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General introduction2

Breast cancer burden
Breast cancer is worldwide the most common cancer among women, especially in Western 
Europe3, and is responsible for almost 25% of the total cancer burden for women4. In 2019 
and 2020, respectively 17,148 and 14,935 women were diagnosed with breast cancer in 
the Netherlands5. Most breast cancers are detected by mammographic screening. The 
remainder by palpation of a breast mass, axillary mass or skin abnormalities6. Dependent 
on the abnormality, an additional ultrasound or biopsy is recommended to differentiate 
between a benign abnormality (e.g. fibroadenoma, ductal hyperplasia), in situ cancer or 
invasive breast cancer7, 8. In situ cancers are classified as low, medium or high grade by 
histological features9. Classification of invasive breast cancer, which can guide treatment 
options and estimate prognosis, is based on histological type (pathologic growth 
pattern), grade and tumour stage. More than 20 histological types of breast cancer are 
known of which the most common are infiltrating duct carcinomas, no special type (70-
80%) and invasive lobular carcinomas (~10%)10. Tumour grade is a good prognostic factor 
and includes microscopic assessment of histologic differentiation (tubule formation, 
nuclear pleomorphism, and proliferation). Tumour stage combines data on tumour size, 
nodal status and distant metastasis. The most common sites of distant metastasis include 
the lung, bone and liver. Important for considering hormone therapy is determination 
of hormone receptor status of the tumour. The majority of breast tumours, about ~75%, 
express Estrogen Receptor (ER) and/or Progesterone Receptor (PR). Usually, these 
hormone receptor-positive tumours are low grade and less aggressive. A minority of 
roughly 15% of breast tumours have overexpression of human epidermal growth factor 
2 receptors (HER2), which predict a favourable response to anti-HER2 therapy. However, 
these tumours are known to be aggressive and have a poor prognosis. Triple-negative 
breast cancers (i.e., negative for ER, PR and HER2 amplification) comprise about 10% of all 
breast tumours, are mostly high grade and have a poor prognosis10.  

Breast cancer screening
The high prevalence of breast cancer in the Netherlands equates to an average lifetime 
risk of 12-13%7 and provided a strong rationale for a population-screening program that 
started in 1990. This program invites women every two years for mammography, starting 
at age 50 and ending at age 75. At age 50 the average 10-year risk to develop invasive 
breast cancer is approximately 3%, exceeding the threshold at which screening becomes 
cost-effective11. About 63% of all breast cancers in 2019 were detected in women 
between 50 and 75 years of age5. The program has a compliance rate of around 80% and 
has been demonstrated to cause a decline in mortality rate of approximately 1.7% each 
year12. However, this mortality benefit has been offset by an increasing breast cancer 
incidence of about  twofold5. Whether the reduction of mortality can be fully ascribed 
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debate. It could be the combination of early diagnosis and therapy13. Mammographic 
screening led to a decrease in the rate of large tumours, and an increase in the detection 
of small tumours which may represent overdiagnosis14. Overdiagnosis is the detection 
of tumours that, if left untreated, would not have become clinically relevant, mostly 
Ductal Carcinoma In Situ (DCIS), a non-invasive form of breast cancer. Currently, 13% of 
the total breast cancer burden in the Netherlands is due to DCIS, while this was about 
3% before the start of population screening5, 9, 15. Although the majority of DCIS lesions 
remain indolent, all DCIS are treated with surgery (mostly breast-conserving)9, 15. Besides 
that surgery is resulting in overtreatment of at least some of these lesions, women are 
labelled as cancer patients and experience substantial psychological distress, which 
shows the disadvantages of screening. Furthermore, mammographic screening results in 
a high number of false-positive results16, 17. Women attending biannual mammographic 
screening at age 50, have a cumulative 10-year risk of about 6% for a false-positive result 
leading to a biopsy18.

To summarise, secondary prevention by early detection through mammographic 
screening can reduce mortality, but at the cost of overdiagnosis and the burden of false-
positive results16-18. Primary prevention by risk reducing mastectomy is in the Netherlands 
restricted to women at high risk, mainly for BRCA1/2 pathogenic variant carriers. 
Stratification of women according to the risk of developing breast cancer could provide a 
persuasive rationale for surgical intervention as well as improve efficacy of risk−reduction 
and screening strategies by tailoring starting age and frequency19, 20.

Breast cancer risk

BOX 1: definition of breast cancer risk
Clinically, definitions such as low, moderate and high breast cancer risk are often used. 
However, this can reflect relative or absolute risks. For a given relative risk (RR), absolute 
risk can vary between countries depending on cancer incidences. Another term often used 
is lifetime risk, which is the absolute risk of breast cancer over the period of a woman’s life. 
Here, we define moderate risk as RR = 2 to 4, high risk as RR > 4, and low or population risk 
as RR < 2.

To accurately assess a woman’s risk, it is important to take all risk factors into account. 
Having a positive family history is one of the main risk factors for breast cancer. For women 
with at least one first-degree relative with breast cancer, the risk for developing breast 
cancer is on average about two-fold compared with women without such a family history21. 
Approximately 25% of this so-called familial relative risk (FRR) is currently explained by 
(likely) pathogenic variants in a small number of genes, and a further 18% by the currently 
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known common low risk variants, mostly single nucleotide polymorphisms (SNPs)22-25. It 
is estimated that another 18% is explained by common low risk variants present on SNP 
arrays used for genotyping in genome-wide association studies, but these have not yet 
been individually discovered26 (Figure 1). Besides the familial relative risk, other risk factors 
such as mammographic density and lifestyle factors are important as well27, 28. 

Figure 1. Explained familial relative risk
*For women of European ancestry26

Rare genetic variation associated with breast cancer
The definition of “rare” variation is somewhat arbitrary, but is generally taken as to occur 
in <0.5% of the general population. Indeed, we currently know that some allelic variants 
in breast cancer susceptibility genes are extremely rare (<0.001%), others moderately 
rare (~0.1%), or even almost “common” (~1%). In addition, the risks conferred by these 
variants may vary from less than 2-fold to over 10-fold (Figure 2). Classic linkage analysis 
in multiple-case families discovered some of these genes, but many were discovered 
by DNA sequencing of candidate genes. The best-known examples of linkage-detected 
genes are BRCA1 and BRCA229, 30. Pathogenic variants in either gene, each with a joint 
allele frequency of ~0.1%, will lead to a high risk of breast and ovarian cancer in women31, 

32. Other genes, particularly TP53, PTEN, STK11, CDH1 and NF1, were discovered because 
of their association with typical familial cancer syndromes of which breast cancer is 
one feature33-37. Accordingly, their prevalence in the population is extremely rare. These 
findings also underscore the pleiotropic effects that some DNA variations display 
by predisposing to cancers of diverse tissue origin. Yet for most breast cancer genes 
discovered so far, the most conspicuous “other” cancer with which an association has 



General introduction   |   11   

Ch
ap

te
r 1been firmly established is ovarian cancer. Another “syndromic” gene is ATM; pathogenic 

variants in ATM act in a recessive way to cause ataxia telangiectasia, a neurodegenerative 
disorder, but heterozygous carriers are at moderately increased risk for breast cancer38. 
The discovery that BRCA1, BRCA2, and ATM are involved in DNA damage repair, and that 
BRCA2 is a Fanconi anaemia gene (FANCD1)39, suggested that other DNA repair genes 
might also confer breast cancer susceptibility. Sequence analysis of these candidates then 
led to the discovery of CHEK2, BARD1, PALB2, NBN, and RAD51D40-44 as breast cancer genes, 
although evidence is sometimes limited to specific variants in populations of specific 
ethnic background43. Breast cancer risks in these five genes are generally moderate, with 
the exception of loss-of-function variants in PALB2, which can lead to breast cancer risks 
comparable to BRCA243, 45.  

There is a long list of genes, including BRIP1, FANCC, FANCM, MEN1, MRE11A, PPM1D, 
RAD50, RAD51B, RECQL, and XRCC2, for which an association with breast cancer has been 
reported in a few studies. Until recently, however, replication in sufficiently large samples 
of cases and controls and establishment of effect-sizes was still lacking. In 2021, two large 
population-based case-control  studies were published46, 47 which defined the association 
of genes often present on commercial breast cancer gene panels with breast cancer risk 
and provided the most precise risk estimates to date. As expected, robust associations 
were found for truncating variants in the five well known breast cancer genes, BRCA1, 
BRCA2, PALB2, CHEK2, and ATM46, 47. Furthermore, truncating variants in BARD1, RAD51C, and 
RAD51D  were also significantly associated with breast cancer risk in both studies46, 47, 
although Hu et al.47 only detected an association with a ER-negative and triple-negative 
breast cancer for these genes . An association with truncating variants in respectively TP53 
with overall breast cancer46, and CDH1 with ER-positive breast cancer47 was only found 
in one of the studies46, 47. Modest evidence was demonstrated for an association with 
truncating variants in NF1, PTEN and MSH6, particularly in ER-negative subtypes. Despite 
the large sample size, for some genes there is still no consensus about the association with 
breast cancer risk46. A long-standing issue is whether the Lynch syndrome genes (MLH1, 
MSH2, MSH6, PMS2) and MUTYH are associated with breast cancer risk. Interpretation 
of breast cancer incidence in studies of Lynch syndrome families is complicated due to 
various biases (e.g., ascertainment). Of the lynch syndrome genes, MSH6 seems to have 
the highest probability of being associated with breast cancer risk46, 48.  More detailed 
discussions on the association of gene variants and breast cancer and the corresponding 
risks can be found in reviews by Wendt et al., Easton et al., and Graffeo et al.43, 44, 49.

Allele frequency and corresponding odds ratio for truncating pathogenic variants in 
associated breast cancer genes, adapted from Dorling et al.46. Genes shown in red are 
robustly associated with breast cancer (p-value <0.0001). Genes shown in orange 
were marginally associated with breast cancer risk (p-value <0.05). The frequency and 
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corresponding odds ratio for breast cancer associated common low risk variants, included 
in the PRS313, are shown in blue and are adapted from the study performed by Mavaddat 
et al.26

Figure 2. Genetic landscape of breast cancer

 
Challenges in risk assessment and clinical translation
Once a gene has been robustly associated with breast cancer, other challenges arise that 
may hamper introduction into the clinic. One is allelic diversity and the notion that different 
types of variants (e.g., nonsense versus missense changes) might confer different breast 
cancer risks43. For BRCA1 and BRCA2, the effect of mutation-position on the relative risks 
for breast and ovarian cancer has been firmly established50. Furthermore, several missense 
changes have been identified in BRCA1 and BRCA2 that cause much more moderate risks 
than the typical loss-of-function variants51, 52. Conversely, while most pathogenic variants 
in ATM will give an intermediate breast cancer risk, one specific missense mutation 
(c.7271C>G) seems to reach a higher level of risk. In some studies this risk is even 
approaching that of BRCA1/2 pathogenic variants53, 54. The presence of allelic diversity in 
breast cancer genes also highlights the difficulties we are still having with establishing 
pathogenicity for each variant. This seems straightforward for protein-truncating variants 
(although exceptions exist55), but for many missense and “spliceogenic” variants the impact 



General introduction   |   13   

Ch
ap

te
r 1on protein function (and, by inference, on cancer risk) is hard to predict. The many in silico 

tools available for this purpose may help classifying these variants, are inexpensive and 
easy to use, but they still perform modest with respect to clinical standards and, therefore, 
the predictive power of these tools need to be improved56. For some genes, such as BRCA1 
and BRCA2, functional assays are developed which show efficacy in variant classification 
but these are, among other things, time-consuming with a consequence of poor feasibility 
in daily clinical practice57. As a result, many variants detected by sequencing in these 
genes are still classified as Variants of Uncertain Significance (VUS).

BOX 2: Classification of gene variants
The ACMG has recommended a five-tier classification system, which has been adopted by 
many countries1. These classes are 1. Benign; 2. Likely Benign; 3. VUS; 4. Likely Pathogenic; 
5. Pathogenic. For VUS, the pathogenicity and hence the association with disease risk are 
unknown, usually because they result in a similarly-shaped amino acid or reside in a part 
of the gene not essential for its function.

Another challenge is to establish the penetrance of pathogenic variants and the 
corresponding breast cancer risks with sufficient accuracy. With some exceptions, there 
is still much uncertainty surrounding the magnitude and precision of the risks conferred 
by pathogenic variants in the genes. Even in the recently performed large gene-panel 
studies, the confidence intervals of the associated risks remain wide46, 47. One problem 
underlying this issue is ascertainment bias in the sample used in the analyses. Patient 
series consisting mostly of women with a positive family history are almost certainly 
overestimating risk due to enrichment of other risk factors. This is especially true for tumour 
syndrome genes, investigation of which is usually triggered by the syndrome criteria. For 
example, the penetrance of TP53 variants was initially estimated to be very high58. But 
with the introduction of gene panel sequencing, pathogenic variants in TP53 were also 
reported in families who do not fulfil the classical criteria of Li-Fraumeni Syndrome59. 
These families show older ages of onset of breast cancer60, suggesting lower penetrance 
of at least some TP53 pathogenic variants. This is consistent with recent estimates of the 
prevalence of pathogenic germline TP53 variants in the general population61, which are 
also much higher than expected on the basis of the prevalence of Li-Fraumeni Syndrome 
alone. Furthermore, although with a large confidence interval, Dorling et al. found an OR 
of approximately 3 for TP53 truncating and missense variants, which is lower than initially 
demonstrated58. The other problem is the rarity of variants, which necessitates the analysis 
of very large case-control series in order to sufficiently narrow down confidence intervals 
of risk estimates. For this reason, we have reasonably good breast cancer risk estimates 
for the 1100delC variant in CHEK2, which occurs in ~0.5% of the general population in 
Europe62, 63 and the USA63, 64, but not for most other, much rarer variation in this gene. Even 
in the recently performed large gene panel studies46, 47, wide confidence intervals of the 
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risk are often found. To establish an odds ratio of 2 with a 95% confidence interval of 1.4-
2.8, conferred by a variant with an allele frequency of 0.01%, would require genotyping 
100,000 cases and 100,000 controls. Larger numbers are needed for lower risks and lower 
allele frequencies. One way around this problem is to perform burden-type association 
studies, in which different variants are lumped together on the assumption that their 
impact on protein function is identical. This is an accepted approach for protein-truncating 
variants46, 47, but is problematic for missense changes. 

Gene panel studies – non-BRCA1/2 genes
Gene panel sequencing (GPS) has become a diagnostic reality in cancer genetics. Due 
to the lower costs and improving data quality, it became possible to test multiple genes 
in addition to BRCA1 and BRCA2 in a single assay, driven by a desire to explain familial 
clustering of breast cancer in more families and thus impact clinical management. As 
explained above, the frequency of pathogenic variants found in clinic-based series of 
familial cases is dependent on the selection criteria of the families included. The highest 
frequencies, up to 10%, of pathogenic variants are still found in the BRCA1 and BRCA2 
genes in familial breast cancer cases65-67 compared to ~2.5% in population-based cases46, 

47. Pathogenic variants in non-BRCA1/2 genes are found in 3.7-6.2% of the familial cases64-69. 
The highest frequencies of pathogenic variants in non-BRCA1/2 genes are found in CHEK2, 
ATM and PALB264. However, this increased diagnostic yield comes at the expense of a large 
proportion of detected VUS, which poses a significant clinical problem. Gene panel studies 
have found a VUS in 13.6-41.6% of the cases65, 67, 68, 70. This means that for every pathogenic 
variant found in a case, 2 to 3 cases with a VUS are detected. Furthermore, gene panels may 
contain many genes for which the relevance to breast cancer is unknown or uncertain, as 
outlined above. Due to these uncertainties, most test-results of commercial gene panels 
do not translate well into cancer risk assessment. Even the relatively well-defined cancer 
risks conferred by BRCA1 and BRCA2 are influenced by mutation position and mutation 
class, as well as by other genetic factors, non-genetic exposures, and lifestyle factors52, 71-73. 
Therefore, the gain in clinical utility of testing genes for which evidence of their association 
with breast cancer is still ill-defined, remains limited43, 74. 

Common low risk variants and Polygenic Risk Scores
Since 2005, Genome-Wide Association Studies (GWAS), using SNP arrays and very large 
case-control samples, have enabled the identification of common low risk variants for 
breast cancer25. Collaborative groups such as the Breast cancer Association Consortium 
(BCAC), have identified ~180 common low risk variants associated with breast at genome 
wide significance level (1x10-8)23. The first substantial batch of variants was found by the 
Collaborative Oncologic Gene environment Study (COGS) in 2013, coordinated by BCAC, 
which was subsequently confirmed and extended by combining with other GWAS data75. 
Another 65 loci were detected after the introduction of the OncoArray, a SNP array with 
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strongly associated with ER-negative or ER-positive subtypes of breast cancer23, 76. These 
initially 180 known associated variants explain 18% of the familial relative risk for breast 
cancer, but a much greater proportion (~40%) can be explained when variants that can 
be reliably imputed from the OncoArray data were  included23, 26. Because many of these 
are expected to be relatively rare (<5%) and/or of very small effect-sizes, very large case-
control studies are needed to reach genome-wide significance levels of association. More 
recent large pooled GWAS discovered already 38 novel breast cancer susceptibility loci at 
genome wide significance level77, 78, although some of these loci are only associated with 
certain breast cancer subtypes. 

The breast cancer associated common low risk variant alleles are distributed normally 
throughout the general population. This means that, in contrast to pathogenic variants 
in breast cancer susceptibility genes, all individuals in the population carry a certain 
number of risk alleles, with most individuals carrying the average number. Individually, 
these risk alleles confer a very small increase in breast cancer risk, but their joint effect 
may be a substantially higher22. In the absence of evidence of clear interactions between 
variants22, 79, a simple log-additive (or multiplicative) model combines all variants into a 
single Polygenic Risk Score (PRS). 

Many different PRS for breast cancer have been published in recent years. As published 
previously2, Table 1 presents the effect sizes of published PRS until January 2019. Most 
studies presented here have generated PRS for overall unilateral breast cancer22, 26, 80-89, 
few have addressed ER-status-specific PRS-models with the use of subtype-specific odds 
ratios of certain SNPs26, 90. Subtype-specific PRS can potentially be useful to guide clinical 
management for chemoprevention and other prevention strategies. Some studies91-93 
have used a PRS to predict contralateral breast cancer, and others studied the PRS as risk 
modifier in rare gene mutation carriers (BRCA1, BRCA2, CHEK2)94-96. The number of common 
low risk variants, their allele frequencies and effect-sizes determine the discriminatory 
and predictive power of a PRS. Predictive power of a PRS is usually expressed as Odds or 
Hazard Ratio (OR, HR) per Standard Deviation (SD) unit of the distribution; discriminatory 
power is often assessed by the area under the curve (AUC). The number of variants 
included in a PRS is not strongly correlated with the overall effect-size or the AUC. This 
is because the variants detected in the earliest studies, although smaller in number, 
generally have higher effect-sizes than those detected more recently in larger studies with 
more statistical power. Including large numbers of variants at lower than genome-wide 
significance thresholds may increase predictive power of the PRS, but at the expense of 
being less specific26. 
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For all PRS-models predicting breast cancer, the AUC is modest, i.e., 0.6 – 0.7, but should 
this alone preclude their application as an individual test to predict if a woman will develop 
breast cancer or not? A comparison with gene panel testing, which is widely used in the 
clinic for this purpose, is illustrative. A PRS has been shown to be capable of stratifying 
women into different risk categories in a clinically meaningful way22, 89, 92, 94, but the most 
relevant clinical information of the PRS is in the extreme tails of the distribution. Because 
these tails concern the general population (as opposed to gene mutation carriers only), 
the associated attributable risks of the PRS are in fact far greater than that achieved by 
gene panel testing. For example, the best performing PRS at this moment includes 313 
common low risk variants (PRS313) with an association at a p-value threshold two orders 
below genome-wide significance (P<10-5). For this PRS, in the general population, 35% of 
all breast cancers occur in women in the highest quintile and only 9% of all breast cancers 
in the lowest quintile26. Women in the top 1% of the PRS313 are at 4-fold elevated risk 
relative to population average (95% CI 3.34-4.89), a risk-level defined in many countries as 
‘high’. In comparison, BRCA1 mutation carriers explain <2% of all breast cancer in Western 
Caucasian populations97 and comprise ~0.1% of the general population. Additional studies 
have shown that the PRS based on 313 variants is associated with both contralateral 
breast cancer in the population98 and unilateral breast cancer among BRCA1/2 gene 
mutation carriers73. Implementation research is ongoing to introduce the PRS into clinical 
genetic testing e.g. in the Netherlands, Germany, France, UK and USA. An example of how 
individual PRS-testing could aid risk counselling in the setting of familial breast cancer 
is shown in Figure 3, which highlights how two individuals that would otherwise have 
received the same risk assessment (sisters in generation IV) on the basis of their identical 
family history, are clearly classified into distinct risk classes on the basis of their PRS313.

Another potential application of the PRS is in deciding when and how frequent women 
should undergo breast cancer screening20, 99. In most countries running such screening 
programs, women are offered screening above a certain age, usually between 45 and 
50, when their breast cancer risk exceeds a certain cost-effective level. Women in the 
lowest quintile of the PRS313 in fact never reach that threshold, whereas those in the 
highest quintile will attain this level of risk before age 40 years26. A risk-based entry into 
population-screening, as opposed to the current age-based entry, could therefore be 
more cost-effective, although the evidence to support this notion has been derived only 
from modelling studies so far20, 100.
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Figure 3. Standardised PRS for breast cancer cases and their female relatives
In this non-BRCA1/2 breast cancer family, multiple family members were genotyped by SNP array. 
For all genotyped individuals, the SNP313 Polygenic Risk Score (PRS) was calculated. The individual 
PRS are standardised to population controls in the BCAC dataset (mean=0 and SD=1 in controls). 
The numbers in the figure are therefore Z-scores of the individual PRS. A higher Z-score indicates a 
higher breast cancer risk. 
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A limitation of many PRS is that most variants contained in it are discovered in European-
descent populations and their effects cannot be translated directly to other ethnicities. 
Studies are ongoing to define breast cancer associated variants and evaluate the 
European-descent derived PRS in non-European populations. Recently, studies performed 
for the Asian population103 and Latinas104, showed similar performance for the PRS as 
in the European population, but for the African population105 there was an attenuated 
effect size. Therefore, caution is needed when using the European-descent derived PRS 
for women of ancestries for which the effect of the PRS is dissimilar or not yet determined.

Hormonal, environmental and lifestyle risk factors
A number of non-genetic risk factors are presently firmly established as being associated 
with breast cancer. Besides age, these include physical factors such as body height 
and weight106, 107. For weight, breast cancer risk is dependent on menopausal status. 
Weight gain and obesity (BMI>30) after menopause are associated with an increase in 
postmenopausal breast cancer106. It is likely that higher oestrogen levels underlie this 
effect in postmenopausal women108. A higher mammographic density due to a high 
proportion of connective and glandular relative to adipose tissue, leads to a higher risk 
for breast cancer27, 28, 109. Hormonal factors influencing breast cancer risk include the use 
of oral contraception and hormone replacement therapy (HRT)110, 111, as well as age at 
menarche and menopause112. Reproductive history (age of first childbirth or nulliparity) 
may have similar impact on mammary gland biology28, 113. The lifestyle factors alcohol use 
and smoking increase breast cancer risk as well, while physical activity and breastfeeding 
seems to act protectively114-116. Finally, a personal history of benign breast disease also 
signifies an increased breast cancer risk28. 

Combining risk factors
Since any woman will have only a single certain risk-level at a given moment in time to 
develop breast cancer over the course of her life, genetic and non-genetic risk factors 
must somehow combine to define that risk. A major challenge for individual breast cancer 
risk prediction, therefore, is to design risk calculation models that accommodate all known 
risk factors, which requires knowledge about the underlying model how they interact. 
Through the large international consortia such as BCAC, data to design and validate 
such models are now forthcoming. There are now much more accurate estimates how 
the PRS can modify the breast cancer risks conferred by pathogenic variants in BRCA1, 
BRCA2 and CHEK273, 94, 95, 117, 118. This can help inform choices and timing of preventive 
surgery or chemoprevention. The interaction between the c.1100delC variant in CHEK2 
and the PRS appears to follow a simple multiplicative interaction, but the per SD hazard 
ratio estimates in BRCA1 and BRCA2 pathogenic variant carriers were smaller than those in 
general population73. In BRCA1 pathogenic variant carriers, the ER-negative PRS showed 
a much stronger association with breast cancer risk in comparison with the ER-positive 
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variant carriers73, 94. Few studies have been performed on ATM and PALB2 pathogenic 
variant carriers, but a recent study showed that the effect sizes of the associations were in 
between those for BRCA1/2 and CHEK2119. These issues highlight the complexity of some 
of these interactions and underscore the necessity of large prospective cohort studies 
to validate these models. A similar deviation from simple multiplicative interactions has 
been found for individuals with rare pathogenic variants in more than one breast cancer 
associated gene120. There is limited evidence for interaction between common low risk 
variants and lifestyle/hormonal factors121. Recent studies showed that the effect of these 
risk factors and the PRS can in general be combined in a multiplicative way122, 123.

Breast cancer risk prediction models
Currently,  predicting whether a healthy woman will develop a primary breast cancer or 
not is mainly done within clinical genetic services. Women who are worried because of 
their family history for breast cancer can be referred by their general practitioner to such 
a clinic; alternatively, breast cancer patients with a clear family history are referred by 
oncologists or surgeons, also because of the potential impact a gene diagnosis may have 
for their therapeutic options124. At the moment, the major incentive behind these referrals 
is the possibility to detect a high- or moderate risk variant in one of the breast cancer 
genes (i.e. BRCA1, BRCA2,  PALB2, CHEK2, or ATM). As set forth above, however, such variants 
are found in ~10% of all referred families. For women from breast cancer families where no 
pathogenic variant is found, clinical management is determined based on their lifetime 
breast cancer risk. The Dutch screening guideline (Table 2) advises women with a risk 
above 20% based on their family history to perform annual mammography from age 40, 
and to continue biennial screening at age 50 as part of the national population screening 
program. An intensified protocol has been designed for women with a risk >30%. Breast 
cancer risk prediction for healthy relatives is often based on family history alone, although 
more than 20 risk prediction algorithms known today125 include other risk factors as well. 
Several studies have shown an improved discriminative power between breast cancer 
cases and controls by combining the PRS with a breast cancer risk prediction tool81, 83, 101, 

102. In one study89, new breast cancer lifetime risks for women from breast cancer families 
were calculated by adding the PRS to family-based risk prediction. For up to 23% of the 
women, screening recommendations, as stipulated by local management guidelines, 
could alter. 

Some well-known risk prediction algorithms are the Gail model, BRCAPRO, Tyrer-Cuzick 
and the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm 
(BOADICEA). Depending on what the model predicts and for which population, the most 
appropriate model can be used. The Gail model predicts breast cancer lifetime risks for 
women older than 35 years and is widely studied and validated. It includes hormonal risk 
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factors, breast biopsies and affected first degree relatives125-127. The Chen model extends 
this by incorporating mammographic breast density as well128. The BRCAPRO model 
calculates breast cancer lifetime risks and the risk of contralateral breast cancer. The 
estimation is based on family history (first- and second-degree relatives), the prevalence 
of BRCA1 and BRCA2 pathogenic variants, population incidence rates and pathological 
markers for breast cancers127, 129. The Tyrer-Cuzick model incorporates hereditary (first- and 
second-degree relatives with breast or ovarian cancer), hormonal and environmental risk 
factors (age, BMI, menarche, reproductive factors, menopause, and HRT) and pathological 
variables (breast biopsies and benign breast pathology)125, 127. Mammographic density 
and PRS were recently incorporated in the model127. BOADICEA estimates breast cancer 
lifetime risks and contralateral cancer risks for women with a family history of breast 
cancer130. The model includes tumour pathology characteristics, recent cancer incidences 
and pathogenic variants in ATM, BRCA1, BRCA2, CHEK2, and PALB2131. For BOADICEA, the 
family history is not restricted to a number of relatives or a particular degree. The current 
version, model V5, has been extended to accommodate a broad range of genetic and 
non-genetic risk factors for breast cancer, adding mammographic density, reproductive 
factors, age at menarche and menopause, use of hormones, BMI, body height, alcohol 
use and 4 different PRS including the PRS313 to the previous version132. In the new version, 
V6, available in February 2022, breast and ovarian cancer population incidences of the 
Netherlands will be added. Unsurprisingly, the potential for risk stratification was the 
greatest when all risk factors were used for risk prediction. Of all factors, the PRS had the 
largest contribution in risk stratification. Without knowledge of the genetic status of a 
woman for the rare genes, or family history, the lifetime breast cancer risk varied from 
2.8% for the lowest, to 30.6% for the highest percentile of the PRS132. The model assumes 
that the risk factors and the PRS313 act multiplicatively, consistent with evidence from 
previous studies123. Similarly, the assumption that the PRS313 combines multiplicatively 
with the effects of rare truncating variants in the five breast cancer genes will need 
validation. Finally, the current BOADICEA model uses population breast cancer risks of 
several countries but UK risk factor distributions and therefore may require tailoring for 
application in other populations. The BOADICEA model is incorporated in the user-friendly 
web interface CanRisk133 and externally validated134. Within clinical genetic services of 
the Netherlands, CanRisk is already used by some clinicians for risk prediction in families 
where no pathogenic variant is found, but currently mostly only family history is included 
as variable. 

Outline of this thesis
The main objective of work presented in this thesis was to explore the clinical utility of the 
Polygenic Risk Score (PRS) based on breast cancer associated common low risk variants 
for individual breast cancer risk prediction. It did so by generating  knowledge about the 
PRS in the Dutch general population and in clinic-based breast cancer families, as well 
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will support implementation of comprehensive risk prediction by using CanRisk in the 
clinic, and may help women to make more informed choices about their optimal clinical 
management.

Table 2: Dutch screening guideline

Low (RR: <2) Moderate (RR: 2-3) High (RR: >3)
Lifetime risk <20% 20-30% >30%
Start screening 50 yr 40 yr 35 yr
Mammography Population screening <50 yr annual 

>50 yr population 
screening

<60 yr annual
>60 yr population screening

MRI - - -

Chapter 2 explores the clinical applicability of a 161-variant-based PRS for risk prediction 
in a cohort of 101 high-risk breast cancer families not explained by pathogenic variants in 
the BRCA1 and BRCA2 genes. The association with breast cancer and the clinical impact of 
the PRS on risk prediction was investigated for affected and healthy women from these 
families by determining the potential change in clinical management.  

Chapter 3 explores the clinical applicability of the 313-variant-based PRS for risk prediction 
in a cohort of almost 4,000 familial Dutch breast cancer cases who tested negative for 
pathogenic variants in BRCA1/2 and of whom the majority were evaluated in research 
setting for pathogenic variants in PALB2, CHEK2, and ATM. The clinical impact of addition 
of the PRS on breast cancer risk prediction by BOADICEA based on family history and 
pathogenic variant carrier status was investigated by determining the potential change 
in clinical management. In Appendix 1, this study is used as illustration to discuss the 
situation with regard to the review by the Medical Ethical Committees of multicentre 
research in the Netherlands that is not covered by the Dutch medical research involving 
human subjects act (wet medisch-wetenschappelijk onderzoek met mensen, WMO) 
[article in Dutch]. 

Chapter 4 assesses the clinical validity of the 313-variant-based PRS by determining the 
association between this PRS and breast cancer in the Dutch population. Furthermore, we 
validated the risk prediction algorithm BOADICEA by exploring the discriminative ability 
of an individualised 10-year breast cancer risk score based on the PRS and several known 
risk factors. We also assessed how a risk-based approach of population-based screening 
could have impacted breast cancer detection rates in our study cohort. 
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In chapter 5, we investigated whether the 313-variant-based PRS for breast cancer is 
associated with contralateral breast cancer risk among women with pathogenic variants 
in BRCA1 or BRCA2 and explored the implications for contralateral breast cancer risk 
prediction for these women.

In chapter 6, we summarised the results of our pilot study, the Individualised Breast cancer 
Risk prediction (IBR) study in which we included unaffected women from breast cancer 
families where no pathogenic variant is found. The aim of this study was to establish 
the percentages of women shifting to another risk category with comprehensive risk 
prediction (CRP) calculated using CanRisk, based on family history, the PRS313 and lifestyle/
hormonal risk factors compared to the current family history-based risk prediction. 
Furthermore, the psychosocial impact of this new CRP will be assessed and described by 
Bredart et al. (manuscript submitted). 

In chapter 7 we conclude with a general discussion about our main findings and future 
perspectives for implementation of CRP for breast cancer in the clinic.  
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