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CHAPTER SUMMARY
This chapter addresses RQ2 and RQ3.

RQ2: How to utilize additional knowledge base to measure semantic matching?
RQ3: To what extent can curriculum learning measure the distribution of visual
complexity and improve weak supervision for semantic matching?

This chapter addresses the task of fine-grained label learning in object detec-
tion with the weak supervision of auxiliary information attached to images. Most
of the recent work focused on the label prediction for objects in the same category
space as in training data under the supervised learning framework and cannot be
expanded to the learning of more fine-grained categories that have not been de-
fined in training sets. In this chapter, we propose a new approach, called label
inference curriculum network (LICN), to fine-grained label learning by incorpo-
rating the coarse category labels and captions provided in public datasets. First,
we build a semantic label map based on embedding techniques and a knowledge
base to describe the correspondence between coarse labels and fine-grained label
proposals; second, we introduce the label inference curriculum network with the
consideration of the complexity of samples that describes the difficulty of fine-
grained label learning. To evaluate the performance of fine-grained label learn-
ing, we construct multiple datasets based on widely-used public datasets. Ex-
perimental results demonstrate the effectiveness of our approach in the task of
fine-grained label learning.
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Figure 3.1: An illustration of the image-caption pair. For an image, the location of objects (bounding
boxes), the corresponding coarse labels, and the attached captions are provided in the datasets for
training. In general, the captions consist of a set of fine-grained label proposals for the objects in the
image.

Visual object detection and classification is a fundamental problem in com-
puter vision research and has a wide range of applications, such as face percep-
tion, autonomous vehicles and pedestrian detection. Since the renaissance of
deep neural networks, object detection has been revolutionized by a series of
groundbreaking works, including Faster-RCNN [30], Mask-RCNN [57] and YOLO
[58].

Despite these achievements, most deep learning methods have an important
limitation: they are trained with exhaustive and clean human annotations. These
annotations are expensive as they require human to mark the label and the bound-
ing boxes. Furthermore, labels provided by different annotators are possibly in-
consistent. An alternative approach is to relax this requirement of exhaustively
labeled data and to use web sources of annotated data, such as social media ser-
vices like Flickr and Twitter, which have user-generated image tags or captions
[59][60]. These data can be seen as natural annotations of the images, providing
weak supervision of the collected data, which is a cheap way to increase the scale
of datasets near-infinitely.

Weakly supervised object detection (WSOD) is training an object detection
model without explicit bounding box annotations. The classic WSOD problem
formulation [61][62] treats all object labels per image as a bag of proposals (image-
level supervision), and learns to assign instance-level semantics to these propos-
als using multiple instance learning (MIL). The state-of-the-art model for weakly
supervised object detection has reached 43.1% Mean Average Precision [63] on
the Pascal VOC 2007 test set. However, there has a strong critical assumption of
WSOD is that the image-level labels should be precise, indicating at least one pro-
posal object in the image associated with one label in the image-level labels. This
is always the case, especially not in real-world problems and real-world supervi-
sion.

A challenge of user-generated labeling (tags or captions) is that these anno-
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tations have a lot of noisy labels: Past work has shown that weakly supervised
learning algorithms can use these noisy labels [64][65]. However, captions lack
information on minor objects or information that may be deemed unimportant,
a phenomenon known as reporting bias [66][67]. For example, Fig.3.1 illustrates
image captions that describe the same object (marked by a red bounding box) in
the image but using different words (person and man) than the predefined cate-
gory label (person). It is noteworthy that the word “man” is more fine-grained than
“person” in describing this object. Also, references to objects may be ambiguous,
for example in cases where there are multiple persons in the image.

In this chapter, we focus on a new problem called fine-grained label learning
that is different from the traditional WSOD problems. Suppose we have a set of
data that is paired image and captions, as shown in Fig.3.1, where the location and
coarse labels are provided as ground truth in training sets. In this chapter, we aim
to detection objects and learn the fine-grained labels under the joint supervision
of the coarse label for an object and the captions for an image. The problem has
the following two characteristics. First, the fine-grained labels need to be learned
from captions, and thus the supervision of captions is considerably weak, noisy
and ambiguous as analyzed above. Second, the uncertainty of noise and ambi-
guity in the supervision of captions results in different difficulties in the learning
process for different examples, and thus the order of training data may affect the
learning performance.

To address the problem, this chapter formulates the task of fine-grained label
learning with the joint supervision of coarse labels and captions and proposes a
novel approach called label inference curriculum network (LICN).

First, we build a semantic mapping that provide a correspondence between
the coarse labels and fine-grained label proposals coming from captions based
on embedding techniques and a knowledge base. Furthermore, we design a cur-
riculum learning process for the Faster R-CNN backbone, where a term called the
complexity of samples (CoS) is defined to determine the order of training data in
the curriculum learning process.

In summary, our contributions are four-fold. First, we introduce and formu-
late the problem of fine-grained label learning based on the joint supervision of
the coarse category labels and captions. Second, we build a semantic mapping
between the coarse labels and fine-grained label proposals coming from captions
based on embedding techniques and a knowledge base. Third, we propose a novel
approach called LICN and design the weakly supervised curriculum learning pro-
cess for improving the learning performance, where the complexity of samples
(CoS) is defined to determine the order of training data in the curriculum learn-
ing process. Finally, we construct the datasets consisting of both coarse and fine-
grained labels based on MS COCO and Visual Genome for the evaluation of our
approach, and the experimental results demonstrate the effectiveness of our ap-
proach.

The rest of this chapter is organized as follows. Section 3.1 presents a brief
overview of related work. Section 3.2 formulates the problem of fine-grained label
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learning and introduces our approach in details. Section 3.3 provides the experi-
mental results and analysis, and Section 3.4 concludes the chapter.

3.1. RELATED WORK

The task of weakly supervised object detection involves the correlation of different
media and the information distribution from images to the corresponding cap-
tions. Therefore, we review the related work in terms of lexico semantic analysis
and weakly supervised entity localization.

The task in this chapter has some differences from the following related prob-
lems:

Learning from Text: Ye et al. [63] harvest detection models from free-form text
and use a label inference module to amplify signals in the free-formed texts to
supervise the learning of a multiple instance detection network. Fang et al. [65]
use multiple instance learning to train visual detectors for words that commonly
occur in captions. Most learning from text model does not use the same semantic
word in text as new category.

Weakly Supervised Object Detection and Segmentation(WSOD) [68, 69, 70]: In
general, this task aims to detect objects from images based on the supervision
of a set of image-level labels. To the best of our knowledge, the existing WSOD
methods have not involved captions, a type of weaker supervisory information
than exact image-level labels, in object detection.

Fined-Grained Image Classification(FGIC) [71][72]: FGIC usually involves clas-
sifying the sub-classes of objects belonging to the same class. In each class, ob-
jects of different subclasses are both semantically and visually similar to each
other.

3.1.1. LEXICO-SEMANTIC ANALYSIS

In the widely-used public image datasets, there is typically a semantic gap be-
tween the human-written captions and the categorical annotations of the objects
in the images. For example,the annotation of the object in red box is “person”
while the caption uses the word “man” in Fig 3.1. A variety of lexico-semantic
methods have been proposed to bridge this semantic gap. These methods can be
divided into two categories: knowledge-based methods and corpus-based meth-
ods [73][16]. Knowledge-based methods rely on external semantic resources (the-
sauri or lexical knowledge bases) to identify similarities between two words. For
example, WordNet [74] and HowNet [75] [76] are used to measure semantic dis-
tance between a pair of words. Although these semantic metrics are interpretable
and effective, they have as drawbacks that they lack context information and that
the similarity can only be computed when both words are present in the lexicon.

Due to the knowledge-based methods limitations, corpus-based methods are
then proposed to utilize context information around the center words. Current
corpus-based methods train vector representations (called ‘embeddings’) based



3

28
3. FINE-GRAINED LABEL LEARNING IN OBJECT DETECTION WITH WEAK

SUPERVISION OF CAPTIONS

on contexts of words in a large text collection. The word similarity study mostly
uses a statistical description of the context [77][11]. The most used static word
embedding model is Word2Vec [26][25], a highly efficient model proposed by Google.
The model can simplify the processing the text context into a K-dimensional vec-
tor space, so we can use the spatial similarity to represent similarity in text seman-
tics. Li et al. [78] provide a transferred vector approach, that utilizes a transferred
vector for the representation of a word to reveal the word semantics better, not
just relying on its own embedding. In our work, we use these two types of model,
i.e., WordNet [74] and Word2Vec [26][25], to build a semantic map between the
pre-annotated coarse labels and the fine-grained label proposals from captions.

3.1.2. WEAKLY SUPERVISED MULTIPLE INSTANCE LEARNING

Most weakly supervised methods for object detection formulate the task as a mul-
tiple instance learning (MIL) problem. In this problem, MIL addresses the data
objects represented by a bag of instances and associated with a label (a set of la-
bels) for each bag. If the image is labeled as containing an object, at least one
of the label proposals will be responsible for providing the prediction of that ob-
ject. The papers by Oquab et al. [79] and Zhou et al. [80] propose a Global Aver-
age (Max) Pooling layer to learn class activation maps. Bilen at al. [61] propose
Weakly Supervised Deep Detection Networks (WSDDN) containing classification
and detection data streams, where the detection stream weighs the results of the
classification predictions. Kantorov et al. [81] improve WSDDN by considering
context. Tang et al. [69][82] jointly train multiple refining models together with
WSDDN, and show the final model benefits from the online iterative refinement.
Diba et al. [57] and Wei et al. [83] apply a segmentation map and Wan et al. [62]
incorporate saliency. Finally, Redmon et al. [58] introduce a min-entropy loss to
reduce the randomness of the detection results.

Our work is similar to all the above since we also represent the proposals using
a MIL weighted representation. However, we go one step further to successfully
adopt a more challenging supervision scenario where the captions are utilized
as the weak supervision for the learning fine-grained labels in the task of object
detection.

3.1.3. CURRICULUM LEARNING

Curriculum learning[84] was proposed by Yoshua Bengio in 2009. It formalizes the
learning process of humans and animals from easy cases to gradually more com-
plex ones. In recent years, more and more weakly supervised learning methods
based on curriculum learning have been proposed and obtain good performance
[85][86]. CurriculumNet [41] designs a curriculum learning process by measur-
ing the complexity of data using its distribution density in a feature space for the
classification of large-scale weakly-supervised web images without human anno-
tations, where the negative impact of noisy labels is reduced substantially. Wang
et al. [87] address the object detection problem by learning an effective object
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detector using weakly-annotated images with curriculum learning. Hacohen et
al. [88] analyze the effect of curriculum learning, which involves the non-uniform
sampling of mini-batches, on the training of deep networks. In this chapter, we
design a curriculum learning process by defining a new measurement of the de-
gree of difficulty in fine-grained label learning.

3.2. METHODOLOGY

3.2.1. OVERVIEW

In this chapter, we are given a pair consisting of an image and its captions. For-
mally, we have Dtr = {(Ii ,Ri ,LI

i ,Ci )}Mtr
i=1 and Dte = {(Ii ,LI

i ,Ci )}Mte
i=1 as the training

set and test set, respectively, where Ii and Ci denote the i -th image and cap-
tion, respectively, and LI

i = {l I
i 1, l I

i 2, · · · , l I
i mi

} refers to the annotations of Ii , each
considered as a coarse category label for one of the mi visual object regions Ri =
{ri 1,ri 2, · · · ,ri mi } segmented from this image. The caption Ci consists of a set of
entities that generally provide more fine-grained category information than LI

i
for the visual object regions Ri and thus we extract them from captions as fine-
grained label proposals, denoted by LC

i = {lC
i 1, lC

i 2, · · · , lC
i ni

}. In this manner, we
have a coarse label vocabulary VI and a fine-grained label proposal vocabulary
VC that consist of all coarse labels and fine-grained label proposals, respectively,
where l I

i · ∈VI and lC
i · ∈VC . Regarding the labels we make two observations: 1) the

label proposals LC
i from captions are generally more fine-grained than the anno-

tations LI
i preassigned to the image; 2) The correspondence at the granularity of

instances (i.e., between a fine-grained label proposal lC
i · and a visual object region

ri ·) is missing. An example can be seen in the second image of Fig. 3.2(a). It is in
this image unknown which region corresponds to the fine-grained label “man” or
“woman” as extracted from the captions.

We aim to learn and infer the fine-grained label li · ∈ VI ∪VC for each visual
object region based on the supervision from the training data D tr . As illustrated
in Fig. 3.2, our framework includes two main processes: semantic mapping and
curriculum learning-based fine-grained label learning. In the semantic mapping,
we extract the entities from captions as the fine-grained label proposals lC

i · ∈ VC

and measure the semantic similarity between the extracted label proposals and
the coarse labels l I

i · ∈ VI based on the combination of the knowledge base Word-
Net and data-driven embedding techniques. To learn the fine-grained label for
each object, we propose a curriculum learning-based method to train the model
by adding data in an ascending order of example complexity.

3.2.2. SEMANTIC MAPPING

The purpose of the semantic map is to build the relationship between the coarse
label l I

i · and the fine-grained label proposals lC
i · by measuring their similarity over

the training set. We extract all nouns from captions with the CoreNLP toolkit [89]
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Figure 3.2: The framework of the proposed LICN approach. (a) The input data in the form of image-
captions pairs, where the image, coarse labels and captions are provided in training sets. (b) Semantic
mapping between the coarse labels and fine-grained label proposals based on embedding techniques
and a knowledge base. (c) Curriculum learning process for the Faster R-CNN backbone, where the
complexity of samples is defined to measure the degree of difficulty in learning the fine-grained labels.
(d) The classifier for predicting fine-grained labels.

as the candidates for the fine-grained label proposals. In order to get a semantic
map we pass three steps.

Semantic Mapping Based on Knowledge Base

We employ WordNet as the knowledge base to measure the semantic similarity
between annotations and fine-grained label proposals. WordNet can represent
relations between word senses with an ontology. For an annotation l I

i ·, we can

obtain the synset Wkb(l I
i ·) from WordNet in the form of:

Wkb(l I
i ·) = {Hper (l I

i ·), Hpon(l I
i ·),Snon(l I

i ·)}, (3.1)

where Hper (·), Hpon(·) and Snon(·) refer to the hypernym, hyponym and synonym,
respectively, for a given word in the WordNet.

Semantic Mapping Based on Embedding

We use Word2Vec as the embedding technique to measure the similarity of labels
in VI ∪VC . We fine-tune the pre-trained Word2Vec model [26] on all captions in
the data. In this chapter, we extract all words in captions to build a vocabulary.
By our analysis, all coarse labels preassigned to images appear in this vocabulary,
so that we can obtain the feature vector of each coarse label in embedding space.
As the fine-grained labels are extracted from the captions, we can obtain the fea-
ture vectors of fine-grained labels as well. For a coarse label l I

i · and a fine-grained

label proposal lC
i · , we achieve their de -dimensional embedding vectors lI

i · and lC
i ·,

respectively, with the Word2Vec model. The similarity between two vectors in the
embedding space is measured by the cosine similarity S(·, ·).
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Building the Semantic Map

As analyzed above, we build a semantic mapping between the annotations l I
i · and

the fine-grained label proposals lC
i · with the following matrix:

W (l I
i ·, lC

i · ) =
{

1, i f lC
i · ∈Wkb(l I

i ·) and S(lI
i ·, lC

i ·) > ε
0, other wi se,

(3.2)

where ε is a threshold in [0,1]. With Eq.3.2, we can find one or multiple fine-
grained label proposals that are semantically similar with the given annotation.
Since a visual object region strictly corresponds to an annotation in the dataset,
we can achieve a weak correspondence between visual object regions and fine-
grained label proposals.

3.2.3. FINE-GRAINED LABEL LEARNING BASED ON CURRICULUM

LEARNING

Curriculum learning is an effective learning framework that imposes structure on
the training set relying on a notion of “easy” and “hard” examples [84]. In the
following subsection, we will find that the examples are of different difficulties to
learn and infer the fine-grained labels. Therefore, we perform the fine-grained
object label learning based on the curriculum learning framework.

Backbone for Object Detection

Based on the semantic mapping introduced in Subsection 3.2.2, we have achieved
the correspondence between each visual object region ri · in the i -th image and
its fine-grained label proposals (a subset of LC

i ). Without ambiguity, we redenote

them by rk and L̃C
k by removing the subscript i (the index of images), where k is

the index of a visual object region in the dataset, rk ∈ Ri and L̃C
k ⊂ LC

i . Thus, our
objective is to localize the visual object and learn its fine-grained label with the
weak supervision of a set of fine-grained label proposals L̃C

k to the visual object
region rk .

We use the Faster R-CNN model [30], denoted by Fdet (Ii ), as the backbone
of our work. The Faster R-CNN consists of three modules: a convolutional neu-
ral network for generating the feature map of an image, an RPN (region proposal
network) for generating a set of rectangular object proposals performed on the
feature map, and a classifier for learning the category label of each region. The
output of the backbone can be described as follows:

(Pi ,Ri ) =Fdet (Ii ), (3.3)

where Ri = {ri j }mi
j=1 denotes the set of mi visual object regions extracted from the

image Ii , where the location of each region is described by four coordinates of
the bounding box, and Pi = [pi ,1,pi ,2, · · · ,pi ,mi ] denotes the probabilities that all
object regions in Ri are predicted to categories. Without ambiguity, we rewrite
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pi , j as pk = [pk,1, pk,2, · · · , pk,CC ]T by removing the index of images, where pk,c

denotes the probability that a visual object region rk is categorized into the c-th
class and CC denotes the cardinality of VC (the same as the cardinality of VI ∪VC as
all annotations appear in the fine-grained label proposals). In our work, we define
the space of categories with the fine-grained label proposals, i.e., VC .

The Complexity of Samples

Different samples have different difficulty in the learning of fine-grained labels.
For example, if there is only an object region annotated by “person” in an image
and only an fine-grained label proposal “man” in the caption is related to the an-
notation according to the semantic mapping in Eq.3.2, it is easy to infer the fined-
grained label for the object region. In contrast, if there are multiple fined-grained
label proposals corresponding to the annotation according to the semantic map-
ping, it is much difficult to discriminate which one is the true fine-grained label
of the object region in the image. We introduce a term called the complexity of
samples (CoS) to describe the difficulty in the task. We define the CoS of a sample
Di ∈D as follows:

HCoS (Di ) =−∑
l I

i ·

∑
lC

i ·

Pr(lC
i · |l I

i ·)log(Pr(lC
i · |l I

i ·)), (3.4)

where Pr(lC
i · |l I

i ·) is the conditional probability of the fine-grained label proposal lC
i ·

given the annotation li · and can be achieved by:

Pr(lC
i · |l I

i ·) =
W (l I

i ·, lC
i · )∑

lC
i ·∼l I

i ·
W (l I

i ·, lC
i · )

, (3.5)

where lC
i · ∼ l I

i · denotes all fine-grained label proposals lC
i · related to the annotation

l I
i · according to Eq.3.2. As shown in Eq.3.4, CoS is defined based on the Shannon’s

Entropy that is mainly used to measure the uncertainty of a discrete random vari-
able. In this chapter, we consider l I

i · as the random variable and lC
i · as its values

with non-zero probability. If more fine-grained label proposals are related to the
annotation, the correspondence between them is more uncertain and the label
proposal is thus more intractable. Moreover, if there are multiple visual objects
detected in an image, the CoS tends to be a larger value accordingly based on
Eq.3.4.

Curriculum Learning Process

Based on the semantic mapping, we have obtained the fine-grained label propos-
als L̃C

k for each visual object region rk . Here we transform L̃C
k to a binary vector

yk = [yk,1, yk,2, · · · , yk,CC ]T ∈ {0,1}CC . yk,c = 1 (yk,c = 0) means the c-th fine-grained
label proposal of VC is present (absent) in L̃C

k .
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In the curriculum learning process, the training data are fed to the Faster R-
CNN in the order of easy samples (with low CoS) to hard samples (with high CoS).
The loss for the learning of fine-grained labels is defined as follows:

Lk
w s =

CC∑
c=1

yk,c · log pk,c + (1− yk,c ) · (1− log pk,c ), (3.6)

where Lk
w s refers to the weakly supervised loss. Different from the original Faster

R-CNN, the ground truth of label vector, i.e., yk , may consist of multiple ones cor-
responding to multiple fine-grained label proposals, rather than being a one-hot
vector.

3.3. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we evaluate the effectiveness of the proposed model LICN by an-
swering the following two questions. Q1: What is the quality of the learnt fine-
grained label proposals semantic map reasonable for this weakly supervised ob-
ject detection model? Q2: How effective the proposed LICN approach is in terms
of the fine-grained label learning based on weakly supervised paradigm learning?

3.3.1. EXPERIMENTAL SETUP

For the experimental setup, we first describe the dataset and then the implemen-
tation details.

Datasets

The experiments are conducted on the MS COCO 2017 dataset, Visual Genome,
the Pascal VOC 2007 test dataset, and our constructed datasets based on the three
datasets. Table 3.1 shows an overview of these datasets.

• The MS COCO 2017 dataset contains 118,287 training images and 5,000 val-
idation images. It provides 5 human-annotated captions per image and a

Table 3.1: An overview of the datasets.

datasets # of images # of categories # of objects
Visual Genome 107,228 80,138 3,909,697

MS COCO 118,287 80 860,001
FG-COCO 118,287 169 860,001

sCOCO training 76,631 69 200,962
FG-sCOCO training 76,631 150 200,962

FG-sCOCO test 13,175 150 29,169
FG-sCOCO val. 2,000 150 14,090

Visual Genome test 54,212 150 496,809
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total of 80 category labels for the object regions segmented from all the im-
ages. The category labels play the role of the annotations LI

i and the cap-
tions are used for the building of the semantic map and the extraction of
fine-grained label proposals LC

i for image Ii .

• Visual Genome contains 107,228 images, 3,909,697 objects from 80,138 cat-
egories, and other information such as the relationships between objects.
The categories in Visual Genome are much more fine-grained than those
in MS COCO, and thus we use this dataset for testing the performance of
fine-grained label inference and the category labels as the ground truth.

• The Pascal VOC 2007 test dataset has 4,952 images and 20 categories of ob-
jects. It is utilized as as the test dataset.

Based on the above datasets, We construct the following datasets for training and
testing our approach from different aspects:

• FG-COCO: We replace the coarse category labels of the objects in each im-
age in MS COCO by the fine-grained label proposals appearing in the cor-
responding caption based on the semantic map and thus obtain FG-COCO.
A total of 169 category labels (including the original coarse labels from MS
COCO and new fine-grained category labels) are generated for the objects
in the dataset.

• FG-sCOCO test dataset: There are a set of images appearing both in MS
COCO and in Visual Genome. For an image in the set, if the Intersection
over Union (IoU) between a bounding box from MS COCO and a bound-
ing box from Visual Genome is larger than 0.90, we keep the image as an
image example, and the bounding box from MS COCO and category labels
from Visual Genome (must appear in the corresponding caption from MS
COCO as well) as the ground truth of the location and fine-grained label for
an object, respectively. We randomly choose 2000 images from the set for
validation (called FG-sCOCO val. as shown in Table 3.1 ), and the rest is for
test. As a result, the FG-sCOCO test dataset consists of 13,175 images and
29,169 objects with 150 category labels (including the original coarse labels
from MS COCO and new fine-grained category labels). In the experiments,
we adopt the FG-sCOCO test dataset to evaluate the performance of fine-
grained label learning and inference.

• FG-sCOCO training dataset: It is a subset of FG-COCO, which excludes all
the images appearing in the FG-sCOCO test and FG-sCOCO val. dataset.
This dataset consists of 76,631 images and 200,962 objects with 150 cate-
gory labels (including the original coarse labels from MS COCO and new
fine-grained category label proposals from the semantic map). To make the
learning robust, we keep only the categories consisting of more than 200
examples of object regions in the dataset.
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COCO Captions: (1) A man wearing a striped suit sitting in a chair. (2) A 
man sitting on a chair with a serious look, looking at a camera. (3) Man
in a suit and tie sitting in a chair with his fingers crossed.  (4) A man in a 
suit sits in a chair with his hands clasped. (5) An image of a man wearing 
a suit sitting in a chair.

(a) (b) (c) (d) (e)

person→man chair→ chair tie→ tie

Test data matching: 

person

chair

tie

man

chair

tie

person man
IoU=0.9697

chairchair

IoU=0.9665

tietie

IoU=0.8145

Figure 3.3: Test data example: (a) shows an example from MS COCO with object bounding boxes and
the associated category labels (red color); (b) shows the same image in the Visual Genome dataset
with object bounding boxes and the associated category labels (blue color); (c), (d) and (e) show the
matching between the object regions from MS COCO and Visual Genome with an IoU value larger than
0.90. We see that “person” matches to “man”, “chair” to “chair” and “tie” to “tie”.

IoU 0.50 IoU 0.55 IoU 0.60 IoU 0.90

Figure 3.4: IoU example: The red color box and blue color box come from MS COCO and Visual
Genome, respectively, and the IoU value of two different boxes of the same object should be high.

• sCOCO training dataset: As a subset of MS COCO, it consists of all the im-
ages in FG-sCOCO training dataset, and its bounding boxes and category
labels are from MS COCO. As a result, the dataset consists of 76,631 images
and 69 category labels for 200,962 objects.

• Visual Genome test dataset: Different from FG-sCOCO test dataset, Visual
Genome test dataset is the subset of Visual Genome that excludes all the
images appearing in MS COCO. In this dataset, we only keep those objects
whose category labels appear in the FG-sCOCO training dataset. As a result,
the dataset consists of 54,212 images and 496,809 objects with 150 category
labels.

The following is an analysis of the building of the FG-sCOCO test dataset. We
assume that the IoU value is high for a paired bounding boxes of the same object
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Table 3.2: The characteristics of the interaction of MS COCO and Visual Genome with different IoU
threshold values.

IoU # of images # of objects
# of categories
in MS COCO

# of categories
in Visual Genome

0.50 30,983 96,529 79 2,004
0.55 29,337 85,468 79 1,680
0.60 27,621 75,772 79 1,407
0.65 26,118 67,248 79 1,143
0.70 24,890 59,503 78 940
0.75 23,591 51,222 77 787
0.80 21,958 41,848 76 654
0.85 19,603 31,303 76 537
0.90 15,529 19,702 74 413
0.95 7,306 7,957 72 281

in the same image from the overlapping part between Visual Genome and MS
COCO. As shown in Fig.3.3, the paired bounding boxes with high IoU value has
the same semantics, but may have different object labels. As Visual Genome has
80K category labels which contain all fine-grained categories, we use these object
labels as ground truth label to evaluate the semantic map (Q1). We illustrate the
role of the threshold on the IoU value in Fig. 3.4. Table 3.2 shows the effect of
different IoU threshold values on the data. For example, for the IoU of 0.90, there
are 19,702 paired objects with an IoU larger than 0.90 from 15,529 images, and
these objects belong to 74 categories in MS COCO and 413 categories in Visual
Genome. Considering the count of test data and the count of the object categories,
we will evaluate our model on the FG-sCOCO test dataset with IoU in [0.90,1].
For the object detection (Q2), we found that size of images are a little different
between MS COCO and Visual Genome for the image with same id. We resize the
size of Visual Genome images to make them equal to the size of same image in MS
COCO.

Implementation Details

We train the proposed models on two different datasets: FG-COCO and FG-sCOCO,
and thus generate the following four configurations:

• LICN-E2CFG−COCO : learned on the FG-COCO dataset by feeding training
examples from easy to complex;

• LICN-C2EFG−COCO : learned on the FG-COCO dataset by feeding training
examples from complex to easy;

• LICN-E2CFG−sCOCO : learned on the FG-sCOCO training dataset by feeding
training examples from easy to complex;
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Figure 3.5: The effect of Word2Vec similarity parameter ε in Eq.2 on the performance (weighted SMJI)
of semantic mapping for the FG-sCOCO validation set.

• LICN-C2EFG−sCOCO : learned on the FG-sCOCO training dataset by feeding
training examples from complex to easy.

We use Faster R-CNN with a backbone of VGG-16 as the basic framework of
our work. The VGG-16 backbone is pre-trained on ImageNet and then fine-tuned
on our training datasets. In the process of fine-grained label learning, we use the
stochastic gradient descent (SGD) optimizer with a momentum of 0.9 and a learn-
ing rate of 0.01. We set the maximum epoch to 20 for the convergence of learning
process. The minibatch size is set to 1 for the flexible feeding of the examples of
different complexity. All the experiments are conducted on a platform of 8 Nvidia
Titan V GPUs with Pytorch.

3.3.2. EVALUATION METRICS

Semantic Mapping

We define a weighted semantic map Jaccard index (SMJI) for measuring the close-
ness between the fine-grained labels mined by semantic mapping and the fine-
grained label ground truth provided in the FG-sCOCO validation set. The weighted
SMJI is defined as follows:

W _SM J I =∑
k

Wk ·
LSM

k ∩LGT
k

LSM
k ∪LGT

k

, (3.7)

where LSM
k and LGT

k denote the sets of fine-grained labels mined by semantic
mapping and the fine-grained label ground truth provided in the FG-sCOCO val-
idation set, respectively, corresponding to the k-th coarse category label, and the
operators ∪ and ∩ denote the union and intersection of two sets, respectively. For
example, for the coarse category label of “person”, LSM

k = {“guy”, “man”, “person”,
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Figure 3.6: The illustration of the semantic map that consists of 69 coarse category labels (points on
the inner circle) and 81 fine-grained category labels (points on the outer circle) appearing in the FG-
sCOCO validation set.

“woman”, “someone”} and LGT
k = {“guy”, “man”, “person”, “skateboarder”, “surfer”,

“woman”}. The weight Wk in Eq. 3.7 is defined as follows:

Wk =
| LGT

k |∑
k | LGT

k | (3.8)

where | · | denotes the cardinality of a set. Fig. 3.5 reports the weighted SMJI
on the FG-sCOCO validation set as the threshold ε changes. From the figure, we
observe that the performance of semantic mapping in mining the fine-grained
labels is optimal when ε = 0.72. Thus, we choose ε = 0.72 in the following exper-
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Figure 3.7: The comparison of occurrence frequencies of category labels between before and after
semantic mapping, where the orange bars indicate the occurrence frequencies of the coarse labels
in sCOCO training dataset and blue bars indicate the occurrence frequencies of the labels (either the
original coarse labels or the generated fine-grained label proposals) in the our constructed FG-sCOCO
training dataset after semantic mapping. a) Comparison between the coarse label of category “person”
and the corresponding fine-grained labels, b) comparison on 17 coarse categories, and c) comparison
on the generated fine-grained categories.

iments. Fig. 3.6 illustrates the semantic map that consists of 69 coarse category
labels and 81 fine-grained category labels appearing in the FG-sCOCO validation
set. From the figure, we observe that most fine-grained label proposals extracting
from captions are semantically similar with the coarse labels, while a few noises
are introduced by the semantic mapping. For example, the generated “chicken”,
“meat”, “pasta”, “rice” and “sauce” are not semantically similar with the coarse la-
bel “broccoli”. These noises will be reduced with the curriculum learning process.

In Fig. 3.7, we illustrate of the occurrence frequencies of the category labels
(including the coarse and fine-grained labels) in the FG-sCOCO training dataset
and the sCOCO training dataset, which correspond to the data with and without
semantic mapping, respectively. Due to the large difference in the occurrence fre-
quencies of these categories, we report the results separately in three subfigures.
From the figure, we find that a large amount of fine-grained label proposals are
generated with semantic mapping.

Object Detection

We utilize a widely-used metric, namely average precision (AP), to evaluate the
performance of object detection. AP is defined as the average detection precision
under different recalls and usually evaluates the performance in a category spe-
cific manner. To compare performance over all object categories, the mean AP
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Table 3.3: Average precision (AP) (%) results of LICNs trained on FG-sCOCO training dataset. The
results are reported on the FG-sCOCO test dataset.

Method Avg. Precision, IoU Avg. Precision, Area
0.5:0.95 0.5 0.75 S M L

LICN-C2E 21.90 37.00 22.80 15.40 16.80 24.00
LICN-E2C 23.60 37.40 25.40 13.10 19.10 25.30

(mAP) averaged over all object categories is usually used as the final metric of per-
formance. To measure the object localization accuracy, the IoU is used to check
whether the IoU between the predicted box and the ground truth bounding box
is greater than a predefined threshold 0.5. Instead of using a fixed IoU thresh-
old, based on MS COCO AP is averaged over multiple IoU thresholds between 0.5
(coarse localization) and 0.95 (perfect localization).

3.3.3. PERFORMANCE AND ANALYSIS

FG-sCOCO

We first evaluate our method on the FG-sCOCO validation dataset to analyze the
importance of curriculum learning, where the proposed LICN models are trained
on the FG-sCOCO training dataset.

Fig.3.8 shows the results of the LICN models for the FG-sCOCO validation
dataset. We find that the E2C version of LICN improves the performance of fine-
grained label learning. As shown in Fig.3.8(a), in terms of the mean AP of 0.5:0.05:0.95
IoU, LICN-E2C performs approximately 0.02 AP improvement better than the LICN-
C2E model. However, Fig.3.8(b) for the 0.50 IoU AP, after 7 epochs there is not a
large difference between the LICN-E2C and LICN-C2E model. Fig.3.8(c) shows
the 0.75 IoU AP, for which LICN-E2C performs approximately 0.03 AP better than
the LICN-C2E model. LICN-E2C improves the performance for the predictions
of the 0.75 IoU. As IoU means the object location accuracy, IoU close to 1 means
that the predicted object location is close to the ground truth. We observe that
the improvement is brought by complexity ranked as the IoU increases. This can
be explained by the fact that LICN object detection is able to compute the com-
plexity of the images, and thus it is prone to make fine-grained label predictions
for the same object. Table 3.3 shows a more detailed experimental result on the
FG-sCOCO test dataset. In Table 3.3, “ Avg. Precision, Area S M L” means the av-
erage precisions for small (ar ea < 322), medium (322 < ar ea < 962), and large
(ar ea > 962) objects, respectively, where the area is measured as the number of
pixels in the segmentation mask. The table shows that in the case of 0.75 IoU,
the E2C version improves the performance by 2.6% compared with the C2E ver-
sion, which demonstrates that it is better to learn the fine-grained labels with the
consideration of the complexity of samples defined in the “Methodology" section.
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Figure 3.8: Results of LICN-E2C and LICN-C2E on the FG-sCOCO validation set for different training
epochs. (a) Mean AP of 0.50:0.95 in steps of 0.05, (b) AP of 0.5, and (c) AP of 0.75.
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Table 3.4: Average precision (AP) (%) results for all the 20 categories of the Pascal VOC 2007 test datatet.
Faster R-CNN was trained on MS COCO and the sCOCO training dataset consisting of 80 coarse labels
and 69 coarse labels, respectively, and LICN was trained on the FG-COCO dataset and FG-sCOCO
training dataset with the expanded labels consisting of both the coarse and fine-grained labels.
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ratio 0.48 0.89 0.98 0.90 0.96 0.96 1.00 0.99 1.00 0.99 1.00 1.00 1.00 0.94 0.69 1.00 0.95 1.00 0.96 0.92

Faster R-CNN[30] 84.0 83.1 76.5 58.9 67.7 87.4 77.1 85.6 61.0 83.9 66.3 78.4 86.3 86.6 86.2 50.9 81.7 68.1 86.1 78.8 76.7

LICN-C2E 76.8 71.7 74.3 52.7 62.4 87.2 79.7 85.3 60.6 82.5 65.0 79.3 85.5 85.7 70.5 50.2 81.4 68.1 86.5 74.2 74.0

LICN-E2C 71.6 69.9 75.2 52.9 64.1 87.0 80.0 86.5 62.0 83.6 65.6 81.0 86.4 86.7 68.2 54.2 83.2 70.7 86.8 76.9 74.6
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C
O ratio 0.26 0.51 0.97 0.67 0.38 0.72 1.00 1.00 1.00 1.00 - 1.00 1.00 0.86 0.11 - 0.93 1.00 0.91 0.59

Faster R-CNN[30] 77.4 79.7 71.5 58.9 52.3 85.2 74.4 86.3 38.4 77.5 - 80.4 85.6 81.9 83.9 - 81.2 64.1 85.2 64.3 73.8

LICN-C2E 69.9 76.1 68.6 50.9 41.8 81.4 73.4 85.9 37.3 74.4 - 78.3 84.0 81.2 46.3 - 76.1 63.7 84.1 59.6 68.5

LICN-E2C 71.7 77.3 73.8 48.0 42.7 79.3 75.4 86.2 39.4 79.5 - 80.5 86.2 82.7 47.1 - 81.4 63.7 86.1 61.7 70.1

VOC 2007

We train our model on FG-COCO and the FG-sCOCO training dataset and test the
learned models on the VOC 2007 test dataset to evaluate the object detection per-
formance. Correspondingly, the Faster R-CNN baseline is trained on MS COCO
and the sCOCO training dataset. Table 3.4 shows the experimental results for the
20 coarse categories in the VOC 2007 test dataset, where only 18 categories are
shown for our model learned on the FG-sCOCO training dataset as the categories
of “diningtable” and “pottedplant” do not appear in the training set. The table
shows a term called ratio, which is defined as the ratio of the number of occur-
rences for a category in the training set FG-COCO (FG-sCOCO training) to that
in the training set MS COCO (sCOCO training) and describes the degree of how
many objects in a coarse category of MS COCO (sCOCO training) have not been
re-assigned to a corresponding fine-grained category of FG-COCO (FG-sCOCO
training) with the semantic mapping. The ratio equal to 1 means that no object
in MS COCO (sCOCO training) is re-assigned to a fine-grained category and its
coarse label is kept in constructing FG-COCO (FG-sCOCO training). From the ta-
ble, we observe that for most of the categories with the ratio close to 1, such as
“car”, “chair”, “dog” and “train”, the detection result of our proposed LICN-E2C
version has better performance than the Faster R-CNN baseline. For these cate-
gories, the training examples are almost the same between FG-COCO (FG-sCOCO
training) and MS-COCO (sCOCO training). The result demonstrates that our ap-
proach improves the label inference performance in the image detection problem.
For the categories with the ratio much lower than 1, such as “aero” and “person”,
LICN has a lower performance than Faster-RCNN. We note that in this case, there
is a large difference between the training sets for LICN and Faster R-CNN: FG-
COCO (FG-sCOCO training) has a much larger label space and less training ex-
amples for many categories than MS COCO (sCOCO training), which significantly
increases the difficulty of label learning and inference and thus results in the the
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drop of AP of LICN. It is noteworthy that our LICN-E2C achieves improvements of
0.6% and 1.6% compared with LICN-C2E with the training on FG-COCO and the
FG-sCOCO training dataset, respectively. The results indicate that it is important
to train the model in an ascending order of example complexity in improving the
object detection performance.
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Figure 3.9: The comparison of LICNs and Faster R-CNN, where the former is trained on FG-COCO and
the latter on MS COCO. As introduced in Subsection 4.1.1, both datasets consist of the same images.
The testing results are reported for the Visual Genome test dataset. (a) shows the results for the fine-
grained categories whose labels are not appearing in MS COCO. (b) shows results for the coarse cate-
gories that have no corresponding fine-grained labels in the semantic map, i.e., r ati o = 1. (c) shows
the results for the coarse categories where different proportions of object samples are re-labeled by
new fine-grained labels with semantic mapping, i.e., r ati o ∈ (0,1).
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Visual Genome

In this subsection, we evaluate the performance of our approach on the Visual
Genome test dataset, where LICNs and Faster R-CNN are trained on FG-COCO
and MS COCO, respectively.

Fig. 3.9 reports the comparison results of different methods on the test dataset
in three cases: a) Fig. 3.9(a) shows the results for the fine-grained categories that
do not appear in MS COCO and do come from the semantic mapping; b) Fig. 3.9(b)
is for the coarse categories that have no corresponding fine-grained labels in the
semantic map, i.e., the information for these categories in the training set MS
COCO is the same as that in FG-COCO, and r ati o = 1; and c) Fig. 3.9(c) is for
the coarse categories, where different proportions of object samples with these
category labels in training set MS COCO are re-labeled by new fine-grained labels
with semantic mapping in building FG-COCO, i.e., r ati o ∈ (0,1). In Fig. 3.9(a), we
see that the proposed LICN-E2C performs better than LICN-C2E for some fine-
grained categories, such as “guy", “fighter", “subway", “branch", “skateboarder",
“wave", “tennis" , “bear" and “television". The mean AP of the LICN-E2C model
over all categories in Fig. 3.9(a) is 10.73, which achieves 0.61 mAP improvement
over LICN-C2E (10.12). However, Faster R-CNN baseline training on the coarse
categories cannot detect the new fine-grained categories. So its AP = 0 for these
categories (the gray bars are not visible for that reason). From Fig. 3.9(b), we
can see that for those coarse categories that have not been re-annotated with
fine-grained category labels, there are no obvious differences between these three
models. As shown in Fig. 3.9(c), for each coarse category in which a proportion of
object samples have been re-annotated with fine-grained labels from captions by
semantic mapping, Faster R-CNN has a better performance because it’s training
dataset, i.e., MS COCO, consists of less categories and more examples in each of
these categories than the training set of LICN. With the ratio decreases, Faster
R-CNN tends to increase the improvement because the number of objects re-
assigned from the coarse categories to the fine-grained categories increases con-
tinuously. But our LICN model also achieves a performance close to Faster R-CNN
for the categories with the ratio close to 1.

Actually, the problem of fine-grained label learning with the weak supervision
of captions resolved by our approach is more challenging than the object detec-
tion and label inference resolved by the compared method, i.e., Faster R-CNN. The
main reason is that the category space coming from captions in our problem (e.g.,
150-dim as shown in Table 3.1) is much larger and consists of much more labeling
noise than that in the latter problem.

Example Illustrations

Fig. 3.10 shows 5 fine-grained categories, namely “man”, “woman”, “plane”, “bike"
and “bat”, predicted in object detection with our approach. For each category,
we show 4 representative images with top confidence of category prediction. The
illustration shows that our LICN approach can truly predict fine-grain category
label with the weak supervision of captions.
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Figure 3.10: Example illustration of 5 fine-grained categories: “man”, “woman”, “bike”, “plane” and
“bat”, which correspond to the coarse categories: “person”, “person”, “airplane”, “bicycle” and “baseball
bat”, respectively. The values next to bounding boxes indicate the confidences of fine-grained label
prediction.
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3.4. CONCLUSION AND FUTURE WORK

This chapter seeks to answer the question of how to learn the fine-grained ob-
ject labels in object detection with the help of auxiliary information attached to
images. In this chapter, we propose a novel approach called label inference cur-
riculum network (LICN) to the problem of fine-grained object label learning with
the weak supervision of captions. First, we construct a semantic map that builds
a correspondence between the coarse category labels provided by public datasets
and the fine-grained category labels extracted from captions based on the com-
bination of embedding techniques and knowledge bases. Second, we present the
label inference curriculum network with the consideration of the complexity of
samples that describes the difficulty of fine-grained label learning. To evaluate
the performance of fine-grained object label learning in different aspects, we con-
struct multiple datasets based on widely-used public datasets. Experimental re-
sults implemented on the public datasets and our constructed datasets demon-
strate the effectiveness of our approach and show that it is helpful to structure the
training process in the order of easy samples to hard samples in the task under the
framework of curriculum learning.


