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The integration of machine learning and structure-based methods has proven valuable in the past as a
way to prioritize targets and compounds in early drug discovery. In oncological research, these
methods can be highly beneficial in addressing the diversity of neoplastic diseases portrayed by the
different hallmarks of cancer. Here, we review six use case scenarios for integrated computational
methods, namely driver prediction, computational mutagenesis, (off)-target prediction, binding site
prediction, virtual screening, and allosteric modulation analysis. We address the heterogeneity of
integration approaches and individual methods, while acknowledging their current limitations and
highlighting their potential to bring drugs for personalized oncological therapies to the market faster.
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Introduction
In recent years, the scientific community has seen the increased
use of computational approaches to accelerate the discovery of
relevant targets and to prioritize small molecules in all disease
areas. These approaches include data-driven artificial intelligence
(AI)/machine learning (ML),1,2 as well as structure-based (SB)
methods, such as those based on docking and molecular dynam-
ics (MD).3 Moreover, advances in computing power and in exper-
imental structure elucidation have made it possible to integrate
these two types of methods, for example to use ML-based scoring
functions to rank the accuracy of docking results,4 or to use
structure-derived data (such as interaction fingerprints or MD tra-
jectories) as input for bioactivity prediction models.5,6 These
advances have emerged from the joint efforts of the computa-
tional drug discovery community and are generally applicable
to the subfield of oncological drug discovery, which shares most
Abbreviations: AI, Artificial intelligence; DHODH, dihydroorotate dehydrogenase;
QSAR, Quantitative structure–activity relationship; RF, Random forest; SB, Structure-b
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of the challenges and characteristics of broader drug discovery.
Nevertheless, oncological drug discovery also entails its own
unique traits that reflect the complexity and diversity of neoplas-
tic diseases, as summarized in Box 1.7,8 Understanding this diver-
sity is a key aspect in the development of personalized anti-
cancer treatments, which are increasingly being deployed in clin-
ical practice.9,10 The (computational) drug discovery field is grad-
ually moving towards cancer-specific applications and/or
demonstrating the applicability of therapies against cancer-
related targets.

Here, we review the efforts made to integrate AI/ML and SB
methods within computational drug discovery strategies that
are specifically applied to, or can potentially impact, the field
of cancer research (Table 1). The reviewed articles cover different
parts of the oncology drug discovery pipeline, and we focus on
six computational use case scenarios and four integration
FEP, Free energy perturbation; MD, Molecular dynamics; ML, Machine learning;
ased; TCGA, The Cancer Genome Atlas; VS, Virtual screening.

/creativecommons.org/licenses/by/4.0/). www.drugdiscoverytoday.com 1661

mailto:ger�ard@lacdr.lei�de�nuniv.nl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.drudis.2022.03.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.drudis.2022.03.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.drudis.2022.03.005&domain=pdf
https://doi.org/10.1016/j.drudis.2022.03.005
http://creativecommons.org/licenses/by/4.0/


Box 1. Targeting the hallmarks of cancer

In their description of the hallmarks of cancer, Hanahan and Weinberg (2000)7 defined six underlying traits that are common to tumorigenesis.

In the light of new evidence, these were later complemented by two additional emerging hallmarks and two enabling characteristics.8 These

hallmarks paved the way to understanding the complexity and diversity of neoplastic diseases. Understanding this diversity is a key aspect for

the development of personalized anti-cancer treatments.

A combination of artificial intelligence (AI) and structure-based methods can be used to address cancer drug discovery research in a more

holistic way, tackling all the hallmarks of cancer. In this review, we provide an overview of the biological relevance of the drug discovery targets
in cancer and their relevance to the hallmarks and characteristics of cancer (numbered 1 to 10 in the box figure). An eleventh ‘hallmark’, the

ability of cancer cells to escape chemotherapy effects, is added here and is a key aspect to consider in oncology drug discovery strategies.

Supporting references are cited for the target of each hallmark; references cited in italic text provide additional support on the connection of

a certain target to a hallmark. Figure adapted from Hanahan and Weinberg.8
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methods (Fig. 1). In the following sections, we cover each of
these use scenarios: computational mutagenesis, (off)-target pre-
diction, binding site prediction, virtual screening (VS), and allos-
teric modulation analysis. The four ML–SB integration methods
that we discuss are: (A) the use of structural data as input for
ML models, (B) ML-based scoring functions for SB applications,
(C) ML as a tool to analyze MD simulations, and (D) sequential
or parallel pipelines in which SB and ML methods are used inde-
pendently but complementarily. The biological impact of these
computational strategies in cancer research is exemplified by
the link between the targets addressed in the reviewed publica-
tions and each of the ten defined hallmarks of cancer, as well
as an additional eleventh ‘hallmark’ that is of high relevance in
oncological drug discovery, namely chemotherapy-escaping
capabilities (Box 1). The heterogeneity of the use cases and meth-
ods (Table 1) goes hand-in-hand with that of the molecular tar-
gets in the reviewed publications, and illustrates the diverse
potential of the combined use of AI and SB methods in oncolog-
ical drug discovery.

Driver prediction
One of the main use case scenarios for, most frequently ML-
based, computational cancer research is the prediction of gene
and mutation drivers that should be prioritized as targets for
anti-cancer therapies. These approaches are pan-target by defini-
tion and are usually pan-cancer; they are not focused on specific
targets or cancer types. They often start from multi-omics data-
1662 www.drugdiscoverytoday.com
sets obtained from cancer patients, such as the data on somatic
mutations,11,12 copy number variations,12 epigenetics,12 or
RNAseq13 available from The Cancer Genome Atlas (TCGA),
and their applicability depends on the availability of such data
types. The work of Bailey et al.11 provides an extensive overview
of the wide array of tools that are available for driver prediction
and, more importantly, of the importance of combining differ-
ent tools to maximize predictive performance. The approach
described by Bailey et al.11 joined SB and ML methods in parallel,
but they are more frequently incorporated sequentially.12,13 Kni-
jnenburg et al.12 and Liñares-Blanco et al.13 created classification
models (logistic regression and random forest (RF), respectively)
trained on omics data to predict cancer-related outcomes, such
as homologous recombination deficiency and tumorigenic phe-
notype. In both cases, feature importance was used to prioritize
genes for further SB analysis. Knijnenburg et al.12 performed in
silico mutagenesis studies for each detected variant that had
potential to affect protein stability. Some of the substitutions
were also analyzed with MD, and appeared to alter protein
dynamics even if they were not predicted to alter protein stabil-
ity. Conversely, Liñares-Blanco et al.13 used ML-derived informa-
tion to perform a drug repurposing VS approach, in which FDA-
approved anti-cancer drugs were docked into the available crystal
structures of the computationally prioritized proteins, such as
FABP6.

It is important to note that the input data, features, and out-
come variables that are selected for cancer driver prediction are



IN
FO

R
M
A
TI
C
S
(O

R
A
N
G
E)

TABLE 1

Overview of the reviewed literature categorized by use case scenario.

Reference Target/ligand dataset Hallmark
of cancer

Artificial intelligence
method(s)

Structure-based
method(s)

Integration
approach

Driver prediction
Bailey et al.11 Pan-target/TCGA-MC3 set 11 Various Various Ⓓ
Knijnenburg et al.12 Pan-target/TCGA-MC3 set 12 Logistic regression

classifier
FoldX, MD Ⓓ

Liñares-Blanco et al.13 Pan-target (FABP6)/TCGA 13 RF and generalized linear
classifiers

Docking Ⓓ

Computational mutagenesis
Masso et al.15 BRCA1/ClinVar 15 RF classifier Structure-derived

features
Ⓐ

Pandurangan and Blundell16 Pan-target/ProTherm benchmark 16 ML ensemble classifier Structure-derived
features

Ⓐ

Chitrala et al.17 P53-ERa/NA 17 One-layer NN Protein–protein
docking

Ⓐ

Babbitt et al.18 BRAF/FDA 8,18 Seven stacked classifiers MD Ⓒ
Aldeghi et al.19 Abl/Platinum database, in-house set 19 Extremely randomized

regression trees
Free energy
perturbation (FEP)

Ⓓ

Patil et al.20 Kinome (Alk)/UniProt, literature SVM, RF, NeuralNet, LR MD (metadynamics) Ⓓ

(Off)-target prediction
Pande et al.21 Pan-target (MDM2)/literature 21 CoMFA/CoMSIA PLS

regressor, DT, RF, KNN,
MLP, SVM classifiers

Docking, MD Ⓐ

Lim et al.22 Pan-target (RIOK1, PDE3)/ChEMBL,
DrugBank, literature datasets, TCGA-
CCLE

63 ElasticNet, SVR
regressors

Ligand binding space
search in genome,
docking

Ⓐ

Zhi et al.23 DHODH/STRING, KEGG, ChEMBL, ZINC 23 Multi-GNN Docking, MD Ⓓ

Binding site prediction
Kawaguchi et al.28 CD44/NA (pre-trained) 28 Bayesian active learning Protein–protein

docking
Ⓑ

Taherzadeh et al.29 Pan-target/BioLip

(protein–
protein
binding)

RF classifier, DBSCAN Structure-derived
features

Ⓐ

Virtual screening
Che et al.33 IRAK1/ChEMBL, DUD-E 64 SVM classifier Docking Ⓑ
Yang et al.34 Cathepsin S/PDBbind, CSAR, GC3/4,

ChEMBL

65 XGBoost regressor Similarity-based
docking

Ⓑ

Berishvili et al.35–37 Pan-target, Tankyrase/ZINC 37 DNN Docking, MD, FEP Ⓑ
Adeshina et al.38 Pan-target (AChE)/ChEMBL, DUD-E 66 XGBoost classifier Docking Ⓑ
Kalaki and Asadollahi-

Baboli39
Pim/in-house dataset 67 PCA, PLS classifier Docking Ⓐ

Li et al.40 KIF11/KEGG BRITE, DrugBank, STITCH 68 Bayesian Additive
Regression Trees

Bow-pharmacological
space (protein–ligand
interactions)

Ⓐ

Raju et al.41 CYP1B1/ChEMBL, PubChem, literature,
DUD-E, Maybridge, ChemBridge,
Natural compound library

41 SVM, RF, ANN classifiers Docking, MD Ⓓ

Chen et al.42 LXRb/ChEMBL, Binding DB, in-house
library, GSMTL

42 SVM, Naïve Bayes
classifiers

Docking, MD Ⓓ

Halder and Cordeiro43 AKT/ChEMBL, Asinex library 8 LDA, XGBoost and other
classifiers

MD Ⓓ

Azhagiya Singam et al.44 AR/Tox21, CompTox 69 SVM classifiers Docking Ⓓ
Kadioglu and Efferth45 P-gp/ChEMBL 45 RF classifier Docking Ⓓ
Guo et al.46 Tubulin/ChEMBL 70 Naïve Bayes classifiers Docking, MD Ⓓ
Burggraaff et al.47 RET/ChEMBL, ZINC 71 RF classifiers (Induced-fit) docking,

metadynamics
Ⓓ

Chen et al.48 MMP13/Traditional Chinese Medicine
Database

72 RF, gradient boosting,
AdaBoost, deep learning

MD Ⓓ

(continued on next page)
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TABLE 1 (CONTINUED)

Reference Target/ligand dataset Hallmark
of cancer

Artificial intelligence
method(s)

Structure-based
method(s)

Integration
approach

Chen et al.49 STAT3/literature set, ZINC 49 Nine regressors, 3D
QSAR

Docking, MD Ⓓ

Guo et al.50 Tubulin/ChemDiv 70 Discovery studio
prediction models

Docking, MD Ⓓ

Junaid et al.51 P53-ASPP2-CagA/rationally designed 51 ML module in MOE MD Ⓓ

Allosteric modulation analysis
Lu et al.25 SIRT6, STAT3/PDB, commercial , 25 SVM Geometric binding

site predictor
Ⓐ

Song et al.56 Pan-target/PDB 56 RF, neural networks Structure-derived
features

Ⓐ

Uyar et al.58 Neurolysin/PDB 73 ElasticNet, PCA, LDA MD Ⓒ
Chen et al.59 SETD8/cBioPortal 59 Markov state model,

tICA, clustering
MD Ⓒ

Hu et al.60 MOR/rationally designed 74 Markov state model, tICA MD Ⓒ

ANN, Artificial neural network; CoMFA, Comparative molecular field analysis; CoMSIA, Comparative molecular similarity indices analysis; DHODH, Dihydroorotate dehydrogenase; DNN, Deep neural
network; DT, Decision Tree; GNN, graph neural network; GSMTL, Guangdong Small Molecule Tangible Library; KEGG, Kyoto Encyclopedia of Genes and Genomes; KNN, K-nearest neighbor; LDA,
Linear discriminant analysis; LR, Linear regression; MD, Molecular dynamics; MDM2, Mouse double minute 2; ML, Machine learning; MLP, multi-layer perceptron; MOR, l opioid receptor; NN, Neural
network; PCA, Principal components analysis; PDB, Protein Database; PLS, Partial least squares; QSAR, Quantitative structure–activity relationship; RF, Random forest; SVM, Support vector machine;
SVR, Support vector regression; TCGA-CCLE, The Cancer Genome Atlas Cancer Cell Line Encyclopedia; tICA, Time-structure based independent component analysis.
aSee Box 1.
bSee Fig. 1.
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not homogeneous. Key aspects such as the tumor microenviron-
ment or metastasis are often neglected. With regard to cancer
patient data, most of the publications use TCGA, which provides
high quality and standardized data. However, the TCGA data has
been frozen since 2016, highlighting the need for updated cancer
patient databases, such as the Genomic Data Commons.14 Over-
all, the use of sequential pipelines, sometimes including experi-
mental assays, could help to account for the differential effect
of the different types of available data on tumorigenesis.

Computational mutagenesis
Knowing the effect of specific point mutations on protein func-
tion and ‘drugability’ is key to the development of personalized
anti-cancer therapies, as well as to decision-making in the clinic.
In vitro mutagenesis studies are time- and cost-expensive, thus in
silico computational studies are a good starting point that can be
used to prioritize mutants for experimental analysis.

Most of the computational mutagenesis approaches that are
reviewed here use structural data to train ML classifiers.15–18

These structural data might originate directly from a crystal struc-
ture,15,16 in combination with docking studies,17 or from MD.18

The approaches developed by Masso et al.15 and by Pandurangan
et al.16 extract features from a geometrical representation derived
from wildtype and mutant crystal structures and from homology
models. Those features were used in classification models to pre-
dict variant clinical significance and protein stability, respec-
tively. Protein–protein interaction stability can also be
predicted from protein–protein docking-derived features, such
as those used by Chitrala et al.17 to predict the p53–ERa interac-
tion stability for wildtype p53 and three breast-cancer-related
p53 polymorphisms. Moreover, computational mutagenesis
studies are used to predict the effect of mutations on ligand-
binding dynamics. Babbitt et al.18 studied the hyperactivating
effect of BRAF V600E-targeting inhibitors in wildtype cells using
MD. Here, differences in rapid dynamics in bound and unbound
1664 www.drugdiscoverytoday.com
functional states for each amino acid were modelled in stacked
classification models to detect conserved dynamic function.
The models showed that the V600E mutation greatly alters
dynamics, leading to lower predictive performance.

The performance of the classification models used for mutage-
nesis prediction varies highly depending on the amount of
experimental mutagenesis data available for training and valida-
tion.15–18 Hence, some authors have compared the performance
of SB methods alone to that of ML models for these tasks.19,20 For
example, Aldeghi et al.19 benchmarked the performance of free
energy perturbation (FEP), ML, and Monte Carlo methods in pre-
dicting the change in inhibitor affinity for Abl kinase variants.
The classifier trained on a pan-target dataset was not able to gen-
eralize on the test set, but when trained on a reduced Abl-specific
dataset, the performance of the classifier was comparable to
those of FEP and Monte Carlo methods. Nevertheless, computa-
tional time was drastically less whenML was used. Similarly, Patil
et al.20 created an MD protocol to determine the activation status
of any kinase variant. This information is critical for the prioriti-
zation of kinase inhibitors that target the active or the inactive
conformation, and hence for the prevention of unwanted side
effects. For this reason, we have selected Alk kinase as a case
study. Here, the long-term dynamics of the active and the inac-
tive conformations were explored using the metadynamics
method. Changes in RMSD (the root-mean-square deviation of
atomic positions) and hydrogen bond occupation data were used
to calculate a score for the wildtype and the mutant, and a final
score was compared to a defined threshold. This approach out-
performed a kinome-wide ML model and other common impact
prediction tools, such as SIFT and Polyphen.

The computational mutagenesis approaches that are reviewed
here are able to capture differences in protein stability and con-
formation,16,20 protein–protein interactions,17 ligand-binding
affinity and dynamics,18,19 and clinical significance.15 Neverthe-
less, their applicability is often limited to a particular target or



Drug Discovery Today

FIGURE 1
Use case scenarios for integrated structure-based (SB) and machine learning (ML) methods in oncological drug discovery and the integration
methods employed. We address six use case scenarios: 1) driver prediction, 2) computational mutagenesis, 3) (off)-target prediction, 4) binding site
prediction, 5) virtual screening, and 6) allosteric modulation analysis. Integration approaches that achieve full integration include those where: (A) structural
data derived from SB methods is used as input for ML models, with emphasis on the predicted output; (B) docking poses are analyzed with ML-based scoring
functions; and (C) output trajectories from molecular dynamics (MD) simulations are analyzed with ML. It is still more common, however, to combine SB and
ML methods without full integration, with the implementation done in a sequential or parallel way (D), in which ML acts as a pre-filter for the SB phase, or vice
versa.
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mutant of interest for which there are enough data. In order to
increase the impact of methods developed for members of fami-
lies that have highly conserved binding pockets and activation
mechanisms, such as kinases (Babbitt et al.,18 Aldeghi et al.,19

Patil et al.20) or G protein-coupled receptors, the training sets
could be enriched with data from other members of the family.
Therefore, computational mutagenesis efforts in general could
benefit frommore extensive experimentally validated mutagene-
sis datasets. These should be deposited in publicly available data-
bases, following FAIR principles to favor the creation of relevant
training and validation datasets.

(Off)-target prediction
Defining the (off)-target space of drugs in development is impor-
tant for obtaining a selectivity profile, but also for the rational
design of polypharmacological candidates that have a multi-
target profile. Moreover, re-analyzing the target space of
approved drugs is key to obtaining a better understanding of
their mode of action, or to starting re-purposing efforts. These
endpoints are highly relevant in oncological drug discovery,
where off-target effects are often responsible for grave adverse
reactions. Integrated ML-SB methods have proven useful in pre-
dicting (off)-target spaces.

Efforts to predict the target space usually start from known
information, such as ligand–protein21,22 or protein–protein inter-
actions.23 Pande et al.21 set up an SB-ML integrated pipeline to
identify the most likely target of the natural compound resvera-
trol, for which the mode of action is still unknown. This study
was possible because of the (recent) resolution of nine proteins
in complex with resveratrol. A set of 40 anti-breast cancer resver-
atrol derivatives from the literature were used for docking, and a
3D quantitative activity–structure relationship (QSAR) CoMFA/
CoMSIA PLS model was created for target-derived results from
docking studies. Based on the performance of the models,
MDM2 and QR2 were suggested as potential targets for resvera-
trol derivatives.

Computationalmethods can also be used to rationally propose
polypharmacological approaches for the discovery of novel
drugs23 or the repurposing of existing drugs.22 The implementa-
tion by Lim et al.22 used the original crystal structure of an
www.drugdiscoverytoday.com 1665
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approved drug as the template to search the genome for genes
encoding proteins with an appropriate ligand-binding space. Sub-
sequently, docking was performed and the results used, together
with bioactivity data, as input for an ML algorithm that predicted
genome-wide ligand–protein interactions in a fully integrated
fashion. RIOK1, among other kinases, was predicted to be an off-
target of PDE3 inhibitors such as levosimendan, and conse-
quently, this kinase was proposed as a target for drug repurposing
for anti-cancer therapies. Conversely, Zhi et al.23 used a sequential
SB-ML pipeline to identify novel targets related to dihydroorotate
dehydrogenase (DHODH) and to screen drug candidates for their
potential to inhibitmultiple targets in small cell lung cancer. First,
protein–protein interaction information was leveraged for net-
work pharmacology analysis. This allowed the identification of
related proteins that could also be affected by drugs that inhibit
DHODH, such as uridine monophosphate synthase (UMPS),
which like DHODH is involved in pyrimidine biosynthesis. Dock-
ing data for both DHODH and UMPS identified eight potential
multi-target compounds, which were prioritized on the basis of
their predicted binding affinity towards DHODH using three
multi-GNN (Graph Neural Network) regression models. The top
three candidates were subjected to MD validation, which con-
firmed that they show stable interactions with both targets.

Integrated approaches for the prediction of (off)-targets can
have a direct impact in lead prioritization in oncological drug dis-
covery. The application of the methodologies, however, mostly
depends on the available data. Approaches such as those of
Pande et al.21 and Lim et al.22 are relevant when true binding
modes have been identified. In the case of Zhi et al.,23 both rich
interactome databases and bioactivity data for the identified tar-
gets of interest were needed.

Prediction of binding site
Once the relevant targets have been defined, the binding sites
need to be characterized for drug discovery purposes. In oncolog-
ical drug discovery, this task can be made more complicated by
mutated binding sites or transformed protein–protein interac-
tions. An extensive array of tools is available for the prediction
of small molecule binding sites, as recently reviewed by Krivák
and Hoksza.24 In their independent benchmark, they showed
that some methods in which SB and ML techniques were inte-
grated performed as well or better than SB-exclusive methods.
Nevertheless, they urged caution over the prediction of complex
features fromML analysis of structural data when using relatively
small training datasets. Of particular interest in anti-cancer drug
development is the discovery of allosteric binding sites that can
be targeted selectively in cancer cells, thereby reducing off-site
adverse effects triggered by events at orthosteric binding sites.
Most of the binding site prediction methods summarized by Kri-
vák and Hoksza24 can be used to predict allosteric binding sites,
but these sites share a number of differential characteristics that
have triggered the development of tools that specifically predict
allosteric binding sites.25 Some of these methods are built on top
of general binding site predictors with, for example, an added
layer of ML classification.26 The application of these methods
1666 www.drugdiscoverytoday.com
and the analysis of the effects caused by allosteric modulators
are discussed in more detail below under the heading ‘Allosteric
modulation analysis’.

While the information and software needed for binding site
prediction is extensively available for small molecules, the pre-
diction of binding regions in protein–protein binding modelling
is still challenging.27 Protein–protein interactions are crucial in
certain aspects of cancer pathogenicity,8 and integrated SB-ML
approaches have proven beneficial in this area.28,29 Kawaguchi
et al.28 used a Bayesian active learning-based protein–protein
docking approach to predict the conformation of the dimeriza-
tion interface of CD44 and the residues involved. Similarly, the
approach developed by Taherzadeh et al.29 uses ML to predict
protein–peptide binding residues from protein sequence and
structural-data-derived features. The predicted residues from the
RF classifier are used as input for a density-based clustering algo-
rithm that defines the binding region on the protein surface.
Taherzadeh et al.29 showed that the performance of this
approach is better than that of non-ML methods applied to the
same dataset. In general, however, the exploratory nature of
the applications in this use case scenario makes it challenging
to assess the performance of the methods reviewed. To counter-
balance this problem and to reduce the effect of false positives,
one option would be to use a consensus approach in which sev-
eral tools are employed and sites that are predicted by more than
one of them are investigated further.

The feasibility of the approaches reviewed here largely
depends on the availability of structural data. The use of homol-
ogy models can be useful here, with some authors showing that
their integrated ML-SB methods perform equally well in experi-
mental structures as in homology models.29,30 Moreover, the
recent release of AlphaFold31 to predict protein structures with
high accuracy opens doors for the implementation of many of
these methods on a genome-wide scale. The distribution of
AlphaFold as open source code has facilitated the development
of related tools that will improve the biological relevance of this
tool. An example is AlphaFill,32 a tool that enriches AlphaFold
models with ligands and co-factors. Of very high relevance in
oncological drug discovery, these tools could enable the predic-
tion of binding sites in mutants that have not being experimen-
tally determined.
Virtual screening
The most common scenario in computational drug discovery is
virtual screening (VS). Like computational mutagenesis, VS can
be seen as a tool for prioritizing compounds for experimental
analysis. VS has been extensively explored using SB and ML
methods independently, but their combination—either in a fully
integrated or in a sequential way—allows for the use of as much
available data as possible and, expectedly, provides more accu-
rate results. This use case scenario is certainly not unique to
oncological drug discovery, but the advances made in computa-
tional drug discovery in this area could very well power success-
ful anti-cancer drug discovery stories.
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A classic way to integrate SB and ML learning methods in VS is
the use of ML-based scoring functions in docking.33–38 These can
be directly integrated in the docking software or, more com-
monly, used a posteriori for re-scoring. Moreover, ML scoring
functions are often target-specific,33–35 but not necessarily so.38

One of the simplest approaches is to include docking scores as
features for an ML classifier.33 The slightly more complex
approach developed by Yang et al.34 begins with a similarity-
based docking method, which was able to reduce the challenges
presented by the large conformational space of Cathepsin S inhi-
bitors. Subsequently, a fragmentation method was applied to the
predicted poses.34 In addition, Berishvili et al. demonstrated the
added value of including not only docking-derived features for
the ML scoring function,35 but also MD-derived features.36 In ret-
rospect, however, they showed that ML-based target-specific
scoring functions were not accurate in identifying active tankyr-
ase compounds. More complex methods, such as FEP, were
needed in order to properly correlate the predicted binding affin-
ity to the pIC50 values determined experimentally. As for other
ML applications, the development of accurate ML scoring func-
tions is highly dependent on the quality of the datasets available
for training and validation. Adeshina et al.38 focused on the
development of a high-quality dataset (D-COID, publicly avail-
able) for training ML re-scoring functions. Importantly, they
included challenging decoy complexes from the DUD-E dataset
and tried to keep the dataset balanced. They also refrained from
using docked poses in the training set.

Similar approaches might not necessarily be coined ML scor-
ing functions, even though they also use ligand–protein interac-
tion data as input for ML models.39,40 Kalaki and Asadollahi-
Baboli39 used an approach in which docking was performed as
a first step to discern relevant interactions and to derive ML
descriptors. Using a slightly different approach, Li et al.40 con-
structed a pharmacological space that accounted for ligand, pro-
tein, and ligand–protein interaction descriptors. The last were
generated by combining the average fingerprint per protein data
from known binders.

In general, however, the most typical approach in VS is still
the use of SB and ML methods in a sequential or parallel
way.41–50 These methods often include the development of a
ligand-based QSAR classification41–47 or regression48,49 model
from experimental bioactivity data in order to prioritize com-
pounds from a chemical database on the basis of their predicted
binding affinity. The wide array of models and databases
reviewed here is collated in Table 1. Subsequently, the selected
hits are filtered on the basis of different criteria, which depend
on the scope of the project (such as reverse pharmacophore map-
ping,43 or DG calculation with MM-GBSA44). Finally an SB
method such as docking41,42,44–46,49,50 and/or MD41–43,46,48–51 is
deployed to rationalize the results of the ML model and to pro-
pose compounds for in vitro validation. Sometimes, the SB phase
is a filter on its own, with a docking-based VS,41,46 and occasion-
ally it is used before the ML phase.44,49 Moreover, the ML model
is not always built to predict only binding affinity, but some-
times also anti-cancer activity50 or mode of action.45 When
focused on multiple on- and off-targets, sequential pipelines
can also be used to prioritize polypharmacological compounds,
as was the case in the work on kinase inhibitors by Burggraaff
et al.47 Even though VS strategies are more common in the
screening of small molecules, there are also examples from pep-
tide VS campaigns, such as that of Junaid et al.51.

One of the main limitations of VS approaches lies in the def-
inition of relevant training and validation sets for ML. Even
though databases such as ChEMBL and PubChem contain a very
large amount of bioactivity data, target-specific applications usu-
ally still end up with datasets that are too small to support gen-
eralizable predictions. This is an even more relevant bottleneck
when considering cancer-related mutants, for which VS cam-
paigns would be extremely beneficial in the prioritization of per-
sonalized medicine drugs. Moreover, target-specific applications
present an important challenge in avoiding learnt biases and
overfitting.52 The inclusion of decoys in the datasets (such as
data from the DUD-E dataset) is a good way to balance the pres-
ence of active and inactive compounds.53 Consequently,
although the D-COID dataset38 is a good starting point for the
development of re-scoring functions, it might require experi-
mental expansion via collaborative work to improve its suitabil-
ity for target-specific applications.
Allosteric modulation analysis
So far, we have mostly referred to orthosteric ligand binding (i.e.
binding at the site where the endogenous ligand or substrate
binds) when describing ligand binding. However, allosteric mod-
ulation has been described as a powerful tool to increase the
selectivity of targeted compounds and to overcome drug-
resistant mutations, and it is therefore worth exploring in cancer
research. Indeed, unraveling the mechanisms that underlie allos-
teric effects can be a key step in proposing new therapeutic
routes. Moreover, allosteric binding sites and modulators have
been shown to exhibit characteristics that are different to those
of their orthosteric counterparts.54 This calls for the development
of allosteric-specific tools for most of the use case scenarios
described in the sections above.

The work by Lu et al.25 provides a very complete review of the
currently available SB methods for allosteric modulator discov-
ery. Some of these methods integrate SB and ML techniques for
allosteric binding site prediction,26 allosteric interaction scor-
ing,55 and allosteric effect analysis of mutations.56 Lu et al.25

demonstrate the applicability of these tools in oncological drug
discovery by describing the prioritization of allosteric activators
and inhibitors for anti-cancer (potential) targets SIRT6 and
STAT3, respectively. In both cases, allosteric binding pockets
were predicted and used for VS of commercial libraries. The com-
pounds that were identified by these computational efforts were
confirmed by either experimental assays or crystallographic stud-
ies. Of direct application in oncological drug discovery is
AlloDriver,56 a driver prediction tool that maps mutations from
clinical cancer samples to their 3D structures, labels them as
orthosteric or (potentially) allosteric, and classifies targets as dri-
ver or passenger using a combination of RF and multi-layer neu-
ral networks. Although it is periodically updated, this tool relies
www.drugdiscoverytoday.com 1667
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Box 2. Open questions on present and future directions

The articles reviewed here exemplify the added value of
integrated AI-SB methods in oncological drug discovery.
However, some questions that are worth exploring in the
future arise from their interpretation:

� Structural data availability is a common bottleneck. How

beneficial is its inclusion in pan-target analyses when it

results in a reduced target space? Will approaches such

as AlphaFold31 be able to solve this issue?

� At present, the analysis of trajectories from MD with ML is

rather restricted to cases with small datasets (i.e. allosteric

modulation analyses). However, we expect that with

increasing amounts of data and computing power, this

approach will become more relevant in big-scale virtual

screening.

� Is it pertinent to continue expanding the research into inte-

grated approaches without conducting exhaustive bench-

marking against classical individual methods?

� Are there enough resources devoted to enlarging and

standardizing publicly available datasets for computa-

tional oncological drug discovery? Will these expand into

aspects that are often neglected, such as the tumor

microenvironment?

� We hypothesize the rise of allosteric modulation analyses

to bring more selective drugs to the market. Will we also

see a boom in publicly available allosteric structural and

experimental data for ML applications?

� Is the potential added value of more complex approaches

worth the probable resulting increase in computing

power/time and data storage needs? Will this aspect limit

the use of deep learning approaches in the near future?

A common drawback in computational drug discovery is
the lack of experimental validation. We strongly advise an
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on the availability of annotated allosteric sites (and driver muta-
tions), which is a common bottleneck in ML-based allostery pre-
diction methods.

Specific to allosteric modulation analyses is the exploration of
the allosteric pathways that drive the observed effects. Given the
complex conformational landscape of proteins that is often
responsible for allosteric pathways, these aspects are often better
explored in a dynamic setting.25,57 Hence, the efforts reviewed
below use ML techniques to analyze MD trajectories and to find
patterns that help to explain the observed effects.58–60 For exam-
ple, the work of Uyar et al.58 was able to identify differential
dynamic patterns in apo and allosteric inhibitor-bound neu-
rolysin structures, as well as the key residues involved. Moreover,
the analysis of MD trajectories with Markov state models using
time-structure based independent component analysis (tICA)
allowed Chen et al.59 and Hu et al.60 to identify conformational
microstates. These microstates were then related to mutation-
driven allosteric effects on the catalytic activity of SEDT8, and
to energetic differences in Na+ translocation and metastable
states in active and inactive MOR, respectively. These effects
were further validated experimentally.

Even though the concept of allostery has been known for
50 years, it has recently gained more attention in drug discovery
thanks to an exponential increase in the number of known allos-
teric modulators over the past two decades.25 Of the 19 allosteric
modulators currently approved by the FDA, three are indicated as
anti-cancer drugs.61 The use of computational tools, and more
specifically ML-based methods, still suffers from the lack of
experimentally determined allosteric interactions and mecha-
nisms. In the near future, we expect this area of research, in com-
bination with experimental validation, to play a more important
role in oncological drug discovery because promises to bring
more selective anticancer drugs to the market.
increase in collaborative work leading to both validated
tools and larger datasets for ML training.
Conclusions
Integrated ML-SB methods are useful for investigating different
aspects in oncological drug discovery. These computational drug
discovery methods apply to a variety of use case scenarios, which
can be cancer-specific or more general but with potential applica-
tion in oncological research. There is no rule of thumb for select-
ing an approach because the most appropriate methods depend
largely on the scope of the study. However, some ML-SB integra-
tion methods are primarily leveraged in specific use case scenar-
ios, such as ML-based scoring functions in VS or the use of ML to
analyze MD simulations in allosteric modulation analyses. VS is
still the most commonly used strategy, but integrated methods
are also gaining relevance in fields such as driver prediction
and computational mutagenesis, where the use of structural data
has proven to be a significant complement to omics data. Despite
their broad domain of applicability, the approaches reviewed
here still present certain limitations that are worth discussing.
Data availability and computational requirements are common
bottlenecks that need to be assessed on a project-specific basis.
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Moreover, it has been shown that less expensive approaches
sometimes outperform more complex ones in the same tasks.
Future research will probably extend towards the use of more
complex algorithms that are currently underrepresented, such
as deep neural networks (DNNs), in order to capture all of the rel-
evant information from structural data. Finally, a common draw-
back in computational drug discovery, which can be observed in
the articles reviewed here, is the lack of experimental validation.
These aspects trigger some open questions on the use of inte-
grated computational methods in oncological drug research,
which we address in Box 2. Nevertheless, the approaches pre-
sented here provide a good way to prioritize targets and small
molecules in the field, and their combination with experimental
validation is likely to be a key factor in bringing drugs for person-
alized oncological therapies to the market more rapidly. During
the revision of our manuscript, a proposal for a further concep-
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tual extension of the hallmarks of cancer was published.62 This
exemplifies the fast pace at which oncological research advances
and the need to revisit constantly the biological relevance of the
methods applied in oncological drug discovery.
Acknowledgements
The authors thank Anastassis Perrakis for critically reading the

manuscript. MGG, APAJ, and LHH thank the Oncode Institute
for funding and support.
References
IN
FO

R
M
A
TI
C
S
(O

R
A
N
G
E)
1. X. Yang, Y. Wang, R. Byrne, G. Schneider, S. Yang, Concepts of artificial
intelligence for computer-assisted drug discovery, Chem Rev 119 (2019) 10520–
10594, https://doi.org/10.1021/acs.chemrev.8b00728.

2. F. Azuaje, Artificial intelligence for precision oncology: beyond patient
stratification, NPJ Precis Oncol 3 (2019) 6, https://doi.org/10.1038/s41698-019-
0078-1.

3. M. Duran-Frigola, R. Mosca, P. Aloy, Structural systems pharmacology: the role of
3D structures in next-generation drug development, Chem Biol 20 (2013) 674–
684, https://doi.org/10.1016/j.chembiol.2013.03.004.

4. H. Li, K.H. Sze, G. Lu, P.J. Ballester, Machine-learning scoring functions for
structure-based drug lead optimization, Wiley Interdiscip Rev Comput Mol Sci 10
(2020), https://doi.org/10.1002/wcms.1465 e1465.

5. M. Batool, B. Ahmad, S. Choi, A structure-based drug discovery paradigm, Int J
Mol Sci 20 (2019) 2783, https://doi.org/10.3390/ijms20112783.

6. D. Sydow, L. Burggraaff, A. Szengel, et al., Advances and challenges in
computational target prediction, J Chem Inf Model 59 (2019) 1728–1742,
https://doi.org/10.1021/acs.jcim.8b00832.

7. D. Hanahan, R.A. Weinberg, The hallmarks of cancer, Cell 100 (2000) 57–70,
https://doi.org/10.1016/S0092-8674(00)81683-9.

8. D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation, Cell 144
(2011) 646–674, https://doi.org/10.1016/j.cell.2011.02.013.

9. P. Krzyszczyk, A. Acevedo, E.J. Davidoff, L.M. Timmins, I. Marrero-Berrios, M.
Misaal Patel, et al., The growing role of precision and personalized medicine for
cancer treatment, Technology 6 (2018) 79–100, https://doi.org/10.1142/
S2339547818300020.

10. F. Wu, Y. Zhou, L. Li, X. Shen, G. Chen, X. Wang, et al., Computational
approaches in preclinical studies on drug discovery and development, Front
Chem 8 (2020) 726, https://doi.org/10.3389/fchem.2020.00726.

11. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A,
et al. Comprehensive characterization of cancer driver genes and mutations. Cell
2018;173:371–85.e18. doi:10.1016/j.cell.2018.02.060.

12. Knijnenburg TA, Wang L, Zimmermann MT, Nyasha Chambwe 1, Galen F Gao
4, Andrew D Cherniack AD, et al. Genomic and molecular landscape of DNA
damage repair deficiency across The Cancer Genome Atlas. Cell Rep 2018;23:239–
54.e6. doi:10.1016/j.celrep.2018.03.076.

13. J. Liñares-Blanco, C.R. Munteanu, A. Pazos, C. Fernandez-Lozano, Molecular
docking and machine learning analysis of Abemaciclib in colon cancer, BMC
Mol Cell Biol 21 (2020) 52, https://doi.org/10.1186/s12860-020-00295-w.

14. M.A. Jensen, V. Ferretti, R.L. Grossman, L.M. Staudt, The NCI Genomic Data
Commons as an engine for precision medicine, Blood 130 (2017) 453–459,
https://doi.org/10.1182/blood-2017-03-735654.

15. M. Masso, A. Bansal, A. Bansal, A. Henderson, Structure-based functional analysis
of BRCA1 RING domain variants: concordance of computational mutagenesis,
experimental assay, and clinical data, Biophys Chem 266 (2020), https://doi.org/
10.1016/j.bpc.2020.106442 106442.

16. A.P. Pandurangan, T.L. Blundell, Prediction of impacts of mutations on protein
structure and interactions: SDM, a statistical approach, andmCSM, usingmachine
learning, Protein Sci 29 (2020) 247–257, https://doi.org/10.1002/pro.3774.

17. K.N. Chitrala, M. Nagarkatti, P. Nagarkatti, S. Yeguvapalli, Analysis of the TP53
deleterious single nucleotide polymorphisms impact on estrogen receptor alpha-
p53 interaction: a machine learning approach, Int J Mol Sci 20 (2019) 2962,
https://doi.org/10.3390/ijms20122962.

18. G.A. Babbitt, M.L. Lynch, M. McCoy, E.P. Fokoue, A.O. Hudson, Function and
evolution of B-Raf loop dynamics relevant to cancer recurrence under drug
inhibition, J Biomol Struct Dyn 40 (2022) 468–483, https://doi.org/10.1080/
07391102.2020.1815578.

19. M. Aldeghi, V. Gapsys, B.L. De Groot, Predicting kinase inhibitor resistance:
physics-based and data-driven approaches, ACS Cent Sci 5 (2019) 1468–1474,
https://doi.org/10.1021/acscentsci.9b00590.

20. K. Patil, E.J. Jordan, J.H. Park, K. Suresh, C.M. Smith, A.A. Lemmon, et al.,
Computational studies of anaplastic lymphoma kinase mutations reveal
common mechanisms of oncogenic activation e2019132118, Proc Natl Acad
Sci USA 118 (2021), https://doi.org/10.1073/pnas.2019132118.
21. A. Pande, M. Manchanda, H.R. Bhat, P.S. Bairy, N. Kumar, P. Gahtori, Molecular
insights into a mechanism of resveratrol action using hybrid computational
docking/CoMFA and machine learning approach, J Biomol Struct Dyn (2021) 1–
15, https://doi.org/10.1080/07391102.2021.1910572.

22. H. Lim, D. He, Y. Qiu, P. Krawczuk, X. Sun, L. Xie, Rational discovery of dual-
indication multi-target pde/kinase inhibitor for precision anti-cancer therapy
using structural systems pharmacology, PLoS Comput Biol 15 (2019) e1006619,
https://doi.org/10.1371/journal.pcbi.1006619.

23. H.Y. Zhi, L. Zhao, C.C. Lee, C.Y.C. Chen, A novel graph neural network
methodology to investigate dihydroorotate dehydrogenase inhibitors in small
cell lung cancer, Biomolecules 11 (2021) 477, https://doi.org/10.3390/
biom11030477.

24. R. Krivák, D. Hoksza, P2Rank: machine learning based tool for rapid and accurate
prediction of ligand binding sites from protein structure, J Cheminform 10
(2018) 39, https://doi.org/10.1186/s13321-018-0285-8.

25. S. Lu, X. He, D. Ni, J. Zhang, Allosteric modulator discovery: from serendipity to
structure-based design, J Med Chem 62 (2019) 6405–6421, https://doi.org/
10.1021/acs.jmedchem.8b01749.

26. W. Huang, S. Lu, Z. Huang, X. Liu, L. Mou, Y. Luo, et al., Allosite: a method for
predicting allosteric sites, Bioinformatics 29 (2013) 2357–2359, https://doi.org/
10.1093/bioinformatics/btt399.

27. I.A. Vakser, Challenges in protein docking, Curr Opin Struct Biol 64 (2020) 160–
165, https://doi.org/10.1016/j.sbi.2020.07.001.

28. M. Kawaguchi, N. Dashzeveg, Y. Cao, Y. Jia, X. Liu, Y. Shen, H. Liu, Extracellular
Domains I and II of cell-surface glycoprotein CD44 mediate its trans-homophilic
dimerization and tumor cluster aggregation, J Biol Chem 295 (2020) 2640–2649,
https://doi.org/10.1074/jbc.RA119.010252.

29. G. Taherzadeh, Y. Zhou, A.W.C. Liew, Y. Yang, Structure-based prediction of
protein-peptide binding regions using Random Forest, Bioinformatics 34 (2018)
477–484, https://doi.org/10.1093/bioinformatics/btx614.

30. L. Li, M. Khanna, I. Jo, F. Wang, N.M. Ashpole, A. Hudmon, S.O. Meroueh,
Target-specific support vector machine scoring in structure-based virtual
screening: computational validation, in vitro testing in kinases, and effects on
lung cancer cell proliferation, J Chem Inf Model 51 (2011) 755–759, https://doi.
org/10.1021/ci100490w.

31. J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, et al.,
Highly accurate protein structure prediction with AlphaFold, Nature 596 (2021)
583–589, https://doi.org/10.1038/s41586-021-03819-2.

32. Hekkelman ML, Vries I de, Joosten RP, Perrakis A. AlphaFill: enriching the
AlphaFold models with ligands and co-factors. bioRxiv 2021:2021.11.26.470110.
https://doi.org/10.1101/2021.11.26.470110.

33. J. Che, R. Feng, J. Gao, H. Yu, Q. Weng, Q. He, et al., Evaluation of artificial
intelligence in participating structure-based virtual screening for identifying
novel Interleukin-1 receptor associated kinase-1 inhibitors, Front Oncol 10
(2020) 1769, https://doi.org/10.3389/fonc.2020.01769.

34. Y. Yang, J. Lu, C. Yang, Y. Zhang, Exploring fragment-based target-specific
ranking protocol with machine learning on cathepsin S, J Comput Aided Mol
Des 33 (2019) 1095–1105, https://doi.org/10.1007/s10822-019-00247-3.

35. V.P. Berishvili, A.E. Voronkov, E.V. Radchenko, V.A. Palyulin, Machine learning
classification models to improve the docking-based screening: a case of PI3K-
tankyrase inhibitors, Mol Inform 37 (2018) e1800030, https://doi.org/10.1002/
minf.201800030.

36. V.P. Berishvili, V.O. Perkin, A.E. Voronkov, E.V. Radchenko, R. Syed, C. Venkata
Ramana Reddy, et al., Time-domain analysis of molecular dynamics trajectories
using deep neural networks: application to activity ranking of tankyrase
inhibitors, J Chem Inf Model 59 (2019) 3519–3532, https://doi.org/10.1021/
acs.jcim.9b00135.

37. V.P. Berishvili, A.N. Kuimo, A.E. Voronkov, E.V. Radchenko, P. Kumar, Y.E.
Choonara, et al., Discovery of novel tankyrase inhibitors through molecular
docking-based virtual screening and molecular dynamics simulation studies,
Molecules 25 (2020) 3171, https://doi.org/10.3390/molecules25143171.

38. Y. Adeshina, E. Deeds, J. Karanicolas, Machine learning classification can reduce
false positives in structure-based virtual screening, Proc Natl Acad Sci USA 117
(2020) 18477–18488, https://doi.org/10.1073/pnas.2000585117.
www.drugdiscoverytoday.com 1669

https://doi.org/10.1021/acs.chemrev.8b00728
https://doi.org/10.1038/s41698-019-0078-1
https://doi.org/10.1038/s41698-019-0078-1
https://doi.org/10.1016/j.chembiol.2013.03.004
https://doi.org/10.1002/wcms.1465
https://doi.org/10.3390/ijms20112783
https://doi.org/10.1021/acs.jcim.8b00832
https://doi.org/10.1016/S0092-8674(00)81683-9
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1142/S2339547818300020
https://doi.org/10.1142/S2339547818300020
https://doi.org/10.3389/fchem.2020.00726
https://doi.org/10.1186/s12860-020-00295-w
https://doi.org/10.1182/blood-2017-03-735654
https://doi.org/10.1016/j.bpc.2020.106442
https://doi.org/10.1016/j.bpc.2020.106442
https://doi.org/10.1002/pro.3774
https://doi.org/10.3390/ijms20122962
https://doi.org/10.1080/07391102.2020.1815578
https://doi.org/10.1080/07391102.2020.1815578
https://doi.org/10.1021/acscentsci.9b00590
https://doi.org/10.1073/pnas.2019132118
https://doi.org/10.1080/07391102.2021.1910572
https://doi.org/10.1371/journal.pcbi.1006619
https://doi.org/10.3390/biom11030477
https://doi.org/10.3390/biom11030477
https://doi.org/10.1186/s13321-018-0285-8
https://doi.org/10.1021/acs.jmedchem.8b01749
https://doi.org/10.1021/acs.jmedchem.8b01749
https://doi.org/10.1093/bioinformatics/btt399
https://doi.org/10.1093/bioinformatics/btt399
https://doi.org/10.1016/j.sbi.2020.07.001
https://doi.org/10.1074/jbc.RA119.010252
https://doi.org/10.1093/bioinformatics/btx614
https://doi.org/10.1021/ci100490w
https://doi.org/10.1021/ci100490w
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.3389/fonc.2020.01769
https://doi.org/10.1007/s10822-019-00247-3
https://doi.org/10.1002/minf.201800030
https://doi.org/10.1002/minf.201800030
https://doi.org/10.1021/acs.jcim.9b00135
https://doi.org/10.1021/acs.jcim.9b00135
https://doi.org/10.3390/molecules25143171
https://doi.org/10.1073/pnas.2000585117


IN
FO

R
M
A
TI
C
S
(O

R
A
N
G
E)

INFORMATICS (ORANGE) Drug Discovery Today d Volume 27, Number 6 d June 2022
39. Z. Kalaki, M. Asadollahi-Baboli, Molecular docking-based classification and
systematic QSAR analysis of indoles as Pim kinase inhibitors, SAR QSAR Environ
Res 31 (2020) 399–419, https://doi.org/10.1080/1062936X.2020.1751277.

40. L. Li, C.C. Koh, D. Reker, J.B. Brown, H. Wang, N.K. Lee, et al., Predicting
protein-ligand interactions based on bow-pharmacological space and Bayesian
additive regression trees, Sci Rep 9 (2019) 7703, https://doi.org/10.1038/s41598-
019-43125-6.

41. Raju B, Verma H, Narendra G, Sapra B, Silakari O. Multiple machine learning,
molecular docking, and ADMET screening approach for identification of
selective inhibitors of CYP1B1. J Biomol Struct Dyn 2021;Mar 26:1–16.
doi:10.1080/07391102.2021.1905552.

42. H. Chen, Z. Chen, Z. Zhang, Y. Li, S. Zhang, F. Jiang, et al., Discovery of new
LXRb agonists as glioblastoma inhibitors, Eur J Med Chem 194 (2020), https://
doi.org/10.1016/j.ejmech.2020.112240 112240.

43. A.K. Halder, M.N.D.S. Cordeiro, Akt inhibitors: the road ahead to computational
modeling-guided discovery, Int J Mol Sci 22 (2021) 3944, https://doi.org/
10.3390/ijms22083944.

44. E.R. Azhagiya Singam, P. Tachachartvanich, D. Fourches, A. Soshilov, J.C.Y.
Hsieh, M.A. La Merrill, et al., Structure-based virtual screening of perfluoroalkyl
and polyfluoroalkyl substances (PFASs) as endocrine disruptors of androgen
receptor activity using molecular docking and machine learning, Environ Res
190 (2020), https://doi.org/10.1016/j.envres.2020.109920 109920.

45. O. Kadioglu, T. Efferth, A machine learning-based prediction platform for P-
glycoprotein modulators and its validation by molecular docking, Cells 8 (2019)
1286, https://doi.org/10.3390/cells8101286.

46. Q. Guo, H. Zhang, Y. Deng, S. Zhai, Z. Jiang, D. Zhu, L. Wang, Ligand- and
structural-based discovery of potential small molecules that target the colchicine
site of tubulin for cancer treatment, Eur J Med Chem 196 (2020), https://doi.org/
10.1016/j.ejmech.2020.112328 112328.

47. L. Burggraaff, E.B. Lenselink, W. Jespers, J. van Engelen, B.J. Bongers, M.G.
González, et al., Successive statistical and structure-based modeling to identify
chemically novel kinase inhibitors, J Chem Inf Model 60 (2020) 4283–4295,
https://doi.org/10.1021/acs.jcim.9b01204.

48. J.Q. Chen, H.Y. Chen, W.J. Dai, Q.J. Lv, C.Y.C. Chen, Artificial intelligence
approach to find lead compounds for treating tumors, J Phys Chem Lett 10
(2019) 4382–4400, https://doi.org/10.1021/acs.jpclett.9b01426.

49. X. Chen, H.Y. Chen, Z.D. Chen, J.N. Gong, C.Y.C. Chen, A novel artificial
intelligence protocol for finding potential inhibitors of acute myeloid leukemia, J
Mater Chem B 8 (2020) 2063–2081, https://doi.org/10.1039/d0tb00061b.

50. Q. Guo, Y. Luo, S. Zhai, Z. Jiang, C. Zhao, J. Xu, L. Wang, Discovery, biological
evaluation, structure-activity relationships and mechanism of action of pyrazolo
[3,4-b] pyridin-6-one derivatives as a new class of anticancer agents, Org Biomol
Chem 17 (2019) 6201–6214, https://doi.org/10.1039/c9ob00616h.

51. M. Junaid, M. Shah, A. Khan, C. Li, M.T. Khan, A.C. Kaushik, et al., Structural-
dynamic insights into the H. pylori cytotoxin-associated gene A (CagA) and its
abrogation to interact with the tumor suppressor protein ASPP2 using decoy
peptides, J Biomol Struct Dyn 37 (2019) 4035–4050, https://doi.org/10.1080/
07391102.2018.1537895.

52. J. Sieg, F. Flachsenberg, M. Rarey, In need of bias control: evaluating chemical
data for machine learning in structure-based virtual screening, J Chem Inf Model
59 (2019) 947–961, https://doi.org/10.1021/acs.jcim.8b00712.

53. B.K. Allen, S. Mehta, S.W.J. Ember, E. Schonbrunn, N. Ayad, S.C. Schürer, Large-
scale computational screening identifies first in class multitarget inhibitor of
EGFR kinase and BRD4, Sci Rep 5 (2015) 16924, https://doi.org/10.1038/
srep16924.

54. G.J.P. van Westen, A. Gaulton, J.P. Overington, Chemical, target, and bioactive
properties of allosteric modulation, PLoS Comput Biol 10 (2014), https://doi.org/
10.1371/journal.pcbi.1003559 e1003559.

55. S. Li, Q. Shen, M. Su, X. Liu, S. Lu, Z. Chen, et al., Alloscore: a method for
predicting allosteric ligand-protein interactions, Bioinformatics 32 (2016) 1574–
1576, https://doi.org/10.1093/bioinformatics/btw036.
1670 www.drugdiscoverytoday.com
56. K. Song, Q. Li, W. Gao, S. Lu, Q. Shen, X. Liu, et al., AlloDriver: a method for the
identification and analysis of cancer driver targets, Nucleic Acids Res 47 (2019)
W315–W321, https://doi.org/10.1093/nar/gkz350.

57. R. Nussinov, C.J. Tsai, H. Jang, Dynamic protein allosteric regulation and disease,
Adv Exp Med Biol 1163 (2019) 25–43, https://doi.org/10.1007/978-981-13-8719-
7_2.

58. A. Uyar, V.T. Karamyan, A. Dickson, Long-range changes in neurolysin dynamics
upon inhibitor binding, J Chem Theory Comput 14 (2018) 444–452, https://doi.
org/10.1021/acs.jctc.7b00944.

59. S. Chen, R.P. Wiewiora, F. Meng, N. Babault, A. Ma, W. Yu, et al., The dynamic
conformational landscape of the protein methyltransferase setd8, Elife 8 (2019)
e45403, https://doi.org/10.7554/eLife.45403.

60. X. Hu, Y. Wang, A. Hunkele, D. Provasi, G.W. Pasternak, M. Filizola, Kinetic and
thermodynamic insights into sodium ion translocation through the l-opioid
receptor from molecular dynamics and machine learning analysis, PLoS Comput
Biol 15 (2019) e1006689, https://doi.org/10.1371/journal.pcbi.1006689.

61. O.S. Amamuddy, W. Veldman, C. Manyumwa, A. Khairallah, S. Agajanian, O.
Oluyemi, et al., Integrated computational approaches and tools for allosteric drug
discovery, Int J Mol Sci 21 (2020) 847, https://doi.org/10.3390/ijms21030847.

62. D. Hanahan, Hallmarks of cancer: new dimensions, Cancer Discov 12 (2022) 31–
46, https://doi.org/10.1158/2159-8290.CD-21-1059.

63. F. Weinberg, N. Reischmann, L. Fauth, S. Taromi, J. Mastroianni, M. Köhler,
et al., The atypical kinase RIOK1 promotes tumor growth and invasive behavior,
EBioMedicine 20 (2017) 79–97, https://doi.org/10.1016/j.ebiom.2017.04.015.

64. Z.N. Wee, S.M.J.M. Yatim, V.K. Kohlbauer, M. Feng, J.Y. Goh, Y. Bao, et al.,
IRAK1 is a therapeutic target that drives breast cancer metastasis and resistance to
paclitaxel, Nat Commun 6 (2015) 8746, https://doi.org/10.1038/ncomms9746.

65. N. Fuchs, M. Meta, D. Schuppan, L. Nuhn, T. Schirmeister, Novel opportunities
for cathepsin S inhibitors in cancer immunotherapy by nanocarrier-mediated
delivery, Cells 9 (2020) 2021, https://doi.org/10.3390/cells9092021.

66. H.J. Xi, R.P. Wu, J.J. Liu, L.J. Zhang, Z.S. Li, Role of acetylcholinesterase in lung
cancer, Thorac Cancer 6 (2015) 390–398, https://doi.org/10.1111/1759-
7714.12249.

67. N.A. Keane, M. Reidy, A. Natoni, M.S. Raab, M. O’Dwyer, Targeting the Pim
kinases in multiple myeloma, Blood Cancer J 5 (2015) e325, https://doi.org/
10.1038/bcj.2015.46.

68. J. Zhou, W.R. Chen, L.C. Yang, J. Wang, J. Sun, W. Zhang, et al., KIF11 functions
as an oncogene and is associated with poor outcomes from breast cancer, Cancer
Res Treat 51 (2019) 1207–1221, https://doi.org/10.4143/crt.2018.460.

69. A.A. Shafi, A.E. Yen, N.L. Weigel, Androgen receptors in hormone-dependent
and castration-resistant prostate cancer, Pharmacol Ther 140 (2013) 223–238,
https://doi.org/10.1016/j.pharmthera.2013.07.003.

70. V. Dolhyi, D. Avierin, M. Hojouj, I. Bondarenko, Tubulin role in cancer
development and treatment, Asploro J Biomed Clin Case Rep 2 (2019) 15–22,
https://doi.org/10.36502/2019/asjbccr.6154.

71. M.D. Castellone, R.M. Melillo, RET-mediated modulation of tumor
microenvironment and immune response in multiple endocrine neoplasia
type 2 (MEN2), Endocr Relat Cancer 25 (2018) T105–T119, https://doi.org/
10.1530/ERC-17-0303.

72. Y. Kudo, S. Iizuka, M. Yoshida, T. Tsunematsu, T. Kondo, A. Subarnbhesaj, et al.,
Matrix metalloproteinase-13 (MMP-13) directly and indirectly promotes tumor
angiogenesis, J Biol Chem 287 (2012) 38716–38728, https://doi.org/10.1074/jbc.
M112.373159.

73. V.T. Karamyan, The role of peptidase neurolysin in neuroprotection and neural
repair after stroke, Neural Regen Res 16 (2021) 21–25, https://doi.org/10.4103/
1673-5374.284904.

74. D.T. Chen, J.H. Pan, Y.H. Chen, W. Xing, Y. Yan, Y.F. Yuan, W.A. Zeng, The mu-
opioid receptor is a molecular marker for poor prognosis in hepatocellular
carcinoma and represents a potential therapeutic target, Br J Anaesth 122 (2019)
e157–e167, https://doi.org/10.1016/j.bja.2018.09.030.

https://doi.org/10.1080/1062936X.2020.1751277
https://doi.org/10.1038/s41598-019-43125-6
https://doi.org/10.1038/s41598-019-43125-6
https://doi.org/10.1016/j.ejmech.2020.112240
https://doi.org/10.1016/j.ejmech.2020.112240
https://doi.org/10.3390/ijms22083944
https://doi.org/10.3390/ijms22083944
https://doi.org/10.1016/j.envres.2020.109920
https://doi.org/10.3390/cells8101286
https://doi.org/10.1016/j.ejmech.2020.112328
https://doi.org/10.1016/j.ejmech.2020.112328
https://doi.org/10.1021/acs.jcim.9b01204
https://doi.org/10.1021/acs.jpclett.9b01426
https://doi.org/10.1039/d0tb00061b
https://doi.org/10.1039/c9ob00616h
https://doi.org/10.1080/07391102.2018.1537895
https://doi.org/10.1080/07391102.2018.1537895
https://doi.org/10.1021/acs.jcim.8b00712
https://doi.org/10.1038/srep16924
https://doi.org/10.1038/srep16924
https://doi.org/10.1371/journal.pcbi.1003559
https://doi.org/10.1371/journal.pcbi.1003559
https://doi.org/10.1093/bioinformatics/btw036
https://doi.org/10.1093/nar/gkz350
https://doi.org/10.1007/978-981-13-8719-7_2
https://doi.org/10.1007/978-981-13-8719-7_2
https://doi.org/10.1021/acs.jctc.7b00944
https://doi.org/10.1021/acs.jctc.7b00944
https://doi.org/10.7554/eLife.45403
https://doi.org/10.1371/journal.pcbi.1006689
https://doi.org/10.3390/ijms21030847
https://doi.org/10.1158/2159-8290.CD-21-1059
https://doi.org/10.1016/j.ebiom.2017.04.015
https://doi.org/10.1038/ncomms9746
https://doi.org/10.3390/cells9092021
https://doi.org/10.1111/1759-7714.12249
https://doi.org/10.1111/1759-7714.12249
https://doi.org/10.1038/bcj.2015.46
https://doi.org/10.1038/bcj.2015.46
https://doi.org/10.4143/crt.2018.460
https://doi.org/10.1016/j.pharmthera.2013.07.003
https://doi.org/10.36502/2019/asjbccr.6154
https://doi.org/10.1530/ERC-17-0303
https://doi.org/10.1530/ERC-17-0303
https://doi.org/10.1074/jbc.M112.373159
https://doi.org/10.1074/jbc.M112.373159
https://doi.org/10.4103/1673-5374.284904
https://doi.org/10.4103/1673-5374.284904
https://doi.org/10.1016/j.bja.2018.09.030

	atl1
	Introduction
	Driver prediction
	Computational mutagenesis
	(Off)-target prediction
	Prediction of binding site
	Virtual screening
	Allosteric modulation analysis
	Conclusions
	Acknowledgements
	References


