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CHAPTER SUMMARY
This chapter addresses RQ5 and RQ6.

RQ5: What is the effect of the attention mechanism to eliminate the different
modal representations produced in the common embedding space?
RQ6: How to employ the correspondence between images and text as supervi-
sion instead of the matching annotations to address the limited data issue?

Weakly supervised phrase grounding aims to map the phrases in an image
caption to the objects appearing in the image under the supervision of image-
caption correspondences. We observe that the current studies are insufficient to
model the complicated interactions between visual components (i.e., visual re-
gions) and between visual and textual components (i.e., phrases). Therefore, this
chapter presents a novel weakly supervised learning approach to phrase ground-
ing in which we systematically model the visual contextualized representation
with three modules: (1) object proposals pooling (OPP), (2) visual self-attention
(VSA) and (3) visual-textual cross-modal attention (VTCA). OPP alleviates the sup-
pression of object proposals and benefits the visual representation in terms of
trading off the richness of visual components and the computational efficiency.
VSA aims to capture the correlation among the object proposals and generate
the representation of each proposal by incorporating the visual information of
the others. In order to measure the cross-modal compatibility in terms of top-
ics, we introduce the VTCA module to represent the visual topic corresponding
to each textual component in a cross-modal common vector space. In the train-
ing process, we build a mixed contrastive loss function by considering both the
cross-modal compatibility and the difference of visual representations in the VSA
module. Compared to the state-of-the-art methods, the proposed approach im-
proves the performance by 3.88% point and 1.24% point on R@1, and by 2.23%
point and 0.26% point on P t_Acc, when trained on the MS COCO and Flickr30K
Entities training set, respectively. We have made our code available for follow-up
research.
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Tasks combining cross-modal (visual-and-language) compatibility have attracted
a lot of attention and contributed to the advancement of artificial intelligence in
recent years. Examples of cross-modal tasks are image caption generation [147],
visual question answering (VQA) [148], visual reasoning [149, 150], and phrase
grounding [23]. Phrase grounding aims to localize the objects in images and at
the same time, based on paired images and captions, maps them to the phrases in
captions. Phrase grounding requires a model to understand the fine-grained cor-
respondence between images and language. A large part of previous works plum-
mer2017phrase,fukui2016multimodal,wang2018learning are based on supervised
learning, i.e., with supervision of the correspondence between visual regions and
phrases. However, the availability of this kind of labelled data is limited due to
significant manual efforts in collecting the annotations for region-phrase corre-
spondences.

To address the issue of limited availability of data, researchers have proposed
a few weakly supervised phrase grounding methods, which only employ the cor-
respondence between images and text as supervision instead of the matching an-
notations of visual regions and phrases. The attention mechanism has becoming
an important technique in solving the task of weakly supervised phrase ground-
ing, and can generally be divided into two types: the first type models the intra-
modality compatibility that infers the latent correlations between different re-
gions in an image or different words in a caption [151] based on self-attention
mechanism. The other seeks to mine the cross-modal interactions between tex-
tual words and visual regions based on inter-modality compatibility [152]. That
is, most of the previous methods only consider the correlations either in inter-
modality or in intra-modality.

Another issue of weakly supervised phrase grounding is how to choose loss
functions to obtain a better learning result. Recently, contrastive learning, e.g.,
InfoNCE [35], has shown promising results on a variety of applications. Gupta
et al. [18] proposed a novel contrastive learning approach to the task of weakly
supervised phrase grounding, which improved the performance by employing the
InfoNCE loss defined on the positive and negative samples.

In this chapter, inspired by the advancements of contrastive learning [18] and
phrase grounding [17], we introduce a new approach, called VRC-PG, to improve
weakly supervised phrase grounding with visual representation contextualization
(VRC). In our method, the inter- and intra-modality interactions are modeled for
inferring the compatibility between phrases and visual regions. Here, we also call
the phrase and visual region as the textual component and visual component, re-
spectively. VRC-PG consists of three modules: object proposals pooling (OPP), vi-
sual self-attention (VSA) and visual-textual cross-modal attention (VTCA). In the
visual representation contextualization, OPP is introduced to alleviate the sup-
pression of object proposals (candidates) generated by object detectors. This ben-
efits the visual representation contextualization in terms of trading off the rich-
ness of visual components and the computational efficiency. VSA aims to capture
the correlation between visual object proposals for each image and generate the
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representation of each candidate by incorporating the visual information of the
other candidates. To measure the cross-modal compatibility at the level of top-
ics, we subsequently introduce the VTCA module to distill the visual topic corre-
sponding to each textual component, i.e., textual phrase, in a cross-modal com-
mon vector space, guided by the attention of a phrase to visual object proposals.
In addition, we present a mixed contrastive loss function including two terms: one
is to improve cross-modal compatibility in terms of topics of images and captions,
and the other is to control the difference of the visual representations induced by
the VSA module.

In summary, our contributions are three-fold: (1) we propose a novel approach
to weakly supervised phrase grounding based on visual representation contextu-
alization under the weak supervision of image-caption correspondences without
region-phrase matching annotations. Moreover, a mixed contrastive loss is intro-
duced to improve the performance of our model. (2) We present an architecture
of visual representation contextualization that consists of object proposals pool-
ing (OPP), visual self-attention (VSA) and visual-textual cross-modal attention
(VTCA). (3) The proposed model is evaluated on Flickr30K Entities dataset and
achieves the state-of-the-art performance, improving by 1.24% point and 3.88%
point Recal l@1 on the Flickr30K Entities test set when trained on the Flickr30K
Entities training set and MS COCO, respectively.

5.1. RELATED WORK

5.1.1. PHRASE GROUNDING

The existing works are based on two different supervision processes, fully super-
vised learning and weakly supervised learning. Plummer et al. [23] proposed
a global image-sentence canonical correlation analysis (CCA) model to analyze
the region-phrase correspondence in the combined image-text embedding space,
and achieved a state-of-the-art result for this task on the Flickr30K Entities dataset.
Wang, and Sigal [153] used graphs to formulate more complex, non-sequential de-
pendencies among object region proposals and phrase candidates. Most of these
methods employ the annotations of region-phrase correspondences and are im-
plemented under the supervised learning framework. Because manual labelling is
expensive, also some other research has used the approach of weakly supervised
learning. Plummer et al. [154] presented a weakly supervised learning method
that modeled the appearance, object size and position of visual objects to localize
phrases in images. Akbari et al. [36] proposed a multi-level multi-modal model
to explicitly learn a non-linear mapping of the visual and textual modalities in
a common semantic space, and do so at different granularities for each modal-
ity. Recently, the attention mechanism has been introduced to reconstruct the
representation of vision and text guided by inter- or intra-modality. The result is
a cross-modal attention mechanism with a fully supervised or weakly supervised
learning framework. Chen et.al. [155] proposed a novel knowledge-aided network
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which was optimized by reconstructing input information of queries and region
proposals extracted by a region proposal network (RPN). These existing methods
lack the ability to model image-caption paired supervision. This is essential for
grounding phrases in the images based on weak supervision from caption-image
pairs. In this chapter, we propose the VRC-PG approach and model the fine-
grained interactions in the inter- and intra-modality by jointly considering the
visual self-attention mechanism and cross-modal attention mechanism.

5.1.2. NON-MAXIMUM SUPPRESSION (NMS)

NMS [156] has been an important technique for computer vision tasks, such as
object detection [30, 58] and edge extraction [157]. In object detection, NMS is
a post-processing step adopted by a number of modern object detectors, which
removes duplicate bounding boxes based on detection confidence. A major issue
with NMS is that it sets the score for neighboring detection to zero. Thus, if an ob-
ject is actually present in an overlap region with an IoU greater than the threshold
it would be missed and this would lead to a drop in average precision.

To alleviate this problem, Bodla et al. [158] presented the Soft-NMS algorithm
to decrease the confidence scores as an increasing function of overlap instead of
setting the score to zero as in NMS. Softer-NMS [159] proposed a bounding box
regression Kullback-Leibler loss for learning bounding box transformation and
localization variance together. As a downstream task of object detection, lan-
guage grounding methods have used NMS to align the language with the propos-
als. Chen et al. [160] used NMS to yield expression-aware region proposals to
improve the performance language grounding. In our work, we use Soft-NMS to
replace the NMS module in Faster R-CNN to keep more bounding box proposals,
and introduce an extra object proposals pooling module with NMS to adaptively
choose those proposals with high confidence scores and benefiting the weakly su-
pervised phrase ground task.

5.1.3. CONTRASTIVE LEARNING IN CROSS-MODAL TASKS

Constrastive learning was first used as a powerful scheme for self-supervised rep-
resentation learning [35, 161, 162, 163]. Until now, it has been explored to enforce
consistency of different modal representations under different augmentations by
contrasting positive pairs with negative ones. Zhang et al. [164] proposed a cross-
modal model called XMC-GAN, which introduced an attentional self-modulation
generator and a contrastive discriminator to maximize the cross-modal informa-
tion between images and text. Dai and Lin [13] proposed a method that encour-
aged the distinctiveness of positive pairs, while maintaining the overall quality
of the generated captions. Gupta et al. [18] built a weakly supervised phrase
grounding model based on optimizing the lower bound of InfoNCE on Mutual In-
formation (MI) with respect to parameters of a word-region attention model. Li et
al. [165] proposed a framework combining a self-attention mechanism with con-
trastive feature construction so as to effectively summarize common information
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Figure 5.1: The framework of VRC-PG. The visual representation contextualization is comprised of
three parts: 1) object proposals pooling, where thick bounding boxes (red, blue and yellow) are the
output boxes and thin bounding boxes (green) are non-maximally suppressed, 2) visual self-attention,
and 3) visual-textual cross-modal attention. The proposed model is trained with the contrastive learn-
ing paradigm by introducing our 4) mixed contrastive loss.

from each image group while capturing discriminative information between vi-
sual regions and phrases. CDMLMR [166] integrates the quadruplet ranking loss
and semi-supervised constrastive loss for modeling cross-modal semantic sim-
ilarity in a unified multi-task learning architecture. In our work, we learn our
model with the contrastive learning paradigm and build a mixed contrastive loss
function, which consists of two terms: one is control the difference of the visual
representations induced by the VSA module, and the other is to improve the cross-
modal compatibility in terms of the topics of images and captions.

5.2. METHODOLOGY

5.2.1. OVERVIEW

We are given a set of pairs, each consisting of an image and its caption. Formally,
we have data Di = {(Ii ,Ci )}N

i=1, where Ii and Ci denote the i -th image and its
corresponding caption, respectively. In general, the content of an image Ii can
be described by a set of ni visual object regions enclosed with bounding boxes
Bi = {bi 1,bi 2, · · · ,bi ni }. The visual regions can be represented with the box lo-
cation B i = (bi 1,bi 2, · · · ,bi ni ), confidence score S i = (si 1, si 2, · · · , si ni ), visual fea-
tures R i = (r i 1,r i 2, · · · ,r i ni ), and category predictions Li = (li 1, li 2, · · · , li ni ). Re-
garding the textual modality, each caption Ci can be considered a sequence of mi

tokens Ti = (ti 1, ti 2, · · · , ti mi ) and transformed to the token representation T i =
(t i 1, t i 2, · · · , t i mi ) using the BERT-base model [28]. A phrase consists of one or
multiple tokens of captions. In this manner, the training data can be described
by Di = {(B i ,S i ,R i ,Li ),T i }N

i=1.
In this chapter, we present a novel approach called VRC-PG to the task of
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weakly supervised phrase grounding. As shown in Fig. 5.1, our VRC-PG approach
includes four main parts: (1) object proposals pooling module, (2) visual self-
attention module, (3) visual-textual cross-modal attention module and (4) mixed
contrastive loss function. The proposed approach models visual representation
contextualization by jointly considering the interactions in both the unimodal
data and the cross-modal data, and trains the model with a contrastive learning
paradigm under the weak supervision of the correspondence between images and
text.

5.2.2. VISUAL REPRESENTATION CONTEXTUALIZATION MODEL

Feature extraction

The purpose of the visual representation contextualization model is to build the
correspondence between the token representations T i = (t i 1, t i 2, · · · , t i mi ) and
object candidate representations R i = (r i 1,r i 2, · · · ,r i ni ) by measuring their atten-
tion.

We use the BERT-base model [28] to extract the text modal representation with
caption as input.

t i j =BERT (Ci ), (5.1)

where t i j ∈Rdt is a dense vector representation.
We utilize the Faster R-CNN [30] model trained on the Visual Genome dataset

[22] to extract and represent the objects:

({bi j }, {si j }, {r i j }, {li j }) =F aster RC N N (Ii ), (5.2)

where bi j ∈ R4 and r i j ∈ Rdr , si j is the maximum classification score among all
categories. In this work, we do not employ the predicted category labels li j gen-
erated by Faster R-CNN for each object region in our task.

Object Proposals Pooling (OPP)

As weakly supervised phrase grounding is performed without phrase grounding
annotations, its quality depends on the performance of object box proposals ex-
tracted with Faster R-CNN. In order to keep more effective object box proposals,
we replace NMS used in Faster R-CNN by Soft-NMS [158]. The advantage of Soft-
NMS is to keep more proposals for an object. However, it will cause the mapping
accuracy to be lower if two objects overlap between each other. To alleviate this
problem, we propose an object proposals pooling module based on NMS to fur-
ther prune the detected objects and only keep boxes less than an IoU threshold θ
in the training process. The OPP module can adaptively choose those proposals
with high confidence scores {si j } and benefit from the weakly supervised phrase
ground task.
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For an image Ii , the pruning starts with a bounding box bi z with the highest
confidence score si z = max j (si j ). bi z is kept as one of the bounding boxes pro-
duced the OPP module. Then, We update the confidence scores of all the bound-
ing box bi j by

si j =
{

si j , I oU (bi j ,bi z ) < θ, j ∈ 1, . . . ,ni ;

0, I oU (bi j ,bi z ) ≥ θ, j ∈ 1, . . . ,ni .
(5.3)

Here, θ is a threshold to decide which object box should be directly excluded in
each iteration of object proposals pooling. Based on the above process, we can
choose more bounding boxes based on Eq. 5.3 until all the confidence scores are
updated to zero. Finally, the OPP module produces n′

i object proposals. In this
module, we do not employ the category predictions generated by Faster R-CNN.

Visual Self-attention (VSA)

In general, the visual components, i.e., the visual object region proposals com-
prised in an image, have spatial and semantic correlation with each other. We
introduce a visual self-attention module to model the context of visual object re-
gions and build their representations. The general attention mechanism can be
formulated accordingly as follows:

Attention(Q ,K ,V ) = softmax(sim(Q ,K )) ·V , (5.4)

where Q , K , V and Attention(·, ·, ·) refer to the query, key, value and output, respec-
tively; and sim(·, ·) denotes a certain function to measure the corresponding of
queries and keys. In this work, the query (key) and value are obtained by the pro-
jection functions f s

I (·) and g s
I (·), respectively, implemented with a fully-connected

layer as follows: {
q s

i j ,k s
i j = f s

I (r i j ), j = 1, · · · ,n′
i ;

v s
i j = g s

I (r i j ), j = 1, · · · ,n′
i .

(5.5)

Where, q s
i j ,k s

i j and v s
ri j

∈ Rds refer to the vector of query, key and value, re-

spectively. The soft weight of self-attention from r i j to r i u can be measured by
the corresponding between them defined as follows:

as (q s
i j ,k s

i u) = e
q s

i j ·k s
i u /

p
ds∑

w e
q s

i j ·k s
i w /

p
ds

. (5.6)

Thus, the contextualized visual representation of an object region is obtained by
considering the self-attention:

r s
i j =

∑
u

as (q s
i j ,k s

i u)v s
i u , (5.7)

where r s
i j denotes the contextualized visual representation for the object region

r i j that incorporates the global information of the i -th image.



5.2. METHODOLOGY

5

87

Visual-textual Cross-modal Attention (VTCA)

To build an adaptive correspondence between the cross-modal components (i.e.,
object region proposals and tokens), we make a cross-modal alignment between
the visual and textual components. Here, we introduce a visual-textual cross-
modal attention module to find the semantically related components in the visual
modality for a given textual component. First, we transform the representation of
textual components generated by BERT and the contextualized visual represen-
tation into a common space of dimensionality dc . In this module, we take the
textual token as the query actor and measure the weight of attention to the visual
components by computing the cross-modal correlation.

In the common space, the query and value for the token representation t i j

are generated by the functions fC (·) and gC (·), respectively, and the key and value
for the visual region proposal oi j are obtained by f I (·) and g I (·), respectively, as
follows:


qC

i j = fC (t i j ), j = 1, · · · ,mi ;

k I
i j = f I (r s

i j ), j = 1, · · · ,n′
i ;

vC
i j = gC (t i j ), j = 1, · · · ,mi ;

v I
i j = g I (r s

i j ), j = 1, · · · ,n′
i ,

(5.8)

where t i j refers to the representation of token ti j generated by BERT, r s
i j is the

contextualized visual representation obtained with Eq. 5.7 and qC
i j ,k I

i j , vC
i j and

v I
i j ∈Rdc . In this work, f·(·) and g ·(·) are implemented with fully-connected layers.

Given the representation of a token obtained from BERT as a query, i.e., qC
i j ,

based on the attention mechanism [167] , the cross-modal attention [18] is de-
fined as follows:

ac (qC
i j ,k I

i u) = e
qC

i j ·k I
i u /

p
dc∑n′

i
w=1 e

qC
i j ·k I

i w /
p

dc

, (5.9)

r̂ i j =
n′

i∑
u=1

ac (qC
i j ,k I

i u)v I
i u , (5.10)

where r̂ i j represents a visual topic correlated to the semantics of the token ti j by
incorporating the textual token information with cross-modal attention.

5.2.3. MIXED CONTRASTIVE LOSS FUNCTION

For a mini-batch of size Nb in the learning process, we have Nb captions and im-

ages represented with V C
i and V̂

I
j . Here, the textual representation V C

i = [vC
i 1, vC

i 2, · · · , vC
i mi

]

and visual representation V̂
I
j = [r̂ i 1, r̂ i 2, · · · , r̂ i mi ] obtained from VTCA, we mea-
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sure the similarity of two cross-modal samples as follows:

S(V C
i ,V̂

I
j ) = etr(V CT

i ·V̂ I
j )∑Nb

k=1 etr(V CT
i ·V̂ I

k )
, (5.11)

where tr(·) and the superscript T denote the trace and transposition of a square
matrix. Eq. 5.11 uses a softmax operator to normalize the similarity to sum 1.

For contrastive learning, in each mini-batch, an image and its matching cap-
tion are denoted a positive sample pair (i.e., i = j ) and non-matching image-
caption pairs are negative sample pairs (i.e., i ̸= j ). Based on the similarity mea-
sured by Eq. 5.11, we provide a contrastive loss function at the granularity of im-
ages and captions:

LC =− 1

Nb

Nb∑
i=1

log (S(V C
i ,V̂

I
i ))/T , (5.12)

where T is a temperature hyper-parameter. The loss in Eq. 5.12 seems to only
work on the positive pairs and do not involve the negative pairs. Actually, to max-
imize the similarity S(·, ·) in Eq. 5.12 for the positive pair will lead to the suppres-
sion of the similarity for the negative pairs due to the sum-to-one normalization
in Eq. 5.11, which is just a manner of the contrastive learning.

In addition, we introduce a loss to force the outputs of the visual self-attention
module to be close to its inputs. The visual self-attention loss is defined as follows:

LS =− 1

Nb

Nb∑
i=1

 1

n′
i

n′
i∑

j=1
l og

 e
(r i j ·r s

i j )∑n′
i

u=1 e(r i j ·r s
i u )

 . (5.13)

Clearly, the visual self-attention loss is also a contrastive loss.
Finally, we build a mixed contrastive loss function in the form of

L =αLC +LS , (5.14)

where α is a hyper-parameter to control the balance of both terms.

5.3. EXPERIMENTAL RESULTS

In this section we first describe the datasets followed by the implementation de-
tails.

5.3.1. DATASETS AND METRICS

Datasets

The experiments are conducted on the Flickr30K Entities dataset and MS COCO
2014 dataset.



5.3. EXPERIMENTAL RESULTS

5

89

• Flickr30K Entities contains 31,873 images and 5 captions per image. Fol-
lowing Gupta et al. [18], we split the Flickr30K Entities in a training set
with 29,783 images, a validation set with 1,000 images and a test set with
1,000 images. The Flickr30K Entites dataset provides the correspondence
of phrases and visual object regions. Thus, the Flickr30K Entities validation
set and test set are employed to validate the proposed model and test its
performance, respectively, in this work.

• The MS COCO 2014 dataset contains 118,287 training images and 5,000 vali-
dation images, where each image is provided with 5 human-annotated cap-
tions. The MS COCO 2014 dataset does not contain the links between image
regions and sentence phrases. We thus train our model on the MS COCO
2014 training set, validate and test on the Flickr30K Entities validation and
test sets, respectively. In the training process, we randomly select one cap-
tion from 5 captions of each example as the textual segment.

Metrics

We use two standard metrics for this task:

• Recal l@K (R@K ) for K = 1,5 and 10 measures the percentage of phrases
for which I oU > 0.5 between the top K predicted bounding boxes and the
ground truth boxes.

• P t_Acc refers to pointing accuracy and is commonly used to evaluate weakly
supervised phrase grounding models [18]. Pt_Acc is the proportion of phrases
for which center point of the predicted bounding box falls in the ground
truth box. Unlike R@K , pointing accuracy does not require identifying the
IoU of the predicted object box. Generally, the center point of the selected
bounding box is used as the prediction for each phrase for computing point-
ing accuracy.

5.3.2. IMPLEMENTATION DETAILS

Visual Feature Representation

We extract visual region proposals from each image using Faster R-CNN with a
backbone ResNet-101 [30] based on the bottom-up attention method [11], which
was trained on the Visual Genome dataset. The region proposals contain the
bounding boxes, visual features and Faster R-CNN’s confidence scores (after Soft-
NMS thresholding). We choose 50 regions of interest (RoI) based on confidence
scores and obtain 2048-dimensional visual representations (i.e., dr = 2048). By
the VSA module we will reduce the dimension of visual representations from 2048d
to 768d (i.e., ds = 768).

Textual Feature Representation

We follow the setting of the BERT model used in the work of Gupta et al. [18] for
the generation of the textual representation, where a pre-trained BERT model [28]
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Figure 5.2: The hyper-parameters temperature τ and the loss function weightα optimized for Recall@1
on the validation set of Flickr30K.

is employed. A 768-dimensional token representation, i.e., dt = 768, is generated
for a word ti j in captions with the BERT model. The dimension of the common
space generated by the VTCA is set to is 384, i.e., dc = 384.

Parameter Tuning

The hyper-parameters are determined with a grid searching on the Flickr30K En-
tities validation set. The threshold θ in Eq. 5.3 is set to 0.5, a same value as used
in the evaluation of models in terms of the R@K metrics. In our research, we per-
form grid search for determining the parameters. Fig. 5.2 shows the optimization
result of the hyperparameters α from Eq. 5.14 and temperature T in Eq. 5.12. We
train our model for 10 epochs with a batch size of 30 using an SGD optimizer with
momentum 0.9 and a learning rate of 10−5. We select the final checkpoints on the
basis of the model’s best performance in terms of R@1 on the Flickr30K Entities
validation set. Based on the validation results, we set α= 16 and T = 0.07.

5.3.3. QUANTITATIVE RESULTS

Table 5.1 presents the experimental results of the compared methods on the Flickr30K
Entities test set. From this table, we observe that our proposed approach outper-
forms the state-of-the-art work [15] by 1.24% point and 0.26% point in terms of
R@1 and P t_Acc, respectively, with the model trained on the Flickr30K Entities
training set. For the models trained on MS COCO, our approach improves the
performance by 3.88% point and 2.23% point in terms of R@1 and P t_Acc, re-
spectively, compared to the state-of-the-art work [18]. For the other cases, we
observe that our approach is superior to the compared methods as a whole.
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Table 5.1: The comparison of the results (%) of our approach with the state-of-the-art on the Flickr30K
Entities test set. The models have been trained on Flickr30K Entities and MS COCO.

Methods Training data R@1 R@5 R@10 Pt_Acc
GroundeR [168]

Flickr30K

28.94 - - -
KAC Net [155] 38.71 - - -

InfoGround [18] 47.88 76.63 82.91 74.94
Wang et al. [14] 53.10 - - -

Liu et al. [15] 59.27 - - 78.60
VRC-PG (ours) Flickr30K 60.51 78.77 81.50 78.86

Fang et al. [65]

MS COCO

- - - 29.00
Akbari et al. [36] - - - 69.19

Align2Ground [151] - - - 71.00
InfoGround [18] 51.67 77.69 83.25 76.74
VRC-PG (ours) MS COCO 55.55 79.23 84.12 78.97

In terms of R@10, our model obtains a lower performance (−1.41%) than In-
foGround [18] when trained on the Flickr30K Entities training set. We analyzed
this difference and found that our approach without the OPP module gets an
R@10 of 83.86% which improves the performance of InfoGround by 0.95% point.
The reason is that after the OPP module, we keep a smaller object proposals set as
input to the next module than without the OPP module. The main contribution
of the InfoGround model is that it uses the language model to generate a context-
preserving negative caption set; the authors show that this improves the results
in comparison to randomly sampling negatives from the training data. In our ap-
proach, we do not employ this negative caption set. In order to verify this, we
re-train our model employing this negative caption set used in InfoGround [18].
Our proposed model with these negative captions results in 66.60% and 78.83% in
terms of R@1 and P t_Acc, respectively, with the model trained on the Flickr30K
Entities training set. For the models trained on MS COCO, our approach with neg-
ative captions achieves 59.47% and 79.34% in terms of R@1 and P t_Acc, respec-
tively. Both of them demonstrate that our approach achieves much higher perfor-
mances than InfoGround when employing the same settings of negative captions.

5.3.4. ABLATION STUDY

In Table 5.2, we report the quantitative performance of 8 different design choices,
i.e., c1-c8, within our proposed model on Flickr30K Entities validation set. In this
experiment, we take the design only consisting of the VTCA module as our base-
line model, which is only supervised by image-caption pairs based on InfoNCE
loss, similar to in the model by Gupta et al. [18]. The introduction of VSA im-
proves P t_Acc from 62.43% to 64.26%, but results in a drop of R@1 from 32.12% to
29.64% (c1 vs. baseline). Our OPP module, as shown in Table 5.2, brings a perfor-
mance gain of 3.24% in terms of R@1, but a 1.46% lower P t_Acc (c2 vs. baseline).
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Figure 5.3: Attention scores achieved in Eq. 5.9 of region proposals on the Flickr30K Entities validation
set for the setting without/with the visual self-attention module (i.e., w/o VSA and VSA). The visual
regions surrounded by bounding boxes refer to the object proposals with top-3 cross-modal attention
scores (colored by red, green and blue).
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Table 5.2: Benefits of the different modules in our approach. All models are trained on the Flickr30K
Entities training set and the results (%) are reported for the Flickr30K Entities validation set.

Methods OPP VSA Loss R@1 Pt_Acc
baseline - - - 32.13 62.43

c1 - ✓ - 29.64 64.26
c2 ✓ - - 35.37 60.97
c3 ✓ ✓ - 39.21 63.61
c4 - - ✓w/o LS 48.90 76.60
c5 - ✓ ✓w/o LS 52.71 78.31
c6 - ✓ ✓ 53.20 78.27
c7 ✓ - ✓w/o LS 55.64 77.58
c8 ✓ ✓ ✓w/o LS 57.90 77.24

VRC-PG ✓ ✓ ✓ 58.64 77.03

When we use these two modules together, the R@1 is improved from 32.13% to
39.21% and P t_Acc from 62.43% to 63.61% (c3 vs. baseline). Thus, OPP is more
positive for R@1 and VSA for P t_Acc. If we want to simultaneously optimize both
metrics, these two kind of modules can work in coordination with each other. We
replace the InfoNCE loss in the baseline by our contrastive loss function (without
LS ), and achieve an improvement of 16.77% on R@1 and 14.17% on P t_Acc (c4
vs. baseline). If we further add the visual self-attention loss LS , we can obtain a
better result on R@1 and close result on P t_Acc (c6 vs. c5 and VRC-PG vs. c8).
This shows that our contrastive loss is very useful in the phrase grounding task.

In Fig. 5.3, we visualize a few examples of different model settings, i.e., with
and without VSA, on the Flickr30K validation set. The figure indicates that the
setting with VSA can lead to more attention being paid to the correct visual region
corresponding to the phrase in the sentence than without VSA. For example, for
the top-right example in the figure, we find that the setting with VSA gives a score
(0.82) of attention to the bounding box (red) enclosing a man, while the setting
without VSA generates a lower attention score (0.73) for the region (red) covering
the man and a large area of background.

5.3.5. QUALITATIVE RESULTS

In Fig. 5.4, we illustrate the qualitative results of visual grounding of phrases ob-
tained by our approach on three image-caption pairs from the Flickr30K Entities
test data. From this figure, it is evident that our model has the ability to localize
phrases from the caption in the image. In Fig. 5.5, we show the attention scores
obtained by Eq. 5.9 from the VTCA module in our model. For example, for the
word ‘old’, our approach generates a high attention to visual region No. 17 (cf.
Fig. 5.5(a)). It is visible in the image that this region contains a head with white
hair and exhibits a kind of visual appearance of ‘old’. Regions 29 and 3 are about
the topic of scenes, and we can observe that the corresponding cells are high-
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Figure 5.4: Visualization of weakly supervised phrase grounding. In each image, for a given word query,
we show the visual regions in the form of bounding boxes with top-3 cross-modal attention scores
(colored by red, green and blue) achieved in Eq. 5.9.
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Figure 5.5: Cross-modal attention scores achieved by Eq. 5.9 between visual object proposals and
words. The darker cell color indicates that more attention is paid to the corresponding visual object
proposals for a word query.

lighted in the attention weight map when the query of phrase is ‘park’ and ‘bench’.
Regions 2 and 6 both relate to ‘men’, and they are really paid much attention to for
the query of phrase ‘men’ as shown in the attention weight map.
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5.4. CONCLUSION

In this work, we have proposed a novel weakly supervised approach to phrase
grounding under the supervision of the correspondence between images and cap-
tions. Our key contribution lies in systematically learning contextualized visual
representations with a mixed contrastive loss function. In the visual representa-
tion contextualization, the three modules, OPP, VSA and VTCA, work in coordi-
nation with each other for representing local visual semantics by considering the
unimodal and cross-modal contexts. In addition, we define a novel contrastive
loss function on the intra- and inter-modal representations and clearly demon-
strate that this leads to better results. Overall, we report the improvements of
3.88% point and 1.24% point on R@1, and 2.23% point and 0.26% point on P t_Acc,
with the models trained on the MS COCO and Flickr30K Entities training set, re-
spectively, compared to the state-of-the-art methods. Our qualitative analysis us-
ing visualization of attention between words and image regions also illustrates the
capability of our model to learn joint representations of image and text using the
attention mechanism.




