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CHAPTER SUMMARY
This chapter addresses RQ4.

RQ4: How and with what quality can we model the semantic correlations be-
tween two different modalities?

Modeling the relationship between multi modal media, including images, videos,
and text, can reduce the gap between the modalities and promote cross-media re-
trieval, image annotation, etc. In this chapter, we propose a new approach called
kernel-based mixture mapping (KMM) to model the semantic correlations be-
tween web images and text. With this approach, we first construct latent high-
dimensional feature spaces based on kernel theory to address the non-linearity
of both the data distributions in the input spaces and the cross-model correla-
tion. Second, we present a probabilistic neighborhood model to describe the spa-
tial locality of semantics by assuming that proximate examples in feature spaces
generally have the same semantics and a conditional model to describe cross-
modal conditional dependency. Finally, we build a probabilistic mixture model
to jointly model the spatial locality of semantics and the conditional dependency
between different modalities. By combining nonlinear transformation and prob-
abilistic models, KMM can address the non-linearity of cross-modal correlation,
the complexity of the semantic distributions at the global scale, and the continu-
ity of semantic distributions at the local scale. We present a hybrid optimization
algorithm to find the solution of KMM based on expectation-maximization and
sub gradient ascent; this algorithm avoids estimating the parameters of KMM in
high-dimensional feature spaces and is proved to converge to an (local) optimal
solution. We demonstrate the performance of KMM using for public datasets.The
experimental results show that our approach outperforms the compared methods
when modeling the relationships between image and text.
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With the rapid development of the Internet, there has been a massive explo-
sion of multimedia content, such as text, image, audio and videos, on the web.
These types of content usually coexist in a multimedia document and comple-
ment each other to express similar semantics. For example, an image provides
a visual description of a concept, yet this description is usually incomplete. In
contrast, text can accurately describe the abstraction of a concept, but it is not
intuitive. Consequently, joint exploitation of the full information from different
modalities could facilitate accurate content interpretation. Currently, many real-
world internet applications, such as cross-media retrieval [90, 91, 92], image cap-
tion or summary generation [93], image annotation [94, 95, 96] and information
recommendation [97], involve multimodal data. For these applications, the re-
lationship between modalities needs to be considered. Many previous studies
focused on the understanding of the unimodal scenario, in which data are ho-
mogeneously represented and similarity is measured in a single feature spaces.
However, different data modalities are associated with different metric spaces,
and thus similarity cannot be measured directly between heterogeneous modali-
ties. The vastly different representations derived from heterogeneous modalities
make it very challenging to associate signals across these modalities.

The work related to the semantic correlation mining of heterogeneous media
can be categorized into the following four main classes: 1) linear/non-linear map-
ping [98], [99], such as canonical correlation analysis (CCA), 2) probabilistic mod-
els, such as probabilistic latent semantic analysis (PLSA) [100], 3) graph-based
correlation propagation methods [92], [101], and 4) deep learning-based methods
[102],[103]. In [43], the authors presented an approach called mixture of local lin-
ear mapping (MLLM) to cross-modal semantic correlation modeling. MLLM con-
siders that close examples in a local region generally represent a uniform concept
and are supposed to be mapped to another modality based on a linear model, and
then combines multiple linear mapping models to represent the relationships be-
tween different modalities on the whole data distribution. However, MLLM can-
not address the non-linearity of data distributions and cross-media correlations
very well.

In this chapter, we first analyze the ineffectiveness of linear mapping mod-
els and then propose a novel approach, called kernel-based mixture mapping
(KMM), to model the semantic association between text and images. Similar to
our previous method MLLM, KMM considers that the data in a local region of the
input spaces follow a local mapping model and uses a mixture of local mapping
models to substitute a more complex nonlinear mapping. In KMM, we introduce
a probabilistic neighborhood model to accurately describe how data in a local re-
gion follow the corresponding local mapping model. To address the nonlinear-
ity of data distributions and cross-media correlations, KMM first transforms the
textual and visual data from the input spaces into two latent high-dimensional
spaces by nonlinear feature space mapping functions, and then constructs the
mapping model between both modalities in the latent features spaces. The smooth-
ness and sparseness of the parameters are introduced to enhance the generaliza-
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tion of models and the fitness between models and data. We present a hybrid
optimization algorithm based on expectation-maximization (EM) and subgradi-
ent ascent to find the solution of KMM; the parameters are estimated using kernel
theory to avoid the explicit representation of both feature spaces.

In summary, our contributions are three-fold: 1) We analyze the ineffective-
ness of linear models and reveal that linear models’ prediction is close to a zero
vector for cross-media retrieval due to the linear uncorrelation between images
and text at the global scale in feature space. 2) We present a parameterized model-
driven approach, called KMM, to model cross-modal association. KMM provides
a kernel-based probabilistic mixture model to describe the distribution that cross-
modal data need to follow and addresses the complexity of the semantic distribu-
tion at the global scale, its continuity at the local scale, and the non-linearity in the
mapping of different modalities. 3) We introduce a hybrid optimization algorithm
based on the frameworks of EM and subgradient ascent and prove its convergence
to an (local) optimum. The optimization algorithm overcomes the difficulty in es-
timating the parameters of the KMM model because our model does not consist
of explicit inner products for being replaced directly by kernel functions.

The rest of this chapter is organized as follows. Section 4.1 presents a brief
overview of related work. Section 4.2 breifly analyzes the ineffectiveness of linear
mapping models. Section 4.3 describes our KMM approach to the modeling of
image and text association. Section 4.4 presents the optimization, algorithm and
analysis for KMM. Section 4.5 provides the experimental results, and Section 4.6
concludes the chapter.

4.1. RELATED WORK

Studies related to cross-media modeling can be divided into four main classes.
(1) Linear or nonlinear mapping. This class of methods builds a linear or non-

linear (closed-form) transformation model between heterogeneous input spaces
or from both input spaces to a latent semantic space where similarity is mea-
sured. Grangier and Bengio [104] proposed a linear discriminant approach for
cross-modal retrieval by linearly transforming one modality to the other and ex-
tended the linear model to a nonlinear one through the kernel trick. Jiang and Tan
[105] presented a vague linear transformation to measure the information simi-
larity between visual and textual modalities through a set of predefined domain-
specific information categories. There are some other approaches that transform
both modalities into a common space, which can be constructed based on CCA
[90, 106, 107], matrix factorization [108, 109], or by preserving a certain struc-
ture of data [110]. The similarity between multiple modalities can be measured in
the common space. Tang et al. [111] presented a cross-space affinity model that
was learned with an optimization problem, where the restriction of exact corre-
spondences between different modalities was relaxed to their relative similarities.
In addition, some researchers proposed mixture models to describe the relation-
ship between two sources of data. In [112], Deleforge et al. introduced a model



4.1. RELATED WORK

4

51

called Gaussian locally-linear mapping (GLLiM) for high-dimensional regression.
Different from [43], GLLiM model aims to solve the inverse regression problem.
Hannah et al. [113] presented a more general regression model by introducing
generalized linear models. To handle diverse content more appropriately, Hua et
al. [114] presented a method called TINA that built a set of local linear projections
for each modality and then measured the relations of pairs of local models for dif-
ferent modalities. To address nonlinearity of data distributions, Zhang et al. [115]
and Xu et al. [116] introduced kernel mapping in data representation.

(2) Probabilistic methods. Probabilistic methods generally aim to maximize
the probabilities that the data of one modality can be generated for the given in-
puts of the other modality. Jeon et al. [117] proposed an approach to annotating
and retrieving images that directly modeled the joint distributions over blobs in
images and words in text. Different from [117], Monay and Pere [100] computed
the joint distributions over images and text based on PLSA by introducing a latent
semantic variable. Feng and Lapata [118] proposed an approach to image cap-
tioning based on the latent Dirichlet allocation (LDA) model and generated the
keywords of captions by maximizing the posterior probabilities given the image
and its corresponding textual documents. Zhang et al. [119] supposed that fea-
tures of images and text are independently generated by a certain concept and
modeled cross-media relationships under the Bayesian framework. To improve
learning performance, Wu et al. [120] incorporated unlabeled data in the training
process of image retrieval and learned the model by maximizing the joint prob-
abilities of labeled and unlabeled data with the discriminant-EM algorithm. To
relax the restriction discussed in many studies regarding full correspondence be-
tween modalities, Jia et al. [121] proposed a method for analyzing the semantic
correlation between modalities based on a Markov random field of topic models
for realistic scenarios, where a narrative text is only loosely related to an image.
Different from the above studies, Pham et al. [122] presented a method for learn-
ing fine-grained relationships between images and text, i.e., the correspondences
between the keywords in text and the visual regions in images, based on EM algo-
rithm.

(3) Graph-based correlation propagation. Generally, graph-based methods
model multimedia with each document as a vertex and the relationship between
documents as an edge, and propagate the correlation information to learn the
cross-modality similarity over the graph [92]. Zhai et al. [101] constructed a kNN
graph for each modality and performed cross-media retrieval by determining whether
the examples from different modalities have the same label or not. Lin et al. [123]
presented a PLSA-based aspect model to measure the inter-correlation between
different modalities and intra-correlation in the same modality, and then con-
structed a multi-modal propagation network for cross-media retrieval. Lazaridis
et al. [124] presented a novel framework based on kNN graphs for multimodal
search of rich media objects, in which Laplacian eigenmaps were employed to
merge low-level descriptors and create a new low-dimensional multimodal fea-
ture space. Xue et al. [125] proposed a graph-based approach that contained
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two processes of semantic correlation computing for modeling the semantic cor-
relation between web images and text. In the work, information propagation
was jointly driven by the local semantics of visual blobs or words and the global
semantics of documents. In [126], a multiple graph-based multi-label learning
framework was proposed for image annotation problem, in which the visual con-
tent of images, semantic correlation of tags and the prior information provided by
users were simultaneously considered. The multi-graph strategy was also used in
[127], where the authors jointly modeled the intra-modal local topology structures
of each graph constructed on one modality and the inter-modal local topology
structures to obtain the final common embedding space for multiple modalities.

(4) Deep learning-based methods. In general, deep learning-based methods
jointly map different modalities into an embedding space using deep networks
and measure similarity in this space. Deep CCA [128] is a representative approach
to cross-media correlation modeling, which represents each modality with a deep
network and measures the similarity based on CCA. Different from deep CCA,
Wang et al. [129, 103] measured the similarity between different modalities based
on cross-view ranking constraints or the element-wise product. Eisenschtat and
Wolf [102] presented a bidirectional neural network architecture for matching im-
ages and text, in which two tied neural network channels were used to project
both views into a common, maximally correlated space using Euclidean loss. To
make cross-modal correlation modeling more precise, Peng et al. [130] fused
coarse-grained instances and fine-grained patches and learned the relationships
between images and text based on the constraints of the intra-modality seman-
tic category and the inter-modality pairwise similarity. To make an efficient re-
trieval, Hong et al. [131] presented a novel joint semantic-visual space by lever-
aging visual descriptors to narrow the semantic gap and provided an efficient on-
line multimedia service. In addition to image-text association modeling, Wang et
al. [132] focused on making correlations between movies and text and proposed
a novel model called layered memory network, which can encode the temporal
alignment between sentences and frames inside movie clips. Most of the deep
learning-based methods model the relationships between different modalities by
parameter tuning in the representation process. Different from these methods,
we build an explicit probabilistic model to describe the cross-modality relation
based on the representation from deep networks.

4.2. LINEAR MODELS AND THE INEFFECTIVENESS

In general, there is a natural correspondence between visual space and textual
space. Let

M : RT → RI (4.1)

be an invertible map from the textual space to the visual space. Similarly, given
a query of visual image xI ∈ RI , its corresponding textual sample in textual space
can be achieved with the inverse of M , i.e., M−1(xI ).
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Figure 4.1: An example of linear transformation from textual spaces to visual spaces using the Corel5K
dataset: (a) the decrease of fitness error with iteration and (b) the comparison between the prediction
(red curve) and the ground-truth image (blue curve) for a certain textual input. In Fig. 4.1(b), images
are represented by the bag of visual words (BoVW) model (500 visual words), and the y-axis denotes
the value of each entry of feature vectors for the prediction or corresponding ground truth given a
textual input.
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Many previous models for mapping the heterogeneous modalities are con-
structed as linear models [90, 106, 105]. Jiang and Tan [105] transformed text (or
images) to the other modality with a linear model and computed the similarity
between the ground truth and the corresponding prediction:

x̂I = MC I MTC xT , (4.2)

where x̂I is the prediction in the visual space, and MTC and MC I are the transfor-
mation matrices from textual spaces to concept spaces and from concept spaces
to visual spaces, respectively. The similarity can be measured using Euclidean dis-
tance in both spaces:

dF (xI ,xT ) = ∥xI −MC I MTC xT ∥2 . (4.3)

Actually, images and text originate from two completely different systems. Fur-
thermore, visual features and textual features are complicated and nonlinearly
distributed in their respective spaces. Consequently, constructing a map between
both spaces with a linear model is intuitively inaccurate. Fig. 4.1 illustrates an
example of linear transformation from textual spaces to visual spaces using the
Corel5K dataset. From Fig. 4.1(a), we find that the fitness error decreases by only
approximately 10% through iterative optimization. Fig. 4.1(b) shows that the pre-
diction result in visual space is similar to a random noise around 0 along the se-
mantic label dimension and has a large difference from the ground truth. Theo-
rem 1 provides a theoretical analysis.

Theorem 1. If xT and xI are linearly uncorrelated, the solution to Eq.4.2 with the
minimization of the distance shown in Eq.4.3 over all data is a zero vector that is
independent of the distribution of xI .

Proof. Let xI = (xI
1,xI

2, · · · ,xI
N ) and xT = (xT

1 ,xT
2 , · · · ,xT

N ) be the data matrices for
images and text, respectively. Without loss of generality, we assume that xI and
xT have a mean of zero. When xT and xI are linearly uncorrelated, the correlation
coefficient can be computed as follows:

ρ = tr (CT I CT
T I )√

tr (CT T CT
T T )tr (CI I CT

I I )

= 0 ,

(4.4)

where CT I = XI xT ′
, CT T = XT xT ′

and CI I = XI xI T
. In this chapter, xT ′

means
transpose of the matrix xT . Thus, tr (CT I CT

T I ) = ∥CT I∥2
F = 0. By minimizing the

distance in Eq.4.3, the following is attained:

x̂I = MC I MTC xT

= XI xT ′
(xT xT ′

)−1xT

= CT I C−1
T T xT .

(4.5)

Then, ∥x̂I∥ ≤ ∥CT I∥F ∥C−1
T T xT ∥ = 0, and thus x̂I = 0.
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4.3. PROPOSED MODEL

4.3.1. LOCAL LINEAR MAPPING

In this approach, we write the map as M : X → Y . Without loss of generality,
we let X = RT and Y = RI . We consider that the map from a local region of X
to Y can be described by a linear model due to the simplicity of the local data
distribution. We characterize the linear mapping model M over the local region
by the concatenation of two matrices as follows:

yi = ŷi +εi

= W ·Vxi +εi ,
(4.6)

where xi ∈ X denotes an input (or a query), yi , ŷi ∈ Y are the corresponding ground-
truth output and the prediction in the other modality, respectively, V is the trans-
formation matrix from the input space to a latent semantic space, W is the trans-
formation matrix from the semantic space to the output space, and εi denotes
the fitness error. In our work, we assume the fitness error εi follows a normal dis-
tribution with zero mean and covariance matrix Σ. Given the model M and an
input xi , the probability distribution of the ground-truth output yi is formulated
as follows:

Pr(yi |xi ,M ) = 1√
(2π)dy |Σ|

e−
1
2 d(yi ,xi ) , (4.7)

where d(yi ,xi ) = (yi −WVxi )TΣ−1(yi −WVxi ).
As analyzed above, we consider that a set Rm of close examples in a local re-

gion indexed by m has uniform semantics and approximately follows one cross-
media mapping model. Intuitively, the data near the centroid of Rm follow the
mapping model with high confidence, and those far from the centroid follow with
low confidence. We then characterize the confidence with a neighborhood model
KH(x−µ) with a symmetric positive definite dx ×dx bandwidth matrix H, where µ
is the centroid of the local region and

KH(x−µ) = |H|−1/2K (H−1/2(x−µ)) . (4.8)

K (x) is a bounded function with compact support satisfying [133]∫
Rdx

K (x)dx = 1 lim
||x||→∞

||x||dx K (x)dx = 0∫
Rdx

xK (x)dx = 0
∫

Rdx
xxT K (x)dx = cK I ,

(4.9)

where cK is a constant. A Gaussian function with a zero-mean vector and an iden-
tity covariance matrix satisfies such constraints in Eq.4.9. We use KHm (x−µm) to
describe the probability or confidence of the data that follow the mapping model
Mm over Rm , i.e., Pr(xi |Mm).
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The joint probability of the pair (xi ,yi ) generated by the model Mm is:

Pr(xi ,yi |Mm) = Pr(xi |Mm)Pr(yi |xi ,Mm)

= KHm (xi −µm)Pr(yi |xi ,Mm) , (4.10)

where µm and Hm denote the centroid (replaced by the mean vector in comput-
ing) and bandwidth matrix, respectively, of the local region Rm that xi belongs
to.

An alternative factorization of the joint probability shown in Eq.4.10 can be
performed as follows:

Pr(xi ,yi |M ′
m) = Pr(yi |M ′

m)Pr(xi |yi ,M ′
m) ,

where M ′
m denotes a mapping model from Y to X . This factorization is related

to the inverse regression [112], where yi is considered as a regressor. In this case,
we need to define a neighborhood model KH(y−µ) to describe the probability of
yi that follows the mapping model, i.e., Pr(yi |M ′

m). Compared with Eq.4.10, this
factorization will result in a high computational complexity because we need to
compute Pr(yi |M ′

m) for all yi in a dataset given a certain query xi .

4.3.2. KERNEL-BASED MIXTURE MAPPING

Due to the complexity of the data distribution, the map between two modalities
may not follow the linear model in the original input space, and the local region
in the input space cannot be depicted well by the expected Gaussian neighbor-
hood model. Therefore, we formulate this problem in a high-dimensional latent
feature space based on kernel theory. Let us consider φ : X →Fx and ψ : Y →Fy

that map the original input spaces into two feature spaces of dimensions dφ and
dψ, respectively, where both Fx and Fy are inner product spaces. Here, as shown
in Fig. 4.2(a), we build a ds -dimensional semantic space S by the linear transfor-
mation over both feature spaces. In the semantic space, it is easier to introduce
the kernel theory and measure the similarity of two modalities. Similar to Eq.4.7,
the map between two modalities can be represented by the following probabilistic
model in the semantic space:

Pr(ψi |φi ,Mm) = 1√
(2π)ds |Σm |

e−
1
2 dm (ψi ,φi ) , (4.11)

where φi ≜φ(xi ), ψi ≜ψ(yi ), and

dm(ψi ,φi )=(Umψi−Vmφi )TΣ−1
m (Umψi−Vmφi ). (4.12)

where Σm denotes the covariance matrix of data points {Umψi −Vmφi } associated
with the model Mm in semantic space and Σ−1

m denotes the inverse. The distance
dm(·, ·) measured in S is achieved by the combination of features with matrices Um

and Vm . Generally, the rows of Um and Vm are located in the space spanned by the
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Neighborhood
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Football is one of the
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create real life feel
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Figure 4.2: Our approach. (a) The framework. The small squares and circles denote examples of images
and text, respectively, located in input or feature spaces, and different colors indicate different local
regions. In the input space, the local regions are supposed to follow a Gaussian neighborhood model
in the feature space, while they do not follow this model in the input space. (b) Convergence analysis
of hybrid optimization, which is introduced in Section 4.4 in detail.
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columns ofΨ= (ψi ) andΦ= (φi ), respectively, i.e., Um = AmΨ
T and Vm = BmΦ

T .
Eq.4.12 can be rewritten as:

dm(ψi ,φi )=(AmKy,i−BmKx,i )TΣ−1
m (AmKy,i−BmKx,i ), (4.13)

where each row of Am and Bm denotes the coefficients with which the rows of Um

and Vm can be linearly reconstructed by the data points {ψi } and {φi }, respectively,
and Kx,i and Ky,i denote the i -th column of kernel matrices Kx = (φk ·φl ) and Ky =
(ψk ·ψl ), respectively. Based on the kernel theory [134], we can choose nonlinear
kernel functions fφ : X × X → R and fψ : Y ×Y → R, which should follow Mercer’s
condition, to satisfy fφ(xk ,xl ) =φk ·φl and fψ(yk ,yl ) =ψk ·ψl . Therefore, we can
achieve the kernel matrix in input space instead of in feature space by choosing
appropriate kernel functions.

The neighborhood model in the feature space Fx can be rewritten in the fol-
lowing form:

Pr(φi |Mm) = 1√
(2π)dφ |Hm |

e−
1
2 φ̃

T
mi H−1

m φ̃mi , (4.14)

where φ̃mi = φi −µm . It is worth noting that the neighborhood model could not
have been computed in the input space X so far. We will introduce its solution
method in the next section.

Due to the complicated data distribution and the nonlinear mapping between
the textual and visual spaces, a single mapping model is insufficient in modeling
the relationship between different media. To this end, we develop a probabilistic
mixture model to characterize the cross-media mapping. Given the model, a log-
likelihood function is defined based on the joint probability of N cross-media data
pairs {(xi ,yi )}N

i=1 as follows:

L f = ln
N∏

i=1
Pr(φi ,ψi )

= ln
N∏

i=1

M∑
m=1

ωm Pr(φi |Mm)Pr(ψi |φi ,Mm) , (4.15)

where M is the number of components in the mixture model, andωm is the weight
of the m-th component Mm with

∑M
m=1ωm = 1 andωm ≥ 0. In the mixture model,

the first probabilistic term aims to make close points share the same component
Mm , and the second term focuses on modeling the relationship between two
modalities.

4.3.3. CONSTRAINTS IN THE MODEL

According to Eq.4.13, Am and Bm are the coefficient matrices used to reconstruct
Um and Vm based on the kernel matrices Ky and Kx , respectively. Here, we con-
sider two extra constraints.
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Smoothness

In general, two close data points in the input spaces X and Y are expected to have
images close together in the latent semantic space S. To this end, we introduce a
smoothness constraint that is defined as follows:

J A =∑
i∼ j ∥A(Ky,i −Ky, j )∥2

2

≤ ∥P∥2
F ∥A∥2

F ,

JB =∑
i∼ j ∥B(Kx,i −Kx, j )∥2

2

≤ ∥Q∥2
F ∥B∥2

F ,

(4.16)

where i ∼ j denotes that the i -th and j -th data points are close, and P and Q
are the matrices whose columns are the vectors {(Ky,i −Ky, j )} and {(Kx,i −Kx, j )},
respectively, in a certain order for all i ∼ j . Thus, we characterize the smoothness
of the cross-media mapping based on Eq.4.16 as follows:

Jsm(Am ,Bm) =λA,m∥Am∥2
F +λB ,m∥Bm∥2

F , (4.17)

where for simplicity, we use parameters λA,m and λB ,m to replace the exact Frobe-
nius norm of P and Q, respectively. In our work, we let λA,m = λB ,m = 1 and use a
single λ1 to control the importance of the smoothness term. To obtain a smooth
mapping model, Jsm(A,B) needs to be constrained to a small value.

Sparseness

The rows of Um and Vm can be considered as a new basis (possibly nonorthonor-
mal) for the projection of examples {ψi } and {φi }, respectively, and can be linearly
reconstructed by these examples. To make each basis tend to represent some spe-
cific semantics held by a subset of examples, we expect to reconstruct the rows of
Um and Vm using a few examples by enforcing each row of Am and Bm to have
a few non-zero elements. We call the characteristics sparseness and formulate it
using the L1-norm as follows:

Jsp (Am ,Bm) = ∥Am∥1 +∥Bm∥1 . (4.18)

Incorporating both constraints into our problem, we have the final optimiza-
tion problem to compute cross-media correlation:

max
Θ

L f −
M∑

m=1

(
λ1 Jsm(Am ,Bm)+λ2 Jsp (Am ,Bm)

)
, (4.19)

where Θ = {ωm ,µm ,Hm ,Am ,Bm ,Σm}M
m=1 is the parameter set, and λ1 and λ2 are

used to control the balance between the terms.
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4.4. OPTIMIZATION, ALGORITHM AND ANALYSIS

4.4.1. OPTIMIZATION AND ALGORITHM

Similar to Wang et al.’s work [135], we define the following notations as shown in
Table 4.1. The first five rows in this table formulate the traditional estimation of
Gaussian mixture models in the input space based on EM [136]. Here, the super-
script (t ) refers to the t-th iteration.

Table 4.1: Notations.

p(t )
mi = Pr(Mm |φi ,ψi ,Θ(t ))

w (t )
mi =

√
p(t )

mi /
∑N

j=1 p(t )
m j

µ(t )
m =∑N

i=1 (w (t )
mi )

2
φi

φ̃(t )
mi =φi −µ(t )

m

H(t )
m =∑N

i=1 (w (t )
mi )

2
φ̃mi φ̃

T
mi

(Kx )i j =φi ·φ j = fφ(xi ,x j )

(Kx,m)(t )
i j = w (t )

miφi ·w (t )
m jφ j

(K̃x,m)(t )
i j = w (t )

mi φ̃mi ·w (t )
m j φ̃m j

(K′
x,m)(t )

i j =φi ·w (t )
m jφ j

(K̃′
x,m)(t )

i j = φ̃mi ·w (t )
m j φ̃m j

The optimization problem Eq. 4.19 is different from previous regularization-
based learning problems because it contains the hidden information. More specif-
ically, we do not know which component Mm “generates" each pair (xi ,yi ). To
solve the optimization problem, we present a hybrid optimization algorithm based
on EM and subgradient ascent. The parameters of the proposed model are Θ =
{ωm ,µm ,Hm ,Am ,Bm ,Σm}M

m=1, where the first three parameters describe the neigh-
borhood model, and the rest are for cross-media mapping.

Based on the EM algorithm, we define the following function L̃ f in the expec-
tation step to help optimize problem Eq. 4.19.

L̃ f =
M∑

m=1

N∑
i=1

pmi ln
(
ωm Pr(φi |Mm)Pr(ψi |φi ,Mm)

)
=

M∑
m=1

N∑
i=1

pmi
(

lnωm+lnPr(φi |Mm)+lnPr(ψi |φi ,Mm)
)
.

(4.20)

According to EM, the growth of L̃ f can increase L f shown in problem Eq. 4.19.
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By setting the partial derivative of L̃ f to zero, we can easily achieve

ω(t )
m = 1

N

N∑
i=1

p(t )
mi , (4.21)

where p(t )
mi is defined in Table 4.1 and can be expanded as:

p(t )
mi =

ω(t−1)
m Pr(φi |Mm ,Θ(t−1))Pr(ψi |φi ,Mm ,Θ(t−1))

M∑
k=1

ω(t−1)
k Pr(φi |Mk ,Θ(t−1))Pr(ψi |φi ,Mk ,Θ(t−1))

. (4.22)

The feature space Fx is usually of high dimension and cannot be represented
explicitly. Hence, we do not directly compute the distribution Pr(φi |Mm ,Θ(t−1)) in
Eq.4.15 and Eq.4.21 (sometimesΘ(t−1) may be omitted to save space) and estimate
the parameters {µm ,Hm}M

m=1 in the feature space. Instead, we may estimate the
distribution in the input space with the kernel trick. First, based on the work in
[137], we can rewrite the exponent term in Eq.4.14 as:

φ̃T
mi H−1

m φ̃mi =φ̃T
mi VΛ−1VTφ̃mi

=
dφ∑
j=1

y2
j /λ j ,

(4.23)

where V and Λ−1 = di ag (λ−1
1 ,λ−1

2 , · · · ,λ−1
dφ

) denote the matrices of the eigenvec-

tors and eigenvalues of H−1
m , respectively, and y j = φ̃T

mi V j is the projection of φ̃T
mi

over the j -th eigenvector V j . We note that K̃x,m and the bandwidth matrix Hm

have the same nonzero eigenvalues {λ j }. It was proved in [135] that

y j =βT
j Γ·,i , (4.24)

where β j is the eigenvector of K̃x,m corresponding to the eigenvalue λ j , and Γ·,i
is the column of K̃′

x,m corresponding to xi . Note that dφ is unknown due to the
implicit feature map φ, and we approximately estimate the distribution as the
marginal density function by keeping d ′

φ (d ′
φ < dφ) principal components that

correspond to the d ′
φ largest nonzero eigenvalues and discard the rest in Eq.4.23.

Moreover, the factor (2π)dφ/2H1/2
m in Eq.4.14 can be replaced by (2π)d ′

φ/2 ∏d ′
φ

j=1λ
1/2
j .

Then, we can iteratively estimate Pr(φi |Mm) in Eq.4.20 by updating the kernel-
matrix parameters K̃x,m and K̃′

x,m shown in Table 4.1 in the input space, instead of
µm and Hm in the feature space, since both sets of parameters describe the same
distribution. Note that K̃x,m and K̃′

x,m can be easily computed as the centralized
versions of Kx,m and K′

x,m , respectively.
For the update of the parameters {Am ,Bm ,Σm |m = 1,2, · · · , M }, we build a new

optimization function based on problem Eq. 4.19 and Eq.4.20:

Q =
M∑

m=1

(
N∑
i

pmi logPr(ψi |φi ,Mm)−J (Am ,Bm)

)
, (4.25)
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where J (·, ·) = λ1 Jsm(·, ·)+λ2 Jsp (·, ·). Q includes the non-differentiable terms of
∥ ·∥1 for the sparseness constraint, and thus a closed-form solution cannot be ob-
tained by directly taking the derivative. We use the subgradient ascent scheme to
iteratively maximize Q. At each time t , we compute the subgradients as

∇Σm Q =−1

2

∑
i

pmi (Σ−1
m −Dm,iΣ

−2
m DT

m,i ) ,

∇Am Q =−∑
i

pmiΣ
−1
m AmDT

m,i −λ1Am −λ2∆Am ,

∇Bm Q =∑
i

pmiΣ
−1
m BmDT

m,i −λ1Bm −λ2∆Bm ,

where Dm,i = AmKx,i −BmKy,i , and ∆ is defined as

(∆Am )i j = sgn((Am)i j ), (∆Bm )i j = sgn((Bm)i j ) .

Here, sgn(z) outputs 1 when z > 0, 0 when z < 0, and a random value uniformly
distributed in [-1,1] when z = 0. Given the subgradients, we update the solution
for Σm , Am and Bm to maximize Q as follows:

Σ(t+1)
m =Σ(t )

m +η(t )
Σm

·∇Σm Q ,

A(t+1)
m = A(t )

m +η(t )
Am

·∇Am Q ,

B(t+1)
m = B(t )

m +η(t )
Bm

·∇Bm Q ,

(4.26)

where η(t )
Σm

, η(t )
Am

and η(t )
Bm

are the step sizes at time t . In the experiment, we set the
step size to 1/t .

Eigenvalue decomposition of large-scale matrices

When an example xi is far from the center of the Gaussian component Mm , it
belongs to this component with low probability pmi . Hence, we can set the corre-
sponding columns and rows of K̃x,m to zero to obtain an approximation, and per-
form eigenvalue decomposition on a smaller matrix after the elementary trans-
formation of the matrices. Let pm = max j pm j , and in the experiments, we set the
i -th columns and rows of K̃x,m to zero if pmi < 0.01pm .

Parameter initialization

First, we use the K-means clustering algorithm with the training data {xi }N
i=1 and

achieve M clusters in the input space. Then, we compute the values of pmi , Kx,m ,
K̃x,m , K′

x,m and K̃′
x,m over the hard partitions as the parameters at the time t = 0,

Σ(0)
m , A(0)

m and B(0)
m are set randomly.

4.4.2. CONVERGENCE ANALYSIS

Our model includes a hidden variable, i.e., Mm , to indicate which local model
that a pair of data points follows. The EM algorithm is a powerful tool for solving
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Algorithm 2 KMM parameter estimation algorithm

Require: Image-text paired documents D = {(xi ,yi )}N
i=1, each including an image

and a textual document with the same semantics, kernel functions kφ and kψ,

parameters M , λ1, λ2, ds , step sizes η(t )
Σm

, η(t )
Am

and η(t )
Bm

, and the maximum
number of iterations T ;

Ensure: The estimated parameter setΘ= {ωm , K̃x,m , K̃′
x,m ,Am ,Bm ,Σm}M

m=1;

1: Initialize parameter setΘ(0) = {ω(0)
m , K̃(0)

x,m , K̃′(0)
x,m ,A(0)

m , B(0)
m ,Σ(0)

m }M
m=1, t = 0;

2: repeat
3: t = t +1, and step sizes η(t )

Σm
, η(t )

Am
,η(t )

Bm
= 1/t ;

4: Compute p(t )
mi with Eq.4.22 based onΘ(t−1);

5: Update ω(t )
m with Eq.4.21, K̃(t )

x,m and K̃′(t )
x,m based on Table 4.1, and then get

Θ̃(t );
6: Update Σ(t )

m , A(t )
m and B(t )

m with Eq.4.26, and then getΘ(t+1);
7: until t ≥ T .

such problems and can generally guarantee that the iterative optimization con-
verges to a local optimal solution. In our work, we present a hybrid optimiza-
tion algorithm based on the combination of EM and subgradient ascent. In this
subsection, we introduce two notations: X denotes the observed data and z hid-
den states commonly used in the EM algorithm, which correspond to {(φi ,ψi )}
and {Mm}, respectively, in our model. Here, we rewrite L f = ln

∏N
i=1 Pr(φi ,ψi ) in

Eq.4.15, i.e., lnPr(X |Θ), as L f (Θ(t )) to emphasize the parameters at a particular
time t , and we define the following variable:

ℓ f (Θ|Θ(t )) =L f (Θ(t ))+∑
z

Pr(z|X ,Θ(t )) ln

(
Pr(X , z|Θ)

Pr(X , z|Θ(t ))

)
=L f (Θ(t ))+ l1(Θ|Θ(t ))+ l2(Θ|Θ(t ))

−∑
z

Pr(z|X ,Θ(t )) lnPr(X , z|Θ(t )) , (4.27)

where

l1(Θ|Θ(t )) =∑
z

Pr(z|X ,Θ(t )) lnP1(X , z|Θ) ,

l2(Θ|Θ(t )) =∑
z

Pr(z|X ,Θ(t )) lnP2(X , z|Θ) ,

and Θ(t ) denotes the current parameters at time t . In this subsection, P1(·) and
P2(·) correspond to ωm Pr(φi |Mm) and Pr(ψi |φi ,Mm), respectively, in Eq.4.16.
Based on Jensens inequality, we have that L f (Θ) ≥ ℓ f (Θ|Θ(t )), and then that

L f (Θ)− J (Θ) ≥ ℓ f (Θ|Θ(t ))− J (Θ) . (4.28)
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where J (Θ) represents the regularization terms in problem Eq. 4.19 and Eq.4.25,
i.e.,

∑M
m=1 J (Am ,Bm). In Eq.4.28, the equality holds if and only ifΘ=Θ(t ).

In the optimization process shown in Algorithm 1, we have the following two
steps in each iteration. 1) We update ωm , K̃x,m and K̃′

x,m based on the EM al-
gorithm to maximize

∑
m,i pmi

(
lnωm + lnPr(φi |Mm)

)
in Eq.4.21, i.e., l1(Θ|Θ(t )),

and obtain the parameter denoted by Θ̃(t ); 2) By fixing the updated parameters
in step 1, we update parameters Σm , Am and Bm via Eq.4.26 to maximize Q, i.e.,
l2(Θ|Θ(t ))− J (Θ). Consequently, based on the above steps, we increase the right
side of Eq.4.28 and obtain the updated parameters, denoted by Θ(t+1). According
to Eq.4.28, L f (Θ(t+1))−J (Θ(t+1)) >L f (Θ(t ))−J (Θ(t )). Consequently, our algorithm
will converge to an (local) optimal solution. Fig. 4.2(b) illustrates the optimization
process.

4.4.3. COMPLEXITY ANALYSIS

The computational complexity of parameter estimation is mainly derived from
the update of kernel matrices, e.g., K̃x,m , the eigenvalue decomposition of K̃x,m ,
the subgradient computation and the update in Eq.4.26. Suppose the numbers
of examples handled by each component Mm , denoted by Nm , are the same and
do not change as the amount of data increases; the proposed algorithm includes
the following four main parts: 1) computing K̃x,m in O(N 2

m M) time, 2) performing
the eigenvalue decomposition of K̃x,m in O(N 3

m M) time, 3) computing the subgra-
dients with respect to Σm and Am (Bm) in O(d 3

s M +ds N 2
m M) time and O(d 3

s M +
d 2

s N M +ds N 2
m M +ds N M) time, respectively, and 4) updating Σm and Am (Bm)

in O(d 2
s M) time and O(ds N ) time, respectively. Suppose the algorithm converges

in T iterations; the total computational complexity is O(N MT ) by keeping the
higher-order terms in the above analysis.

4.5. EXPERIMENTAL RESULTS

4.5.1. DATASET AND EXPERIMENTAL SETTING

Four public real-world datasets are used in our experiments.

• Flickr8K dataset [138] consists of 8,000 images from the Flickr.com website,
which focuses on people or animals performing actions. For each image,
five captions were generated by different annotators using a crowdsourcing
service. The dataset is split into disjoint training, validation, and test sets
with 6,000, 1,000, and 1,000 pairs, respectively.

• Flickr30K dataset [24] extends the Flicker8K and consists of 31,783 images
of everyday activities, events and scenes, each paired with five captions, i.e.,
a total of 158,915 captions. The captions were annotated in a similar style
as in Flicker8K. We use 1,000 examples for testing, 1,000 examples for vali-
dation and the rest for training.
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Figure 4.3: The performance of cross-media retrieval versus the number of components M in the case
of “1 image vs. 1 caption” on three datasets. “I → T” and “T → I” denote “image → text” and “text →
image”, respectively.
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• MSCOCO dataset [21] contains 123,287 images, each corresponding to 5
captions. Similar to [139], we randomly generate the splits that contain
5,000 images with corresponding captions for both validation and testing,
and the rest of the images are used for training. The results are reported on
a subset of 1,000 testing images.

• NUS-WIDE-10K dataset [140] has 10,000 image/text pairs in total, selected
evenly from the 10 largest categories of the NUS-WIDE dataset. The dataset
is split into three subsets following [130]: training set with 8,000 pairs, test-
ing set with 1,000 pairs and validation set with 1,000 pairs.

We implement 5 independent experiments to alleviate the variation caused by
random splits of datasets.

The data are represented as follows.

• Image representation: In the experiments, we employ two pre-trained deep
networks on ImageNet, i.e., VGG-16 networks [4] and ResNet-152 [5]. We
use the images resized to 224 × 224 as the input for both networks, and
achieve 4096-dimensional feature vectors from VGG and 2048-dimensional
vectors from ResNet.

• Text representation: We extract textual features based on Word2vec [141].
We represent every word in a commonly used 150-dimensional embedding
space, and then cluster them into K groups. Finally, we employ a bag-of-
words representation to describe an text instance based on the feature vec-
tors of words. In the experiments, we let K = 500.

Cross-media retrieval includes two tasks: text retrieval given a query of an im-
age and image retrieval given a textual query, which are denoted by “image →
text” and “text → image”, respectively. We evaluate the performance with R@r
that denotes the recall at r for both tasks. Since Flickr8k, Flickr30k and MSCOCO
contain 5 captions per image, we evaluate the proposed approach in two cases:
1) “1 image vs. 1 caption”, in which each caption is considered as a response or
a query in the retrieval, and the recall at r for “image → text” task is computed
based on whether at least one of the correct captions is among the first r retrieved
ones [142], and 2) “1 image vs. 5 captions”, in which the 5 captions corresponding
to an image are concatenated as a response or a query [128]. In the cases of “1
image vs. 1 caption” and “1 image vs. 5 captions”, we train KMM based on the
pair of an image and each of its 5 captions [103] and the pair of an image and its
concatenated captions [128], respectively. Regarding NUS-WIDE-10K, like [130],
we consider the set of multiple tags for an image as a text instance in both retrieval
tasks and evaluate the performance with the mean average precision (mAP) score.

In the experiment, we compare the proposed approach with the following
state-of-the-art methods.

• Deep CCA [128]: representing images and captions using deep neural net-
works and then correlating them by CCA.
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• HGLMM and GMM+HGLMM [139]: combining Gaussian and Laplacian dis-
tributions into one hybrid distribution model that can benefit from the prop-
erties of the two distributions.

• MLLM [43]: a mixture of local linear mapping model with VGG-16-based
visual representation and Word2vec-based text representation.

• 2-Way Net [102]: employing two tied neural network channels that project
the two views into a common, maximally correlated space using Euclidean
loss.

• Embedding Networks [103]: learning a shared latent embedding space based
on two-way networks with a maximum-margin ranking loss and neighbor-
hood constraints.

• DVSA [143]: an alignment model based on the combination of CNNs over
image regions and bidirectional recurrent neural networks over sentences.

• OrderEmbedding [144]: learning the embeddings of images and captions
by defining a loss function that encourages the order-violation penalty for
ground truth caption-image pairs to be lower than that for all other pairs,
by a margin.

• DSvEL [142]: a new two-path neural network with a visual path that lever-
ages recent space-aware pooling mechanisms.

• CSE [145]: using CNNs to represent images and sentences and combining
mid-level representations and global semantic learning.

• CCL [130]: fusing multi-grained features and learning the correlation based
on the constraints of the intra-modality semantic category and the inter-
modality pairwise similarity.

• RRF-Net [146]: a model that adapts the recurrent mechanism to residual
learning and integrates the intermediate recurrent outputs.

4.5.2. PARAMETER TUNING AND ANALYSIS

The key parameters of KMM include the number of components M in Eq.4.15, the
balance control parameters λ1 and λ2 in problem Eq. 4.19, and the dimension,
ds of semantic space S. To maximize the performance over validation sets, we
determine the parameters by searching on the following grids: λ1,λ2 ∈ {102,101

· · · ,10−3}, M ∈ {10,20,40,60,100,150,200}, and ds ∈ {20,50,100,150,200}. In the
experiment, we set ds = 50 for Flickr8K, Flickr30K and NUS-WIDE-10K, and ds =
100 for MSCOCO. To avoid inner product computation in the implicit feature spaces
Fx and Fy , we introduce the kernel function in Section 4.3.2 to achieve the com-
putational results in the input spaces. We choose a polynomial kernel of degree 2,
i.e., fφ(xk ,xl ) = (xk ·xl +1)2, fψ(yk ,yl ) = (yk ·yl +1)2, via experimentation.
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Fig. 4.3 illustrates the effect of parameter M on the performance of cross-
media retrieval for three datasets in the case of “1 image vs. 1 caption”. On the
whole, we observe that the recalls reach the highest values at M = 40 and 60 for
Flickr8K and Flickr30K, respectively. For the more complex MSCOCO dataset, a
larger value, M = 100, can produce better performance than the other values of
M . The phenomenon is consistent with our intuition. That is, a model of larger
capacity, i.e., the one with larger M in this work, is required for modeling a more
complex dataset. In addition, the performances measured by different metrics on
a specific dataset likely do not reach the highest value at the same M . For exam-
ple, for Flickr8K, the recall R@1 in task “text→ image” is 31.6% at M = 40, which is
slightly lower than 32.7% at M = 60. We also notice that a value of M that is too
large may decrease the size of the local region Rm that supports local model Mm ,
which tends to cause over-fitting in the learning of parameters Am , Bm and Σm

and affects the performance of cross-media retrieval.
Fig. 4.4 shows the effect of the dimension ds of semantic spaces on the re-

trieval performance (R@5) of KMM with M = 40 in the case of “1 image vs. 1
caption” on Flickr8K. As seen, the dimension of semantic spaces has effects on
the performance. More specifically, the recall reaches the peak at ds = 50 and
then begins to degrade. An appropriate dimension for a latent semantic space de-
pends on the complexity of semantics contained in datasets. A lower dimensional
semantic space may result in an insufficient capacity to represent the distribution
of semantics, while a higher dimension may cause a looser distribution of seman-
tics as well as larger sizes of transformation matrices Um and Vm .

Fig. 4.5 illustrates the effect of parameters λ1 and λ2 on the retrieval per-
formance (R@5) of KMM with M = 40 in the case of “1 image vs. 1 caption” on
Flickr8K. In the figure, we show the effect of one parameter while setting the other
to the optimal value. By experiments, we find that the retrieval performance peaks
at λ1 = λ2 = 10−2 and then retrieval performance begins to degrade as λ1 or λ2

continues to be added. In general, we find λ1 leads a faster increase and slower
degradation of performance than λ2 as parameters are added. The results indi-
cate that the smoothness term plays a more important role than the sparseness
term in maintaining a good retrieval performance. In the experiments, we set λ1

or λ2 to 10−2 for all datasets. We conduct a further analysis for λ1 and λ2 by an
ablation study in the next subsection.

4.5.3. PERFORMANCE ON CROSS-MEDIA RETRIEVAL

Ablation study

To further reveal the contribution of the two constraints in problem Eq. 4.19, we
test the performance of KMM with three configurations. The variants include:
1) KMM (without smoothness), which is obtained by removing the smoothness
term, 2) KMM (without sparseness), which ignores the L1-norm regularization
that constrains the sparseness of learning results, and 3) KMM, which is the full
version formulated in problem Eq. 4.19. Table 4.2, Table 4.3 and Table 4.4 show
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the comparison results of the variants in the case of “1 image vs. 1 caption” on
Flickr8K, Flickr30K and MSCOCO. From the tables, we observe that the variants
KMM (without smoothness) and KMM (without sparseness) generally perform
slightly worse than KMM (with visual representation using ResNet). Both variants
have a degradation of 1.0 ∼ 3.3% on the whole compared with KMM. From the fig-
ures, we observe that the smoothness term plays a more important role than the
sparseness term in improving performance. The main cause is that smoothness
may enforce two similar examples to be close together in the latent space.

Performance comparison

First, we evaluate and analyze the performance of the proposed approach in the
case of “1 image vs. 1 caption” (i.e., the top two parts of Table 4.2, Table 4.3 and
Table 4.4). Table 4.2 and Table 4.3 show the bi-directional retrieval results for the
Flickr8K and Flickr30K datasets. We implement KMM with two visual representa-
tions: VGG-based and ResNet-based. It is known that ResNet generally performs
better than VGG in many tasks. As expected, KMM with ResNet-based visual rep-
resentation achieves better performance than KMM with VGG-based visual rep-
resentation and has an increase of 2.6 ∼ 6.4%. For Flickr8K and Flickr30K, we
compare our approach with 4 and 7 state-of-the-art methods, respectively. The
table shows that our approach achieves better performance than the compared
methods in most cases. In the task of “Text → Image”, CSE achieves better re-
sults than ours in terms of the metrics R@5 and R@10. Compared with our previ-
ous work MLLM, which can be considered as a simple version of KMM that does
not introduce kernel mapping, we find that KMM achieves a large improvement.
The results mean that the kernel mapping may lead to better modeling for non-
linear data distributions and nonlinear relationships between modalities. Table
4.4 shows the comparison between KMM and 9 state-of-the-art methods for the
MSCOCO dataset. From the table, we find that the performance of our approach
is better than or close to those of the compared methods. Our approach achieves
the best performance for the metrics R@5 and R@10 in the task of “Image → Text"
and the metric R@10 in the task of “Text → Image”, while DSvEL obtains better
results than ours in the other cases.

We also evaluate our approach in the case of “1 image vs. 5 captions” and re-
port the results in Table 4.2, Table 4.3 and Table 4.4 (i.e., the bottom two parts
of the tables). The tables show that KMM is superior to MLLM and Deep CCA.
Regarding Flickr30K, we find that CCL achieves better performance than our ap-
proach for the metric R@5 and R@10 in the task of “Text → Image”. Comparing
the case of “1 image vs. 1 caption” with “1 image vs. 5 captions”, we notice that
the former has a change of −1.2 ∼+0.7% in terms of the three recalls when KMM
works with the ResNet-based visual representation. More specifically, for the task
of “Text → Image”, the former has a slight decline in terms of all metrics; for the
task of “Image → Text”, the former tends to achieve a higher recall in terms of R@1
and a lower recall in terms of R@10. We consider that this change may derive from
the richness of association information between different modalities and the way
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Table 4.5: MAP scores (percent) of bi-directional retrieval on NUS-WIDE-10K.

Approaches Image → Text Text → Image Average

Deep CCA [128] 40.7 41.6 41.2

GMM+HGLMM [139] 44.0 45.3 44.7

MLLM [43] 49.7 48.1 48.9

CCL [130] 50.6 53.5 52.1

KMM (VGG) 51.7 51.6 51.7

KMM (ResNet) 54.8 54.4 54.6

of retrieval. Intuitively, the case of “1 image vs. 1 caption” has less association in-
formation than “1 image vs. 5 captions” due to its shorter text, hence it may result
in a slightly lower recall on the whole in the image retrieval given a textual query;
while for the task of “Image → Text”, all 5 correct captions can be used as the can-
didates to match a given image query and increase the possibility of a correct one
among the first r responses, especially for the metric R@1.

From Table 4.2, Table 4.3 and Table 4.4, we observe that ResNet-based rep-
resentation generally leads to better performance than VGG- and AlexNet-based
representations due to its better abstraction of visual semantics using the struc-
ture of more layers. Regarding the superiority of CSE, DSvEL and CCL to our ap-
proach in some cases, we consider that there are two main causes. One is the
visual localization. For example, DSvEL introduces a localization mechanism to
emphasize the visual concepts associated with the corresponding text. CCL uses
local visual patches as well as whole images as the input of model. CSE adds the
consistency constraints on the intermediate regional features. The fine grained
information may help capture accurate mapping between modalities. In addi-
tion, the multi-layered association in the feature extraction via deep networks
may cause the improvement. Both CCL and CSE introduce consistency constraints
for images and text at different layers of deep networks, which truely reinforce the
association of heterogeneous modalities.

In Table 4.5, we report the performance of bi-directional retrieval on the NUS-
WIDE-10K dataset in terms of the mAP metric. Since NUS-WIDE-10K has class
labels, we can compute the mAP for the retrieval task. In the experiment, we
compare our approach with 4 state-of-the-art methods. As shown from the table,
KMM (with ResNet-based visual representation) maintains an advantage with all
4 compared methods and KMM (with VGG-based visual representation) obtains
similar results with CCL.

Performance on cross-dataset evaluation

Following RRF-Net [146] and CSE [145], we also evaluate the performance of our
approach in terms of cross-dataset generalization. In this experiment, we em-



4.5. EXPERIMENTAL RESULTS

4

75

Ta
b

le
4.

6:
Pe

rf
o

rm
an

ce
(p

er
ce

n
t)

o
fb

i-
d

ir
ec

ti
o

n
al

re
tr

ie
va

lo
n

cr
o

ss
-d

at
as

et
in

th
e

ca
se

o
f“

1
im

ag
e

vs
.1

ca
p

ti
o

n”
.

D
at

a
Se

tt
in

g
A

p
p

ro
ac

h
es

Im
ag

e
→

Te
xt

Te
xt

→
Im

ag
e

R
@

1
R

@
5

R
@

10
R

@
1

R
@

5
R

@
10

Tr
ai

n
:F

li
ck

r3
0K

,T
es

t:
M

SC
O

C
O

R
R

F
-N

et
[1

46
]

24
.8

53
.0

64
.8

18
.8

44
.1

58
.5

C
SE

[1
45

]
24

.6
49

.2
62

.5
19

.1
44

.4
58

.6

K
M

M
(R

es
N

et
)

25
.4

52
.5

65
.4

19
.1

44
.8

58
.9

Tr
ai

n
:M

SC
O

C
O

,T
es

t:
Fl

ic
kr

30
K

R
R

F
-N

et
[1

46
]

28
.8

53
.8

66
.4

21
.3

42
.7

53
.7

C
SE

[1
45

]
30

.6
59

.3
71

.0
26

.0
52

.1
64

.3

K
M

M
(R

es
N

et
)

32
.7

60
.1

71
.6

26
.6

52
.4

63
.7



4

76 4. KERNEL-BASED MIXTURE MAPPING FOR IMAGE AND TEXT ASSOCIATION

ploy the model trained on Flickr30K or MSCOCO to evaluate the test set of the
other dataset. Table 4.6 reports the results of bi-directional retrieval in the case
of “1 image vs. 1 caption” for the cross-dataset. The performance of the general-
ization is similar to and positively correlated with the performance in Table 4.2,
Table 4.3 and Table 4.4. The table also shows that it is easier to transfer a model
trained on a large dataset to a small one than the converse case. From the table,
we observe that, on the whole, our approach achieves better performance on the
cross-dataset evaluation. We consider that this may be caused by two reasons. 1)
In the training process, the deep networks pre-trained on ImageNet are change-
less and the feature space is uniform for different datasets. In this case, the KMM
model trained in the feature space that is independent of datasets can transfer
the association knowledge across datasets more stably. 2) As a model-driven ap-
proach, KMM introduces an explicit probabilistic model to describe both the data
distribution and relationship distribution, which can be considered as prior infor-
mation from the Bayesian viewpoint, and can generally improve generalizability.

Example illustration

Fig. 4.6 shows some examples of cross-media retrieval results in the cases of “1
image vs. 1 caption” (top two rows) and “1 image vs. 5 captions” (bottom four
rows) for the MSCOCO test data. All retrieval algorithms encourage the ground
truth associated with queries to be located as close to the front of the response
as possible. In the first case, we find a response (in the 2nd row) that is not the
ground truth associated with the query appears in front of a correct caption; in
the second case, we show two examples (in the 4th and 6th rows) in which the
ground truth does not appear at the 1st position in the retrieval results. We find
that the retrieval results at the 1st position are truely similar with the queries. For
example, in the 4th row, although the returned image at the 1st position is not the
ground truth associated with the query, it consists of the same objects, such as
“plane” and “runway”, as the ground truth and highly matches the query.

4.6. CONCLUSIONS

In this chapter, we present a kernel-based probabilistic mixture model, called
KMM, for modeling the semantic correlation between web images and text. KMM
assumes that the relationship between different modalities follows multiple ba-
sic transformations, each working over a local region described by a neighbor-
hood model in the input space. We employ kernel theory to address the nonlin-
earity of the data distribution and cross-modal mapping. We present a hybrid
optimization algorithm based on EM and subgradient ascent to estimate the pa-
rameters of KMM and prove that the algorithm can converge to an (local) opti-
mal solution. By combining nonlinear transformation and probabilistic models,
KMM addresses the complexity of the semantic distribution over the global in-
put space, its continuity at the local scale, and the nonlinearity in the mapping of
different modalities. The experimental results demonstrate the superiority of our
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Figure 4.6: Example cross-media retrieval results over MSCOCO test data. The top two rows corre-
spond to the case of “1 image vs. 1 caption” and the bottom four rows correspond to the case of “1
image vs. 5 captions”. Images surrounded by blue boxes and blue-colored text are ground truth. Re-
trieval results are arranged in decreasing order of similarity.
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approach over representative state-of-the-art methods of modeling the relation-
ships between images and text.


