 days before or after the QT-DDI alerts) 
were collected at time of the QT-DDI alerts. If data were missing, these 
values were categorized as being within the reference values. Patients 
were included multiple times in our dataset if multiple QT-DDIs were 
generated. QT-DDI alerts were excluded if they were generated within 
two minutes of a previous QT-DDI alert for identical drugs in the same 
patient, as it is likely the physician made an adjustment without changes 
in managing the risk of the QT prolongation. As the risk factors of pa
tients could change over time, we evaluated each QT-DDI alert separate 
from the others. 

All ECGs included in the database were standard 12-lead resting 
ECGs with automated analysis by the MUSE Cardiology Information 
System. The heart rate (RR), QT-interval and QRS-complex were auto
matically analyzed by the MUSE system and reported in the hospital 
information system Epic. For ECGs with QRS-complexes above >
120 ms, the QT-intervals were corrected using the following equation: 
QT adjusted =QT–(QRS–120). The heart rate corrected QT intervals 
were then calculated using the Bazett formula (QTc =QT/√RR) [22]. 
When the QTc-interval was used as primary endpoint, the following 
ECGs were excluded: ECGs with a QTc-interval of > 700 ms or < 300 ms 
or a heart rate (HR) of > 180 beats per minute (bpm) or < 40 bpm. 
Deviant heart rates were excluded to minimize outliers influencing the 
analyses and deviant QTc-intervals were excluded, because they were 
most likely caused by misinterpretation of the QT-interval on the ECG. 

2.4. Outcome and study variables 

The main outcome measures of this study were the performance 
characteristics of the algorithms. Each patient was scored using both 
algorithms at the moment the QT-DDI alert was generated. A QTc- 
interval (> 500 ms) as measured by the first ECG within 7 days after 
the alert using the Bazett formula was taken as gold standard, to which 
the performances of the algorithms were compared. If no ECG was 
recorded, the QTc-interval was considered not to be prolonged. We did 
not choose mortality or ventricular arrhythmia as outcome parameter 
due to lack of reliable data, therefore, we chose QTc-prolongation as a 
proxy for the risk on arrhythmia or sudden cardiac death. Secondary 
outcome measure was the distribution of the risk scores in the study 
cohort. 

2.5. Statistical analysis 

Data were analyzed using SPSS version 24.0. The clinical usefulness 
of both algorithms was assessed by their ability to distinguish patients 
with and without QTc-prolongation in our study cohort. The discrimi
native ability was quantified with receiver operating characteristics 
(ROC)-analyses, also known as concordance statistic (C-statistic). Cut- 
off points for the models were selected by maximizing the difference 
between sensitivity and 1 minus specificity. The following performance 
characteristics were obtained: specificity, sensitivity, positive and 
negative predictive value, Youden’s index and accuracy. We used 
descriptive statistics to assess the distribution of the risk scores in the 
study cohort. 

3. Results 

3.1. Study cohort 

Of the 16,285 QT-DDI alerts, we excluded 199 QT-DDI alerts of pa
tients younger than 18 years old; 1604 QT-DDI alerts, because one of the 
QTc-prolonging drugs was temporarily stopped; 2657 QT-DDI alerts 
because the hospital information system erroneously identified two 
separate orders for the same drug as a QT-DDI; and 955 QT-DDI alerts, 
because the alerts were generated ≤ 2 min after identical QT-DDI alerts 

Table 2 
Characteristics of the QT-DDI alerts.  

QT-IA characteristics N = 10,870 

Age (years), median (IQR) 70.0 
(56− 80) 

≤ 50, n (%) 1,980 (18.2) 
51–75, n (%) 4,739 (43.6) 
≥ 76, n (%) 4,151 (38.2) 

Female, n (%) 5,649 (52.0) 
Outpatients, n (%) 880 (8.1) 
Inpatients, n (%) 9990 (91.9) 

Clinical departments 6117 (61.2) 
Peri-operative departments 2770 (27.7) 
Intensive Care Units 1103 (11.0) 

Top 5 QT-DDIs, n (%)  
droperidol–ondansetron 1663 (15.3) 
ciprofloxacin–ondansetron 1361 (12.5) 
haloperidol–ondansetron 1142 (10.5) 
propofol–ondansetron 1001 (9.2) 
haloperidol–ciprofloxacin 892 (8.2) 

No. of QT-DDI alerts/patient, mean ± SD 2.2 ± 1.9 
No. QT-DDI alerts with ECG within 7 days after QT-DDI alert, n (%) 2846 (26.2) 
No. QT-DDI alerts with ECG within 365 days prior to QT-DDI alert, n 

(%) 
6586 (60.6) 

eGFR (ml min− 1; CKD-EPI), mean ± SD 69.6 ± 28.8 
Renal dysfunction (≤ 60 mL min L− 1), n (%) 2036 (18.7) 
Potassium serum level (mmol L− 1) mean ± SD 4.10 ± 0.56 
Hypokalemia (< 3.50 mmol L− 1), n (%) 548 (5.0) 
Calcium serum level (mmol L− 1), mean ± SD 2.23 ± 0.21 
Hypocalcemia (< 2.14 mmol L− 1), n (%) 660 (6.1) 

Abbreviations: CKD-EPI, chronic kidney disease epidemiology collaboration; 
ECG, electrocardiogram; eGFR, estimated glomular filtration rate, IQR, inter
quartile range; No., number; QT-DDIs, QT drug-drug interactions; SD, standard 
deviation. 
Missing values: CKD-EPI, n = 5215; potassium, n = 5327; calcium; n = 8,631. 

Fig. 1. Flowchart of inclusions of ECGs. Abbreviations: ECG, electrocardiogram; 
bpm, beats per minute; HR, heart rate. 

Table 3 
Characteristics of individual ECGs within 7 days of QT-DDI alerts.  

Characteristics n = 1796 SD unit 

Number of patients 1301   
Female 48.7  % 
Age (mean ± SD) 73.9 13.5 years 
Average number of ECGs/patient 1.4 0.9  
HR (mean ± SD) 89.6 24.0 bpm 
QRS (mean ± SD) 100.2 27.7 ms 
QT (mean ± SD) 380.3 55.9 ms 
QTc Bazett (mean ± SD) 453.5 39.5 ms 

Abbreviations: ECG, electrocardiogram; QT-DDI, QT drug-drug interaction; SD, 
standard deviation; HR, heart rate. 

F.A. Berger et al.                                                                                                                                                                                                                                
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in the same patient. In total, 10,870 QT-DDI alerts were included that 
met the inclusion criteria, and these were generated in 4987 individual 
patients. The median patient age was 70 years (interquartile range, IQR: 
24 years), and 52.0 % were female (Table 2, Table B1). For 2846 QT-DDI 
alerts (26.2 %), an ECG was recorded within 7 days of the alert. 

Since multiple alerts can be generated in the 7 days before an ECG, a 
total of 1796 unique ECGs were recorded within 7 days after a QT-DDI 
alert (Fig. 1 and Table 3). The average QTc-interval was 453.5 ms. After 
294 QT-DDI alerts (10.3 %) with an ECG within 7 days after the alert, the 
QTc interval was above 500 ms. 

3.2. Main outcomes 

The performance characteristics per cut-off value and ROC curves of 

both algorithms are shown in Fig. 2 or Table C1. 
The areas under the ROC (AUROC) curve were 0.81 (95 % CI 

0.79–0.84) and 0.73 (95 % CI 0.70–0.75) for respectively Bindraban 
et al. and Berger et al. The Youden’s index was maximized at a cut-off 
value of ≥ 5 (0.521; Bindraban et al.) and ≥ 6 (0.334; Berger et al.) 
with sensitivities of 75.2 % and 89.1 %, and specificities of 77.0 % and 
44.3 % respectively. As we were aiming for sensitivities > 80 %, while 
maximizing specificities, the cut-off value for Bindraban et al. and 
Berger et al. were preferred at ≥ 3 and ≥ 6. These cut-off values led to 
sensitivities of 85.7 % and 89.1 % and specificities of 60.8 % and 44.3 % 
respectively. If a cut-off value of 3 was used in a clinical decision support 
system to generate alerts using the algorithm of Bindraban et al., 60.1 % 
of the alerts would not have shown, of which 0.6 % had a QTc-interval 
exceeding 500 ms. If a cut-off value of 6 was used to generate alerts using 

Fig. 3. Distribution of the risk scores using two different algorithms.  

Fig. 2. ROC curves of the algorithms. Youden’s index Bindraban et al. 0.521 and Berger et al. 0.334.  

F.A. Berger et al.                                                                                                                                                                                                                                
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the algorithm of Berger et al., 43.4 % of the alerts would not have shown, 
of which 0.7 % had a QTc-interval exceeding 500 ms. 

The distribution of the risk scores is shown in Fig. 3. The median 
(IQR) risk score of Bindraban et al. was 1.0 (0.0–4.0); 1.0 (0.0–4.0) in 
patients with no QTc-prolongation versus 9.0 (4.8–13.0) in patients with 
QTc-prolongation; and the median (IQR) risk score of Berger et al. was 
6.0 (4.0–8.0); 6.0 (4.0–8.0) in patients with no QTc-prolongation versus 
8.0 (7.0–10.0) in patients with QTc-prolongation. 

In Fig. 4, QTc-intervals > 500 ms are plotted against the risk scores of 
the algorithms. 

4. Discussion 

The aim of this study was to compare two previously developed al
gorithms to support the medication surveillance of DDIs between QTc- 
prolonging drugs. Both algorithms applied weighted risk factors to 
determine if patients were at risk for QTc-prolongation (> 500 ms) when 
two or more QTc-prolonging drugs were prescribed. In our dataset, after 
2.7 % of the alerts ECGs were recorded with QTc-intervals exceeding 
500 ms. The algorithms showed good discriminative abilities as the 
AUROC curve were 0.81 (95 % CI 0.79–0.84) and 0.73 (95 % CI 
0.70–0.75) for respectively Bindraban et al. and Berger et al. An AUROC 
over 0.7 indicates a good model [23]. The use of an algorithm will 
improve risk stratification in patients using QTc-prolonging drugs, 
resulting in less redundant ECG recordings and in a decrease of with
holding first-line therapies by switching to non QT prolonging alterna
tives. These algorithms will also reduce the time-consuming manual 
evaluation in patient health records to ascertain if patients are at risk. 

The Youden’s index was maximized if respective cut-off values of ≥ 5 
and ≥ 6 were used. These cut-off values led to sensitivities of 75.2 % and 
89.1 %, and specificities of 77.0 % and 44.3 % as shown in Table 3. 
However, for the prevention of ventricular arrhythmia, a sensitivity 
below 80 % is not favored because sensitivity measures the proportion of 
actual positives that are correctly identified as such. Thus, a low sensi
tive test will overlook actual positives, resulting in false negatives. 

Limiting the likelihood of missing patients with QTc-prolongation is 
more important than incorrect classification of patients without QTc- 
prolongation [23,24]. Therefore, we decided to use acceptability 
criteria of sensitivities above 80 %, while keeping specificities at an 
acceptable level (> 40 %). Cut-off values of Bindraban et al. (≥ 3) and 
Berger et al. (≥ 6) could predict QTc-prolongation in patients using two 
or more QTc-prolonging drugs with sensitivities of 85.7 % and 89.1 % 
and specificities of 60.8 % and 44.3 % respectively. The positive pre
dictive values of both algorithms were low (Table B1). Therefore, the 
tool needs further improvement, because the discriminative ability is 
insufficient. 

The model of Bindraban et al. performed better than the model of 
Berger et al. One explanation is that Berger et al. developed their algo
rithm in a tertiary care population of a university medical center which 
is thus externally evaluated in this study, whereas Bindraban et al. 
developed their algorithm in the same population of the Spaarne Hos
pital, but used a different time span. External validations are important 
to determine the algorithms’ performance and generalizability in 
different healthcare settings [24]. Another factor that may explain the 
differences in performance between the two algorithms is that Berger 
et al. did not take a previously observed prolonged QTc-interval into 
account. Results from previous ECGs are a reasonably effective marker 
to detect QTc-prolongation. When a patient has a prolonged 
QTc-interval within one year prior to the QT-DDI, the patient will have a 
higher chance of a prolonged QTc-interval after initiation of these drugs. 
The variety in the weighting of the risk factors between the algorithms 
and the number of variables included might also play a role. 

Bindraban et al. [18] found a lower AUROC curve of 0.71 (95 % CI 
0.68–0.73) during the original validation of the algorithm than the 
AUROC curve of 0.81 (95 % CI 0.79–0.84) found in this study. The 
validation of Bindraban et al. [18] differed in numerous aspects from 
this validation. First, their data extraction was based on ECGs recorded 
in patients using one or more QTc-prolonging drugs, while this study 
was based on QT-DDI alerts. Therefore, patients with a high risk of QTc 
prolongation will be overrepresented in their cohort, because ECGs are 

Fig. 4. Risk score versus proportion of QT-DDI alerts with QTc > 500 ms.  

F.A. Berger et al.                                                                                                                                                                                                                                
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mostly recorded in patients at risk for heart rhythm disturbances. Sec
ond, Bindraban et al. [18] developed their algorithm in patients using 
one or more QTc-prolonging drugs, whereas this study only included 
patients using two or more QTc-prolonging drugs. Nevertheless, similar 
sensitivities (> 80 %) were found in both validation studies when a 
cut-off value of ≥ 3 was used. 

The variation in the AUROC curves of Berger et al. [19] 0.59 (95 % CI 
0.54–0.63) versus 0.73 (95 % CI 0.70–0.75) is probably due to the fact 
that in the dataset of this study, patients with no ECG available were 
considered to have no QTc-prolongation, whereas Berger et al. [19] 
validated their algorithm in an external dataset in which only patients 
with ECGs available were included. Subsequently, high-risk patients 
were probably overrepresented in the original validation study of Berger 
et al [19]. A major strength of this study was the evaluation of two 
different algorithms in a large study cohort. We included both ambu
latory and hospitalized patients, which makes the results more gener
alizable to various healthcare settings. As we included QT-DDI alerts of 
patients from all departments, selection bias was minimized. 

Over the past years, several studies have introduced predicting 
models for QTc-prolongation and/or TdP. These models have similar 
discriminative abilities as the models compared in this study. Vandael 
et al. recently developed an optimized RISQ-PATH score to detect high- 
risk patients for developing QTc-prolongation with a sensitivity of 94.5 
%, and a specificity of 22.1 % [25]. In 2013, Tisdale et al. developed a 
risk model in patients only admitted to cardiac care units, where they 
found a sensitivity of 74.0 % and a specificity of 77.0 % [8]. It remains a 
major challenge to develop clinical decision support applications that 
gains clarity on the risk of developing rare serious adverse events, such 
as QTc-prolongation or TdP. 

Also, we need to address several limitations of this study. First of all, 
we did not manually measure the QT-interval, but relied on the auto
matically calculated QT-interval by the MUSE Cardiology Information 
System. There is still an ongoing debate whether or not QT-intervals 
should be measured manually. Manually measured QT-intervals are 
preferred to avoid misinterpretations by ECG devices [26] but Viskin 
et al. showed that the majority of physicians misinterpreted QT-intervals 
and less than 40 % of the physicians calculated the QTc-interval 
correctly [27]. Postema et al. showed that less than 25 % of the cardi
ologists and non-cardiologists interpreted the QTc-intervals correctly 
when these were manually measured [28]. At this moment, automati
cally calculated QT-intervals are widely used by physicians in clinical 
practice. We corrected the QT-interval for wide QRS-complexes to limit 
ECG exclusions. Secondly, QTc-prolongation may not be the perfect 
marker for predicting TdP, other effects that have impact on e.g. cardiac 
sodium channels can be extremely relevant as well [29]. However, other 
specific markers that are more predictive for ventricular arrhythmias 
than QTc-prolongation have not been discovered yet. Lastly, our anal
ysis is limited by the assumption that patients for whom no ECG was 

recorded did not have QTc-prolongation. By excluding patients without 
ECGs available, selection bias is introduced and high-risk patients would 
be overrepresented. For example, the median age of patients in whom 
ECGs were recorded was higher than the median age of all patients (74 
(14) years vs 70 (24) years). On the other hand, one could assume that 
patients to whom two or more QTc-prolonging drugs were prescribed, 
were probably not patients at risk for QTc-prolongation. However, 
several studies showed that QT-DDI alerts are frequently overridden and 
the current guidelines on ECG monitoring are frequently not adhered to 
[16,30]. We also observed several missing electrolyte values at time of 
the QT-DDI alerts (79 % of calcium values, 49 % of potassium values and 
48 % of renal function values). These missing values were considered to 
be within the normal range, because we made the assumption that 
physicians would have measured electrolyte values if they were ex
pected not to be within the normal range. Usually, in clinical practice, 
patients with missing values are common and these patients also need to 
be examined for the risk on developing arrhythmias. These algorithms 
are able to make an adequate estimation for these patients with missing 
values. Future studies using these type of risk models need to be con
ducted prosepectively to circumvent the disadvantages of retrospective 
study designs and to truly test clinical usefulness. 

To conclude, both algorithms showed good discriminative abilities to 
predict QTc-prolongation in patients using two or more QTc-prolonging 
drugs. The algorithms could be implemented in electronic CDSSs to 
support the risk management of QT-DDIs, which will eventually reduce 
redundant ECG recordings, withholding of first-line therapies and the 
time-consuming manual evaluation in patient health records.  
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Table A1 
QT-DDI alerts are generated based the information in the ‘G-standaard’ 
including the following QTc-prolonging drugs.  

ATC-code Drugs 

C01BD01 amiodarone 
A02BD04 amoxicillin/clarithromycin/pantoprazole 
L01XX35 anagrelide 
L01XX27 arsenic trioxide 
J01FA10 azithromycin 
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N05AD08 droperidol 
J01FA01 erythromycin 
N06AB10 escitalopram 
C01BC04 flecainide 
J02AC01 fluconazole 
N05AD01 haloperidol 
C01BD05 ibutilide 
C02KD01 ketanserin 
C01BA01 quinidine 
J01MA12 levofloxacin 
N05AA02 levomepromazine 
N07BC02 methadone 
J01MA14 moxifloxacin 
A04AA01 ondansetron 
L01XA03 oxaliplatin 
A03AD01 papaverine 
G04BE30 papaverine/phentolamine 
P01CX01 pentamidine 
N05AG02 pimozide 
C01BA02 procainamide 
N01AX10 propofol 
J01FA06 roxithromycin 
N01AB08 sevoflurane 
C07AA07 sotalol 
N05AL01 sulpiride 
H01BA04 terlipressin 
L01XE12 vandetanib  

Table B1 
Characteristics of QT-DDI alerts stratified by recorded ECGs.  

QT-IA characteristics ECGs 
recorded 
N = 2877 

No ECGs 
recorded 
N = 7933 

Age (years), median (IQR) 77 (68− 85) 67 (52− 78) 
≤ 50, n (%) 153 (5,3) 1828 (22.9) 
51–75, n (%) 1102 (383) 3637 (455) 
≥ 76, n (%) 1623 (564) 2528 (316) 
Female, n (%) 1292 (44.9) 4357 (54.5) 
Outpatients, n (%) 133 (4.6) 747 (9.3) 
Inpatients, n (%) 2744 (94.7) 7214 (90.3) 
Clinical departments 1865 (68.0) 4252 (58.7) 
Peri-operative departments 327 (11.9) 2443 (337) 
Intensive Care Units 552 (20.1) 551 (7,6) 
Top 5 QT-DDIs, n (%)   
droperidol–ondansetron 117 (4.1) 1546 (19.3) 
ciprofloxacin–ondansetron 138 (4.8) 1223 (15.3) 
haloperidol–ondansetron 348 (12.1) 794 (9.9) 
propofol–ondansetron 112 (3.9) 889 (11.1) 
haloperidol–ciprofloxacin 484 (16.8) 408 (5.1) 
No. QT-DDI alerts with ECG within 365 days prior 

to QT-DDI alert, n (%) 
2464 (85.6) 4122 (51.6) 

eGFR (ml min− 1; CKD-EPI), mean ± SD 63.9 ± 28.5 73.4 ± 28.4 
Renal dysfunction (≤ 60 mL min L− 1), n (%) 997 (34.7) 1039 (13.0) 
Potassium serum level (mmol L− 1) mean ± SD 4.12 ± 0.60 4.10 ± 0.53 
Hypokalemia (< 3.5 mmol L− 1), n (%) 259 (9.0) 289 (3.6) 
Calcium serum level (mmol L− 1), mean ± SD 2.19 ± 0.23 2.24 ± 0.20 
Hypocalcemia (< 2.14 mmol L− 1), n (%) 316 (11.0) 344 (4.3) 

Abbreviations: CKD-EPI, chronic kidney disease epidemiology collaboration; 
ECG, electrocardiogram; eGFR, estimated glomular filtration rate, IQR, inter
quartile range; No., number; QT-DDIs, QT drug-drug interactions; SD, standard 
deviation. 
Missing values: CKD-EPI, n = 591 (ECG)/4624 (no ECG); potassium, n = 613 
(ECG)/4714 (no ECG); calcium; n = 2945 (ECG)/6686 (no ECG). 

Table C1 
Performance characteristics of Bindraban et al. and Berger et al.  

Cut-off 
value 

Sensitivity Specificity Youden’s 
index 

NPV PPV Accuracy 

Bindraban et al. 
≥ 1 92.9 40.2 0.331 99.5 4.1 0.42 
≥ 2 85.7 59.5 0.452 99.3 5.6 0.60 
≥ 3 85.7 60.8 0.465 99.4 5.7 0.61 
≥ 4 80.6 70.0 0.506 99.2 7.0 0.70 
≥ 5 75.2 77.0 0.521 99.1 8.3 0.77 
≥ 6 73.5 77.8 0.512 99.1 8.4 0.78 
Berger et al. 
≥ 4 96.6 19.3 0.159 99.5 3.2 0.21 
≥ 5 92.9 31.0 0.239 99.4 3.6 0.33 
≥ 6 89.1 44.3 0.334 99.3 4.3 0.45 
≥ 7 75.9 57.5 0.334 98.8 4.7 0.58 
≥ 8 63.3 68.7 0.319 98.5 5.3 0.69 
≥ 9 49.7 79.0 0.287 98.3 6.2 0.78 

Abbreviations: NPV, negative predictive value; PPV, positive predictive value. 
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