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A B S T R A C T   

HLA-G, a non-classical HLA molecule expressed by extravillous trophoblasts, plays a role in the maternal immune 
tolerance towards fetal cells. HLA-G expression is regulated by genetic polymorphisms in the 3′ untranslated 
region (3′UTR). Low levels of HLA-G in the maternal circulation and placental tissue are linked to preeclampsia. 

Our objective was to investigate whether variants of the 3′UTR of the HLA-G gene in mother and fetus are 
associated with acute atherosis, a pregnancy specific arterial lesion of the decidua basalis that is prevalent in 
preeclampsia. 

Paired maternal and fetal DNA samples from 83 normotensive and 83 preeclamptic pregnancies were 
analyzed. We sequenced the part of the HLA-G 3′UTR containing a 14-bp insertion/deletion region and seven 
single nucleotide polymorphisms (SNPs). Associations with acute atherosis were tested by logistic regression. 

The frequency of heterozygosity for the 14-bp polymorphism (Ins/Del) and the +3142 SNP (C/G) variant in 
the fetus are associated with acute atherosis in preeclampsia (66.7 % vs. 39.6 %, p = 0.039, and 69.0 % vs. 43.4 
%, p = 0.024). Furthermore, the fetal UTR-3 haplotype, which encompasses the 14-bp deletion and the +3142G 
variant, is associated with acute atherosis in preeclampsia (15 % vs. 3.8 %, p = 0.016). 

In conclusion, HLA-G polymorphisms in the fetus are associated with acute atherosis. We hypothesize that 
these polymorphisms lead to altered HLA-G expression in the decidua basalis, affecting local feto-maternal 
immune tolerance and development of acute atherosis.   

1. Introduction 

Preeclampsia, a hypertensive complication in pregnancy, affects at 
least 3% of pregnancies and confers a high risk of maternal and fetal 
mortality and morbidity (Ghulmiyyah and Sibai, 2012). Although its 
pathophysiology has not been completely unraveled, it is generally 
accepted that development of preeclampsia is secondary to placental 
dysfunction (Redman and Staff, 2015). There are likely multiple un-
derlying maternal risk factors and pathophysiological pathways at play, 
involving the genetic background of both the mother and the fetus 

(Hiby, 2004). These pathways may also be implicated in the develop-
ment of acute atherosis, a pregnancy-specific lesion of the uteropla-
cental spiral arteries that is predominantly observed in preeclampsia 
(Khong, 1991; Staff, 2020). 

Typically, acute atherosis comprises intramural lipid-filled foam 
cells, fibrinoid necrosis, and occasionally a perivascular mononuclear 
cell infiltrate (Robertson et al., 1976). Acute atherosis is associated with 
placental pathology, severe preeclampsia, and adverse pregnancy out-
comes (Khong, 1991; Stevens et al., 2013; Kim et al., 2015). We hy-
pothesize that acute atherosis is an inflammatory lesion, resulting from 

* Corresponding author at: Division of Obstetrics and Gyneacology, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, P.O.-Box 4956 Nydalen, 0424, Oslo, 
Norway. 

E-mail address: g.m.johnsen@medisin.uio.no (G.M. Johnsen).  

Contents lists available at ScienceDirect 

Journal of Reproductive Immunology 

journal homepage: www.elsevier.com/locate/jri 

https://doi.org/10.1016/j.jri.2021.103284 
Received 27 May 2020; Received in revised form 9 December 2020; Accepted 26 January 2021   

mailto:g.m.johnsen@medisin.uio.no
www.sciencedirect.com/science/journal/01650378
https://www.elsevier.com/locate/jri
https://doi.org/10.1016/j.jri.2021.103284
https://doi.org/10.1016/j.jri.2021.103284
https://doi.org/10.1016/j.jri.2021.103284
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jri.2021.103284&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Reproductive Immunology 144 (2021) 103284

2

multiple mechanisms leading to excessive decidual inflammation (Staff 
et al., 2014). One mechanism potentially responsible for this excessive 
inflammation may involve reduced feto-maternal immune tolerance in 
the decidua basalis, a physiological process where HLA-G is thought to 
play a role. 

HLA-G is a non-classical MHC Class I antigen. In the placental bed, its 
expression is predominantly restricted to extravillous trophoblasts 
(EVTs) (Kovats, 1990; Hackmon, 2017). It can also be found in other 
organs (thymus, pancreas, and cornea), immune and epithelial cells, and 
mesenchymal stem cells (Persson, 2017). Several types of cancer, viral 
infections, and inflammatory diseases are associated with aberrant 
HLA-G expression (Persson, 2017). 

HLA-G has immune suppressive effects, inhibiting both innate and 
adaptive immune functions by binding to immune cell receptors (Car-
osella, 2015). Specifically, HLA-G promotes feto-maternal tolerance by 
interacting with decidual T-cells, NK-cells, macrophages, and dendritic 
cells (Djurisic and Hviid, 2014; Rizzo, 2014; Carosella, 2015; Ferreira, 
2017). It can be either membrane-bound or soluble (Persson, 2017). 
During the 1st trimester of pregnancy the concentration of soluble 
HLA-G in maternal circulation increases five-fold, then declines towards 
term (Hunt, 2000; Steinborn, 2007; Klitkou, 2015). Relatively low levels 
of circulating HLA-G are associated with preeclampsia, recurrent mis-
carriages, and infertility (Persson, 2017). We recently confirmed this 
finding in early- and late-onset preeclampsia (Jacobsen, 2020). Rela-
tively low levels of HLA-G in the placenta are also associated with pre-
eclampsia (Hara, 1996; Goldman-Wohl, 2000; Yie, 2004, Yie, 2005; 
Hackmon, 2007; Rizzo, 2009; Tang, 2015). 

While classical HLA class I is highly polymorphic, the HLA-G coding 
region is less polymorphic (Castelli, 2014). Genetic variability in the 
HLA-G gene is mainly confined to the promoter region and the 3 prime 
untranslated region (3′UTR) (Castelli, 2014). The 3′UTR contains poly-
morphisms that post-transcriptionally affect the level of HLA-G expres-
sion (Hviid, 2006; Castelli, 2014). Most studied are the 14-bp 
insertion/deletion region (14-bp InsDel) and the single nucleotide 
polymorphism (SNP) +3142 C/G. The 14-bp InsDel region may affect 
mRNA stability, and some studies report an association between the 
insertion at this genomic region and decreased levels of soluble HLA-G in 
plasma (Hviid, 2004; Chen, 2008; Martelli-Palomino, 2013). Similarly, 
presence of a G nucleotide at the +3142 SNP position is associated with 
reduced HLA-G expression, an association thought to be secondary to 
enhanced affinity of microRNA molecules that negatively regulate gene 
expression (Tan, 2007; Castelli, 2009; Rizzo, 2014). 

Several studies have shown an association between HLA-G poly-
morphisms and the occurrence of preeclampsia (O’brien, 2001; Hyle-
nius, 2004; Larsen, 2010; Quach, 2014; De Almeida, 2018) although the 
results are inconsistent (Iversen, 2008; Pabalan, 2015; Nilsson, 2016). In 
acute atherosis, the role of HLA-G has not yet been explored. Since acute 
atherosis occurs predominantly in preeclampsia, understanding the 
mechanisms behind acute atherosis could provide insight into the un-
derlying pathophysiology of preeclampsia. The goal of the current study 
was to determine whether the 14-bp InsDel region and seven additional 
polymorphisms in the 3′UTR of the HLA-G gene are associated with 
acute atherosis. 

2. Materials and methods 

2.1. Patient inclusion, collection of biological material, and DNA isolation 

Pregnant women were recruited prior to elective caesarian section 
after informed written consent, as previously described (Johnsen, 2018). 
We included paired mother and child samples from 166 pregnancies, 
diagnosed either with preeclampsia (PE, n = 83) or as normotensive 
(NT, n = 83). Pregnancies in each group were randomly selected. Pre-
eclampsia was defined as new onset hypertension (blood pressure 
≥140/90 mmHg) and new onset proteinuria (≥1+ on dipstick, and/or 
protein/creatinine ratio ≥30 mg/mmol (≥0.3 mg/mg)) at ≥20 weeks’ 

gestation (Roberts, 2003). The majority of preeclamptic pregnancies had 
early-onset preeclampsia, defined as delivery prior to 34 weeks’ gesta-
tion (Tranquilli, 2013). Clinical characteristics of the pregnancy groups 
are shown in Supplemental Table 1. The study was approved by the 
Regional committee for Medical and Health Research Ethics in 
South-Eastern Norway, and performed according to the Helsinki 
Declaration. Maternal and fetal sources of DNA, the DNA extraction 
protocol, and the decidua basalis collection method are outlined in the 
Supplemental Methods. 

2.2. Acute atherosis evaluation 

Acute atherosis was identified based on histological staining of 3-μm 
thick, formalin-fixed, paraffin-embedded decidua basalis tissue sections, 
as described in the Supplemental Methods. Acute atherosis was evalu-
ated prior to genetic sequencing (Alnaes-Katjavivi et al., 2016). The rate 
of acute atherosis was 36 % (30/83) in preeclamptic pregnancies and 10 
% (8/83) in normotensive pregnancies, comparable to the rates we 
previously found in our hospital population (Harsem et al., 2007; 
Alnaes-Katjavivi et al., 2016). 

2.3. DNA sequencing of maternal and fetal HLA-G 

We sequenced part of the HLA-G gene, specifically part of exon 8, 
which is found in the 3′UTR. The selected region contains the 14-bp 
insertion/deletion polymorphism (rs1704, +2961− 2974 ATTTGTT-
CATGCCT) and seven distinct SNPs (+3003C/T (rs1707), +3010C/G 
(rs1710), +3027A/C (rs17179101), +3035C/T (rs17179108), +3142C/ 
G (rs1063320), +3187A/G (rs9380142), and +3196C/G (rs1610696)). 
The forward primer hybridizes at 71 bases before the intron 7/exon 8 
border at position +2854 (when the 14-bp insertion is present), and is 
699 bp or 713 bp long depending on whether the 14-bp insertion is 
present or absent. The region was amplified and sequenced by the Lei-
den Genome Technology Center as previously described (Drabbels, 
2020). The results were interpreted using SBT Engine Software (GenDx, 
Netherlands). Eight distinct HLA-G polymorphism haplotypes were 
identified based on descriptions by (Castelli, 2010). 

2.4. Statistical analyses 

Statistical analyses were performed using SPSS version 25.0 (IBM). 
For clinical characteristics, non-parametric Mann-Whitney U tests 
(continuous variables) or Pearson chi-squared tests (categorical vari-
ables) were used. Allele frequency and genotype frequency of the 14-bp 
polymorphism and the SNPs were calculated for fetal and maternal 
samples. Haplotypes were composed based on the eight polymorphisms 
(Drabbels, 2020). For the seven distinct HLA-G haplotypes, the haplo-
type frequency was calculated. Associations with acute atherosis were 
tested using logistic regression, presented as odds ratios (OR) with 95 % 
confidence intervals (CI). P-values < 0.05 were regarded as significant. 

3. Results 

3.1. HLA-G 3′UTR polymorphisms are not associated with preeclampsia 

Preeclampsia, when compared to normotensive pregnancies, was not 
associated with any of the HLA-G 3′UTR polymorphisms in terms of 
allele frequency or genotype frequency, nor with any of the UTR hap-
lotypes studied in the fetus (Supplemental Tables 2–4) or the mother 
(data not shown). 

3.2. The genotype frequencies of the fetal 14-bp polymorphism and 
+3142 SNP are associated with acute atherosis 

The allele frequencies of the fetal (Table 1) and the maternal (data 
not shown) 14-bp polymorphism and the seven SNPs analyzed were not 
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Table 1 
Allele frequency of fetal HLA-G 3′UTR polymorphisms in acute atherosis (AA).    

Total cohort Normotensive (NT) group Preeclampsia (PE) group   

AA- AA+ OR P NTAA- NTAA+ OR P PEAA- PEAA+ OR P   

2n = 256 2n = 76   2n = 150 2n = 16   2n = 106 2n = 60     

Count % Count %   Count % Count %   Count % Count %   

14-bp Del 165 64.5 49 64.5 1.00 0.997 100 66.7 11 68.8 1.1 0.866 65 61.3 38 63.3 1.09 0.797  
Ins 91 35.5 27 35.5   50 33.3 5 31.3   41 38.7 22 36.7    

þ3003 C 41 16.0 8 10.5 0.62 0.24 26 17.3 0 0.0 n.a.  15 14.2 8 13.3 0.93 0.884  
T 215 84.0 68 89.5   124 82.7 16 100.0   91 85.8 52 86.7    

þ3010 C 108 42.2 38 50.0 1.37 0.229 63 42.0 9 56.3 1.78 0.279 45 42.5 29 48.3 1.27 0.464  
G 148 57.8 38 50.0   87 58.0 7 43.8   61 57.5 31 51.7    

þ3027 A 16 6.3 3 3.9 0.62 0.452 11 7.3 1 6.3 0.84 0.874 5 4.7 2 3.3 0.70 0.672  
C 240 93.8 73 96.1   139 92.7 15 93.8   101 95.3 58 96.7    

þ3035 C 229 89.5 70 92.1 1.38 0.499 133 88.7 15 93.8 1.92 0.541 96 90.6 55 91.7 1.15 0.812  
T 27 10.5 6 7.9   17 11.3 1 6.3   10 9.4 5 8.3    

þ3142 C 147 57.4 36 47.4 0.67 0.123 86 57.3 7 43.8 0.58 0.303 61 57.5 29 48.3 0.69 0.253  
G 109 42.6 40 52.6   64 42.7 9 56.3   45 42.5 31 51.7    

þ3187 G 160 62.5 50 65.8 1.15 0.602 93 62.0 9 56.3 0.79 0.654 67 63.2 41 68.3 1.26 0.506  
A 96 37.5 26 34.2   57 38.0 7 43.8   39 36.8 19 31.7    

þ3196 C 193 75.4 56 73.7 0.91 0.763 118 78.7 12 75.0 0.81 0.735 75 70.8 44 73.3 1.14 0.723  
G 63 24.6 20 26.3   32 21.3 4 25.0   31 29.2 16 26.7   

The table shows the total patient group, the normotensive group (NT) and the preeclampsia group (PE) separately. Associations of the allele frequencies of the different polymorphisms with acute atherosis (AA) were tested 
using binary univariate logistic regression (*significant p-value, p < 0.05). OR, odds ratio; P, p-value; n.a., not applicable. 
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associated with acute atherosis. 
The genotype frequency of the Ins/Del variant of the 14-bp poly-

morphism in the fetus was significantly associated with acute atherosis 
in preeclamptic pregnancies (Table 2). The fetal Ins/Del genotype was 
present in 66.7 % of PEAA + pregnancies compared to 39.6 % in PEAA- 
pregnancies (OR 9.52; 95 % CI 1.12–81.35; p-value 0.039). 

The genotype frequency of the G/C variant of the fetal +3142 SNP 
was significantly associated with acute atherosis both in the total cohort 
and in preeclamptic pregnancies (Table 2). In the total cohort, the fetal 
G/C variant was present in 67.6 % of AA + pregnancies compared to 
50.8 % AA- pregnancies (OR 3.15; 95 %CI 1.12–8.89; p-value 0.030). In 
preeclamptic pregnancies, the fetal GC variant was present in 69.0 % of 
PEAA + pregnancies compared to 43.4 % PEAA- pregnancies (OR 4.13; 
95 %CI 1.20–14.81; p-value 0.024). The genotype frequencies of the 
maternal 14-bp polymorphism and the SNPs were not associated with 
acute atherosis (data not shown). 

3.3. The fetal HLA-G UTR-3 haplotype is associated with acute atherosis 

Next, we assessed whether HLA-G haplotype was related to clinical 
outcome. The frequency of the UTR-3 haplotype in the fetus, which is 
the only UTR haplotype containing the 14-bp deletion variant combined 
with the +3142G variant, was significantly associated with acute athe-
rosis both in the total cohort and in preeclamptic pregnancies (Table 3). 
In the total cohort, the UTR-3 haplotype in the fetus was present in 17.1 
% of AA + pregnancies compared to 7.0 % of AA- pregnancies (OR 2.73; 
95 %CI 1.27–5.87; p-value 0.01). In preeclamptic pregnancies, the UTR- 
3 haplotype in the fetus was present in 15.0 % of PEAA + pregnancies 
compared to 3.8 % of PEAA- pregnancies (OR 4.5; 95 %CI 1.32–15.32; p- 
value 0.016). 

Furthermore, we analyzed the diplotype frequency and found that 
the UTR-1/UTR-3 diplotype in the fetus was significantly associated 
with acute atherosis both in the total cohort and in normotensive 
pregnancies (Supplemental Table 5). 

UTR haplotype frequencies in the mother were not associated with 
acute atherosis (data not shown). 

3.4. Combined fetal and maternal HLA-G polymorphisms are not 
significantly associated with acute atherosis 

To investigate whether the UTR-3 haplotype was associated with 
acute atherosis when present in the fetus and the mother concurrently, 
we created a univariate logistic regression model combining the pres-
ence versus absence of UTR-3 haplotype in the mother and the fetus in a 
categorical variable. The percentage of pregnancies where the fetus and 
the mother both had the UTR-3 haplotype was higher in pregnancies 
with acute atherosis in the total cohort and in normotensive and pre-
eclamptic pregnancies (Table 4); however this association was not sta-
tistically significant. In the total cohort both the fetus and the mother 
had the UTR-3 haplotype in 21.1 % of AA + compared to 10.9 % in AA- 
pregnancies (OR 2.33; 95 % CI 0.88–6.20; p-value 0.089). In pre-
eclampsia both the fetus and the mother had the UTR-3 haplotype in 
16.7 % of PEAA + compared to 3.8 % in PEAA- pregnancies (OR 5.25; 95 
% CI 0.94–29.44; p-value 0.059). 

4. Discussion 

In the present study, we investigated a 14-bp InsDel polymorphism 
and seven SNPs located in the 3′UTR of the HLA-G gene. We found that 
certain HLA-G polymorphisms in the fetus were associated with decidual 
acute atherosis. Furthermore, the 14-bp polymorphism and the seven 
SNPs are in strong linkage disequilibrium and are grouped in 43 
different haplotypes based on these linkage associations (Castelli, 2010; 
Amodio and Gregori, 2020). In order to examine the significance of the 
combination of these polymorphisms relative to acute atherosis, we 
studied the most common of these haplotypes (UTR-1 to UTR-8). The 

remaining haplotypes are present in less than 1% of the population 
worldwide (Castelli, 2010). Overall, we demonstrated three main find-
ings. First and secondly, acute atherosis was associated with the fetal 
genotype frequencies of the heterozygous Ins/Del of the 14-bp poly-
morphism and the heterozygous G/C variant of the +3142 SNP. Our 
third and most interesting finding was that acute atherosis was associ-
ated with the fetal UTR-3 haplotype, the only one of the eight haplotypes 
studied containing the 14-bp Del variant and the +3142G variant. 

The 14-bp deletion is known to enhance mRNA stability, a feature 
that facilitates HLA-G protein expression (Castelli, 2014), while the 
insertion is linked to enhanced mRNA degradation and lower HLA-G 
expression (Castelli, 2009). This is in line with findings from prior 
studies that have linked the presence of the 14-bp insertion to decreased 
soluble HLA-G (Persson, 2017). The same goes for studies on 
membrane-bound HLA-G; the fetal Del/Del genotype is associated with 
higher HLA-G expression on trophoblasts compared to the Ins/Ins ge-
notype (Djurisic, 2015). In summary, the evidence points towards the 
14-bp insertion correlating with decreased HLA-G expression and the 
deletion with increased HLA-G expression, suggesting that the hetero-
zygous genotype may be linked to intermediate expression of HLA-G. 
Our findings link the heterozygous 14-bp Ins/del polymorphism in the 
fetus with acute atherosis in preeclampsia. Unlike us, some studies 
report an association between the 14-bp Ins/Ins genotype and severe 
preeclampsia in primiparas (Hylenius, 2004; Larsen, 2010) and 
early-onset preeclampsia (Zhang, 2012). Other studies, however, report 
no association with preeclampsia (Iversen, 2008; Vianna, 2007), which 
is consistent with our findings. 

The +3142 SNP was the other polymorphism for which we demon-
strate an association with acute atherosis. In silico analyses predict that 
the +3142 G variant is related to decreased HLA-G expression (Tan, 
2007). Consistent with this, a clinical study demonstrated that the 
+3142 CC genotype was associated with elevated sHLA-G levels in re-
cipients of living-donor kidney transplants who had a higher suscepti-
bility for cytomegalovirus infection (Guberina, 2017). Again, from this 
evidence in the literature one might infer that the heterozygous geno-
type of the +3142 SNP might be linked to an intermediate expression 
level of HLA-G. As for the clinical relevance of this polymorphism in 
pregnancy, we found that the heterozygous G/C variant of the +3142 
SNP in the fetus is associated with acute atherosis in preeclampsia, but 
did not find an association between this SNP and preeclampsia overall. 
Other studies of the +3142 C/G SNP have shown that the GG genotype is 
associated with severe preeclampsia (Larsen, 2010). 

We consider our finding that the fetal UTR-3 haplotype is associated 
with acute atherosis in preeclampsia to be the most interesting, as it 
speaks to the significance of the combination of polymorphisms in the 
context of pregnancy. We hypothesize that the association is linked to 
the impact this genetic combination has on HLA-G expression during 
pregnancy. UTR-3 is the only UTR haplotype of the eight most common 
haplotypes containing the 14-bp deletion combined with the +3142 G 
variant. In addition, the UTR-3 haplotype contains six other SNPs that 
are less studied, but that could still have an impact on HLA-G protein 
expression. In addition, we found that the frequency of the fetal UTR-1/ 
UTR-3 diplotype was significantly associated with acute atherosis. We 
consider that this result is driven by the effect of the UTR-3 haplotype as 
UTR-1 is the most common haplotype in the population worlwide. 

HLA-G expression is partly regulated by the polymorphisms in the 
3′UTR (Castelli, 2011). These polymorphisms are associated with mRNA 
stability and protein expression (Persson, 2017). At present it is not clear 
whether the UTR-3 haplotype is associated with high or low expression 
of HLA-G. An association between the UTR-3 and low levels of soluble 
HLA-G was reported outside of pregnancy (Di Cristofaro, 2015). Another 
study in healthy males reported that UTR-3 was associated with inter-
mediate plasma levels of sHLA-G (Martelli-Palomino, 2013), and yet 
other studies point to UTR-3 being associated with high levels of HLA-G 
expression in seminal plasma (Craenmehr, 2019), and in dendritic 
DC-10 cells (Amodio and Gregori, 2020). 
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Table 2 
Genotype frequency of fetal HLA-G 3’UTR polymorphisms from pregnancies with acute atherosis (AA).    

Total cohort Normotensive (NT) group Preeclampsia (PE) group   

AA- n = 83 AA + n = 83 OR P NTAA- n = 75 NTAA + n = 8 OR P PEAA- n = 53 PEAA + n = 30 OR P   

Count % Count %   Count % Count %   Count % Count %   

14-bp DelDel 53 41.4 13 34.2 1.96 0.406 31 41.3 4 50.0 0.77 0.832 22 41.5 9 30.0 4.09 0.209  
InsDel 59 46.1 23 60.5 3.12 0.150 38 50.7 3 37.5 0.47 0.545 21 39.6 20 66.7 9.52 0.039*  
InsIns 16 12.5 2 5.3 Ref. – 6 8.0 1 12.5 Ref. – 10 18.9 1 3.3 Ref. –  

þ3003 CC 2 1.6 0 0.0 n.a. – 2 2.7 0 0.0 n.a. – 0 0.0 0 0.0 n.a. –  
CT 37 28.9 8 21.1 0.64 0.317 22 29.3 0 0.0 n.a. – 15 28.3 8 26.7 0.92 0.873  
TT 89 69.5 30 78.9 Ref. – 51 68.0 8 100.0 n.a. – 38 71.7 22 73.3 Ref. –  

þ3010 CC 22 17.2 7 18.9 0.89 0.807 11 14.7 2 25.0 1.49 0.658 11 20.8 5 17.2 0.58 0.384  
CG 64 50.0 23 62.2 Ref. – 41 54.7 5 62.5 Ref. 0.528 23 43.4 18 62.1 Ref. –  
GG 42 32.8 7 18.9 0.46 0.106 23 30.7 1 12.5 0.36 0.360 19 35.8 6 20.7 0.40 0.108  

þ3027 AA 0 0.0 0 0.0 n.a. – 0 0.0 0 0.0 n.a. – 0 0.0 0 0.0 n.a. –  
AC 16 12.5 3 7.9 0.6 0.438 11 14.7 1 12.5 0.83 0.869 5 9.4 2 6.7 0.69 0.664  
CC 112 87.5 35 92.1 Ref. – 64 85.3 7 87.5 Ref. – 48 90.6 28 93.3 Ref. –  

þ3035 CC 103 80.5 32 86.5 Ref. – 59 78.7 7 87.5 Ref. 0.873 44 83.0 25 86.2 Ref. –  
TC 23 18.0 5 13.5 0.7 0.503 15 20.0 1 12.5 0.56 0.603 8 15.1 4 13.8 0.88 0.847  
TT 2 1.6 0 0.0 n.a. – 1 1.3 0 0.0 n.a. – 1 1.9 0 0.0 n.a. –  

þ3142 CC 41 32.0 5 13.5 Ref. – 22 29.3 1 12.5 Ref. – 19 35.8 4 13.8 Ref. –  
GC 65 50.8 25 67.6 3.15 0.030* 42 56.0 5 62.5 2.62 0.393 23 43.4 20 69.0 4.13 0.024*  
GG 22 17.2 7 18.9 2.61 0.135 11 14.7 2 25.0 4.00 0.278 11 20.8 5 17.2 2.16 0.318  

þ3187 GG 58 45.3 22 57.9 Ref. – 35 46.7 5 62.5 Ref. 0.691 23 43.4 17 56.7 Ref. –  
AG 19 14.8 2 5.3 3.6 0.102 11 14.7 1 12.5 1.57 0.694 8 15.1 1 3.3 5.91 0.109  
AA 51 39.8 14 36.8 2.61 0.232 29 38.7 2 25.0 0.76 0.828 22 41.5 12 40.0 4.36 0.188  

þ3196 CC 75 58.6 20 54.1 Ref. – 46 61.3 5 62.5 Ref. 0.560 29 54.7 15 51.7 Ref. –  
CG 43 33.6 15 40.5 1.31 0.49 26 34.7 2 25.0 0.71 0.692 17 32.1 13 44.8 1.48 0.422  
GG 10 7.8 2 5.4 0.75 0.72 3 4.0 1 12.5 3.07 0.369 7 13.2 1 3.4 0.28 0.249 

The table shows the total patient group, the normotensive group (NT) and the preeclampsia group (PE) separately. Associations of the genotype frequencies of the different polymorphisms with acute atherosis (AA) were 
tested using binary univariate logistic regression (*significant p-value, p < 0.05). The most common genetic variant was used as the reference for each variable, except for the 14-bp region and the +3142 SNP, where the 
reference value was set as the variant which in theory would give the highest level of HLA-G expression (i.e., DelDel for the 14-bp region and CC for the +3142 SNP) based on published studies. OR, odds ratio; P, p-value; n. 
a., not applicable. 

G
.M

. Johnsen et al.                                                                                                                                                                                                                             



Journal of Reproductive Immunology 144 (2021) 103284

6

Ta
bl

e 
3 

H
ap

lo
ty

pe
 fr

eq
ue

nc
ie

s 
of

 H
LA

-G
 3

’U
TR

 p
ol

ym
or

ph
is

m
 fr

om
 p

re
gn

an
ci

es
 w

ith
 a

cu
te

 a
th

er
os

is
 (

A
A

). 
 

H
LA

-G
 3

′ U
TR

 H
ap

lo
ty

pe
s 

To
ta

l c
oh

or
t 

N
or

m
ot

en
si

ve
 (

N
T)

 g
ro

up
 (n

 =
83

) 
Pr

ee
cl

am
ps

ia
 (

PE
) 

gr
ou

p 
(n

 =
83

)  

14
-b

p 
+

30
03

 
+

30
10

 
+

30
27

 
+

30
35

 
+

31
42

 
+

31
87

 
+

31
96

 

A
A

- 
A

A
+

O
R 

P 
N

TA
A

- 
N

TA
A
+

O
R 

P 
PE

A
A

- 
PE

A
A
+

O
R 

P 
 

2n
 =

25
6 

2n
 =

56
   

2n
 =

15
0 

2n
 =

16
   

2n
 =

10
6 

2n
 =

60
   

 

Co
un

t 
%

 
Co

un
t 

%
   

Co
un

t 
%

 
Co

un
t 

%
   

Co
un

t 
%

 
Co

un
t 

%
   

U
TR

-1
 

D
el

 
T 

G
 

C 
C 

C 
G

 
C 

94
 

36
.7

 
26

 
34

.2
 

0.
90

 
0.

68
9 

56
 

37
.3

 
7 

43
.8

 
1.

31
 

0.
61

6 
38

 
35

.8
 

19
 

31
.7

 
0.

83
 

0.
58

6 
U

TR
-2

 
In

s 
T 

C 
C 

C 
G

 
A

 
G

 
61

 
23

.8
 

19
 

25
.0

 
1.

07
 

0.
83

4 
32

 
21

.3
 

4 
25

.0
 

1.
23

 
0.

73
5 

29
 

27
.4

 
15

 
25

.0
 

0.
89

 
0.

74
1 

U
TR

-3
 

D
el

 
T 

C 
C 

C 
G

 
A

 
C 

18
 

7.
0 

13
 

17
.1

 
2.

73
 

0.
01

* 
14

 
9.

3 
4 

25
.0

 
3.

24
 

0.
06

7 
4 

3.
8 

9 
15

.0
 

4.
50

 
0.

01
6*

 
U

TR
-4

 
D

el
 

C 
G

 
C 

C 
C 

A
 

C 
40

 
15

.6
 

8 
10

.5
 

0.
64

 
0.

27
 

26
 

17
.3

 
0 

0.
0 

n.
a.

 
n.

a.
 

14
 

13
.2

 
8 

13
.3

 
1.

01
 

0.
98

2 
U

TR
-5

 
In

s 
T 

C 
C 

T 
G

 
A

 
C 

10
 

3.
9 

2 
2.

6 
0.

67
 

0.
60

3 
6 

4.
0 

0 
0.

0 
n.

a.
 

n.
a.

 
4 

3.
8 

2 
3.

3 
0.

88
 

0.
88

4 
U

TR
-6

 
D

el
 

T 
G

 
C 

C 
C 

A
 

C 
6 

2.
3 

0 
0.

0 
n.

a.
 

n.
a.

 
2 

1.
3 

0 
0.

0 
n.

a.
 

n.
a.

 
4 

3.
8 

0 
0.

0 
n.

a.
 

n.
a.

 
U

TR
-7

 
In

s 
T 

C 
A

 
T 

G
 

A
 

C 
16

 
6.

3 
3 

3.
9 

0.
62

 
0.

45
2 

11
 

7.
3 

1 
6.

3 
0.

84
 

0.
87

4 
5 

4.
7 

2 
3.

3 
0.

70
 

0.
67

2 
U

TR
-8

 
In

s 
T 

G
 

C 
C 

G
 

A
 

C 
1 

0.
4 

1 
1.

3 
3.

40
 

0.
38

9 
1 

0.
7 

0 
0.

0 
n.

a.
 

n.
a.

 
0 

0.
0 

1 
1.

7 
n.

a.
 

n.
a.

 
U

TR
-X

   
   

   
10

 
3.

9 
4 

5.
3 

1.
37

 
0.

60
7 

2 
1.

3 
0 

0.
0 

n.
a.

 
n.

a.
 

8 
7.

5 
4 

6.
7 

0.
88

 
0.

83
3 

Th
e 

14
-b

p 
in

se
rt

io
n/

de
le

tio
n 

an
d 

th
e 

SN
P 

co
m

bi
na

tio
ns

 c
om

pr
is

in
g 

ea
ch

 h
ap

lo
ty

pe
 a

re
 s

ho
w

n.
 T

he
 ta

bl
e 

sh
ow

s 
th

e 
to

ta
l p

at
ie

nt
 g

ro
up

, t
he

 n
or

m
ot

en
si

ve
 g

ro
up

 (
N

T)
 a

nd
 th

e 
pr

ee
cl

am
ps

ia
 g

ro
up

 (
PE

) 
se

pa
ra

te
ly

. A
s-

so
ci

at
io

ns
 o

f t
he

 d
iff

er
en

t U
TR

 h
ap

lo
ty

pe
s 

w
ith

 a
cu

te
 a

th
er

os
is

 (
A

A
) w

er
e 

te
st

ed
 u

si
ng

 b
in

ar
y 

un
iv

ar
ia

te
 lo

gi
st

ic
 r

eg
re

ss
io

n 
(*

si
gn

ifi
ca

nt
 p

-v
al

ue
, p

 <
0.

05
). 

O
R,

 o
dd

s 
ra

tio
; P

, p
-v

al
ue

; n
.a

., 
no

t a
pp

lic
ab

le
. 

Ta
bl

e 
4 

M
ul

tiv
ar

ia
te

 lo
gi

st
ic

 r
eg

re
ss

io
n 

an
al

ys
is

 o
f f

et
al

 a
nd

 m
at

er
na

l U
TR

-3
 h

ap
lo

ty
pe

 c
om

bi
na

tio
ns

 in
 a

cu
te

 a
th

er
os

is
 (

A
A

). 
  

To
ta

l c
oh

or
t 

N
or

m
ot

en
si

ve
 (

N
T)

 g
ro

up
 

Pr
ee

cl
am

ps
ia

 (
PE

) 
gr

ou
p 

 

A
A

-  
A

A
+

O
R 

P 
N

TA
A

-  
N

TA
A
+

O
R 

P 
PE

A
A

-  
PE

A
A
+

O
R 

P 
 

n 
=

12
8 

 
n 
=

38
   

 
n 
=

75
  

n 
=

8 
   

n 
=

53
  

n 
=

30
   

  
Co

un
t 

%
 

Co
un

t 
%

   
Co

un
t 

%
 

Co
un

t 
%

   
Co

un
t 

%
 

Co
un

t 
%

   

N
ei

th
er

 h
av

e 
U

TR
-3

 
98

 
76

.6
 

24
 

63
.2

 
Re

f. 
0.

09
5 

56
 

74
.7

 
4 

50
.0

 
Re

f. 
0.

31
2 

42
 

79
.2

 
20

 
66

.7
 

Re
f. 

0.
14

3 
Bo

th
 h

av
e 

U
TR

-3
 

14
 

10
.9

 
8 

21
.1

 
2.

33
 

0.
08

9 
12

 
16

.0
 

3 
37

.5
 

3.
50

 
0.

13
0 

2 
3.

8 
5 

16
.7

 
5.

25
 

0.
05

9 
O

nl
y 

fe
tu

s 
ha

s 
U

TR
-3

 
4 

3.
1 

4 
10

.5
 

4.
08

 
0.

05
8 

2 
2.

7 
1 

12
.5

 
7.

00
 

0.
14

3 
2 

3.
8 

3 
10

.0
 

3.
15

 
0.

22
8 

O
nl

y 
m

ot
he

r 
ha

s 
U

TR
-3

 
12

 
9.

4 
2 

5.
3 

0.
68

 
0.

62
9 

5 
6.

7 
0 

0.
0 

n.
a.

 
n.

a.
 

7 
13

.2
 

2 
6.

7 
0.

60
 

0.
54

6 

A
ss

oc
ia

tio
n 

of
 th

e 
U

TR
-3

 h
ap

lo
ty

pe
 w

ith
 th

e 
oc

cu
rr

en
ce

 o
f a

cu
te

 a
th

er
os

is
 w

er
e 

te
st

ed
 u

si
ng

 m
ul

tiv
ar

ia
te

 lo
gi

st
ic

 re
gr

es
si

on
. T

he
 p

os
si

bl
e 

ou
tc

om
es

 fo
r m

ot
he

r a
nd

 fe
tu

s w
er

e 
co

m
bi

ne
d 

in
 o

ne
 c

at
eg

or
ic

al
 v

ar
ia

bl
e.

 T
he

 
re

fe
re

nc
e 

ca
te

go
ry

 c
on

si
st

ed
 o

f n
ei

th
er

 th
e 

m
ot

he
r 

no
r 

fe
tu

s 
ha

vi
ng

 th
e 

U
TR

-3
 h

ap
lo

ty
pe

 (
*s

ig
ni

fic
an

t p
-v

al
ue

, p
 <

0.
05

). 
O

R,
 o

dd
s 

ra
tio

; P
, p

-v
al

ue
; n

.a
., 

no
t a

pp
lic

ab
le

. 

G.M. Johnsen et al.                                                                                                                                                                                                                             



Journal of Reproductive Immunology 144 (2021) 103284

7

We recently performed whole HLA-G gene amplification in the same 
patient population as in the present study and found a strong linkage 
disequilibrium between the UTR-3 haplotype and the HLA-G*01:04 
allele in the DNA coding sequence (Drabbels, 2020). The same associ-
ation between UTR-3 and the 01:04 allele was related to low levels of 
serum soluble HLA-G and adverse outcome in lung transplant recipients 
(Di Cristofaro, 2015). 

In the decidual tissue the main source of fetal HLA-G is the EVTs that 
express membrane-bound and soluble forms of HLA-G during placen-
tation (Hackmon, 2017), both of which interact with receptors on 
maternal immune cells inhibiting their activation and proliferation, 
thereby inducing maternal-fetal tolerance (Ferreira, 2017). Reduced 
placental HLA-G expression is associated with impaired EVT invasion, 
and could potentially contribute to the impaired placentation charac-
teristic of early-onset PE (Goldman-Wohl, 2000). We hypothesize that 
altered HLA-G expression affects maternal-fetal tolerance, creating a 
local pro-inflammatory environment contributing to acute atherosis 
development. 

Another source of HLA-G expression in the decidua is maternal im-
mune cells. However, we found no associations between maternal HLA- 
G polymorphisms and acute atherosis. This is not surprising as HLA-G is 
primarily expressed by placental EVTs, and acute atherosis is a focal 
decidual lesion. However, the percentage of pregnancies where both the 
mother and the fetus possessed the UTR-3 haplotype were higher in 
pregnancies with acute atherosis (although this finding was not statis-
tically significant). This is consistent with a prior report showing that the 
combined feto-maternal genotype (14-bp Ins/Del and +3142 C/G) was 
associated with maternal sHLA-G levels (Dahl, 2015). 

Acute atherosis is a subtype of preeclampsia. Yet, we found no as-
sociation between the HLA-G 3′UTR polymorphisms analyzed and pre-
eclampsia as a whole. This is in line with several other studies (Mando, 
2016; Nilsson, 2016; Pabalan, 2015; Vianna, 2007). However, the 
literature is inconsistent (Persson, 2017), and none of these studies 
specifically looked at preeclamptic pregnancies with presence of 
decidual acute atherosis. We hypothesize that some of these in-
consistencies may be driven by the heterogeneity of preeclampsia; 
different gene polymorphisms may predispose to different subtypes of 
disease, all resulting in the same clinical syndrome. 

The main intrinsic strengths of our study are the use of paired fetal 
and maternal samples, the decidual tissue collection method (Harsem 
et al., 2004), the well-defined histological characterization of acute 
atherosis (Alnaes-Katjavivi et al., 2016), and the comprehensive clinical 
information. 

The main extrinsic strength is that we divided preeclampsia into two 
phenotypes based on the presence or absence of acute atherosis. No 
other studies have explored HLA-G polymorphisms relative to this ute-
roplacental artery lesion. Benton et al. proposed that distinct subtypes of 
preeclampsia could be identified by combining gene expression and 
histopathology analyses (Benton, 2018). They identified three pre-
eclampsia subgroups based on placental gene expression patterns, which 
also showed distinct placental lesions (Benton, 2018). Similarly, our 
results suggest that studies of genetic polymorphisms in paired 
fetal-maternal samples combined with histological characterization of 
decidual lesions could help further delineate preeclampsia subtypes. The 
importance of combined fetal and maternal immunogenetic factors is 
further emphasized by our recent study demonstrating that acute athe-
rosis in preeclampsia is associated with the combination of maternal 
KIR-B and fetal HLA-C2 (Johnsen, 2018). 

The main limitation of the present study is the small sample size for 
assessing genetic associations, especially in subgroups. The associations 
we found were not statistically significant after adjusting for multiple 
testing using Bonferroni correction, a conservative method for adjusting 
for false positive findings as a result of multiple testing. Hence, our 
findings should be confirmed in a larger cohort. 

Our results must furthermore be interpreted with caution as HLA-G 
expression during pregnancy is modified by several transcriptional 

and posttranscriptional mechanisms (Amodio and Gregori, 2020), as 
well as factors in the decidual milieu (Ferreira, 2017). Though further 
studies are needed to test causality, we speculate that HLA-G poly-
morphisms, individually or particularly in certain combinations as in the 
UTR-3 haplotype, alter local decidual immune tolerance and thereby 
promote a pro-inflammatory environment contributing to the formation 
of acute atherosis and placental dysfunction. Insight into these mecha-
nisms may help to identify novel biomarkers of preeclampsia subtypes 
and to develop targeted care for women with preeclampsia. 
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