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Chapter 5

Assessing reproducibility of
long-read structural variant
detection algorithms

Abstract Recent advances in long-read sequencing and haplotype-aware assemble

have enabled phased structural variants (SV) detection and improved SV detection

at complex genomic regions. The assembly-based approach for tumor SV detection

is further complicated due to heterogeneous cell populations and polyploid tumor

genomes. Though a number of alignment-based methods that are more robust to

complex tumor genomes have been developed, they lacked systematic evaluation of

reproducibility, especially at complex genomic regions, which is critical for promoting

long-read application in clinical practices. In this study, we benchmark six alignment-

based methods on four real datasets produced by PacBio and Oxford Nanopore

sequencers for recall, precision, SV breakpoints and type consistency as well as

capability of detecting SVs at repetitive regions. Our results first highlight the

important role of aligners in determining SV breakpoint concordance of detection

algorithms. Secondly, our analysis based on phased assembly reveals that tandem

repeat regions are hotspots for discordant calls of each algorithm detected from

different aligners and platforms combinations. In addition, the analysis of tumor-

normal paired samples suggest that the number of different SV types varies from

tumor unique calls identified from each caller, and integration of tumor unique

calls from each caller would substantially improve somatic SV detection. As the

importance of SVs are increasingly recognized in disease genomes, our analysis

provides important guidelines for selecting dataset, aligner and algorithms for

efficient SV detection, and reveals valuable hints for future algorithm development,

thereby shedding light on cutting-edge genomic studies and clinical applications.
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CHAPTER 5. ASSESSING REPRODUCIBILITY

5.1 Introduction

Structural variants (SVs) comprise different subclasses that consist of unbal-
anced copy number variants, including deletion, duplication and insertion, as
well as balanced rearrangements, such as inversion and translocation [8]. SVs
could also have complex internal structures, consisting of multiple combina-
tions of the above-mentioned simple forms of SVs, and this complex form
of SV is referred to as complex SV (CSV) [11, 12, 57]. In the past decade,
researchers have made great progress in discovering and genotyping SVs in
diverse populations and generated phased reference panels of SVs with short-
read data. Moreover, researchers found that SVs are enriched for expression
quantitative trait loci (eQTLs) up to 50-fold compared with single nucleotide
variations, indicating the important role of SVs in regulating gene expression.
Remarkably, the widespread application of single-molecule sequencing (SMS)
technologies, including Pacific Bioscience (PacBio) and Oxford Nanopore
Technology (ONT), greatly improves the sensitivity and precision of detect-
ing SVs comparing with short-read [9, 41]. A study revealed that PacBio
long-reads were approximately three times more sensitive than a short-read
ensemble achieved, and a large set of SVs, ranging from 50 to 2000bp were
unresolvable without long reads [8]. Recently, the haplotype-aware phased
assembly facilitated the direct detection of phased SVs [9, 10], enabling
systematic analysis of functional impact of SVs as well as SV candidates for
adaptive selection within the human population.

Moreover, long-read sequencing also facilitates the analysis and manual
curation of CSVs that are usually inaccessible via short-read data. For
instance, in 2015, the 1000 Genomes Project (1KGP) published the first
previously unexplored CSV classes by integrating both short- and long-
read sequencing. Additionally, long-read sequencing revealed SVs in genetic
diseases [93, 94, 95] and cancers [45, 90, 96, 97, 98, 99, 100] that are usually
undetectable via short-read data. For instance, the ONT data reveals 10,000bp
Alzheimer’s disease associated ABCA7 Variable Number Tandem Repeats
(VNTR) expansion [101] and the PacBio long-read data reveals 10 times
more SVs than that of short-read in breast cancer. Additionally, the somatic
SVs in tumor are a valuable genetic source to understand tumorigenesis,
such as a study showed that long reads could detect two times more somatic
SVs than previous short-read study [82].

Detecting SVs from SMS data usually consists of two steps. Firstly, the
variant signatures are identified and gathered from two types of aberrant
alignments: intra-read and inter-read. Intra-read alignments are derived
from reads spanning the entire SV locus, resulting in deletion and insertion
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5.1. INTRODUCTION

signatures. Inter-read alignments are usually obtained from the supplementary
alignments and SV signatures that could be identified from inconsistencies
in orientation, location and size during mapping, analogous to read-pair
signatures, from which translocation as well as large deletion, duplication
and inversion signatures are identified. Secondly, callers typically cluster and
merge similar signatures from multiple aberrant alignments, and delineate
proximal signatures that support putative SV. Nearly all alignment-based
algorithms developed in the past five years, such as Sniffles [18], pbsv,
CuteSV [102], SVIM [103], NanoVar [104], NanoSV [105] and Picky [96],
detect SVs through combinations of signatures obtained from inter-read
and intra-read alignments but differ in their signature clustering heuristics.
For example, Sniffles evaluates the signature similarities by examining the
signature position and size, and additionally clusters SV supported by the
same set of alignments to detect nested SVs. Some methods, such as Phased
Assembly Variant (PAV) and SVIM-ASM [103] use the alignment of whole
genome assembled contigs as input, referred to as assembly-based approaches,
from which aberrant inter-contig and intra-contig alignments are used for
SV detection.

Moreover, somatic SVs are driver events for tumorigenesis and they are
usually detected by identifying SVs present in tumor but absent from its
matched normal sample. For instance, CAMPHOR [82], a computational
pipeline, detects somatic SVs by removing SVs present in a ‘normal panel’.
A similar process can also be completed by SURVIVOR, which identifies
putatively somatic SVs that are only present in tumor [90]. However, affected
by repetitive sequences and human reference genome defects [87], intensive
breakpoint filtering and an external normal reference SV set are required to
obtain high-quality somatic SVs [106, 107].

Previous studies have estimated that at least 30% of cancers have a known
pathogenic SVs used in diagnosis or treatment [108], and germline variants
in cancer predisposition genes underline 5–10% of all cancers [109, 110, 111].
However, the prevalence of SVs in cancer is likely underestimated due to
low sensitivity and specificity for short-read based SV discovery at regions
of repetitive elements, low sequence complexity and strong GC bias. Re-
cently, long-read assembly approach significantly increased the sensitivity of
detecting SVs at complex genomic regions compared to that of short-read
data [9, 10], but precise detection of germline SVs and distinguishing tumor
unique SVs from germline is further complicated due to tumor heterogeneity
and polyploidy. Compared with assembly approaches, alignment-based detec-
tion methods are more robust to amplificated tumor genomes that originate
from mixed cell populations, while inconsistencies in breakpoints and variant
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CHAPTER 5. ASSESSING REPRODUCIBILITY

types confound tumor SV detection, especially somatic SV. Therefore, it is
critical to assess the detection consistency of alignment-based algorithms,
especially at complex genomic regions, thereby enabling accurate and com-
prehensive germline and somatic SV detection. In this study, using multiple
datasets of two platforms (i.e., HiFi and ONT) mapped by two aligners (i.e.,
minimap2 and ngmlr), we evaluated the recall, precision, variant breakpoints
and type consistency of five alignment-based SV detection algorithms and
assess the alignment-based algorithms for tumor SV detection.

In Section 5.2, materials and related methods are described in details.
Moreover, results are discussed in Section 5.3 and conclusions are drawn in
Section 5.4.

5.2 Materials and methods

In this section, we introduce the datasets and methods used in the evaluation.

5.2.1 Read mapping and SV detection

In this chapter, HiFi and ONT data are obtained for HG002, NA19240,
HG00733 and HG00514, while ONT data was used for tumor-normal paired
sample COLO829. Then, minimap2 [17] (v2.20) and ngmlr [18] (v0.2.7) were
used to map the long-read data of HG002 and COLO829 to hg19 due to
the reference version of the benchmark set. The long-read data of NA19240,
HG00733 and HG00514 were mapped to reference version GRCh38. For min-
imap2, parameters ’-a -H -k 19 -O 5,56 -E 4,1 -A 2 -B 5 -z 400,50

-r 2000 -g 5000’ were applied to align HiFi reads, while ’-a -z 600,200

-x map-ont’ were used for ONT reads. For ngmlr, parameters ’-x pacbio’
and ’-x ont’ were used to align HiFi and ONT reads, respectively. For
the detection algorithms, SVision (v1.3.6), CuteSV (v1.0.10), pbsv (v2.2.2),
SVIM (v1.4.0), Sniffles (v1.0.12) and NanoVar (v1.4.1) were applied to the
minimap2 and ngmlr aligned data, respectively. We used default settings for
all callers, while at least five supporting reads were required for SV detection
in NA19240, HG00733, HG00514 as well as normal-tumor paired COLO829
samples.

5.2.2 Evaluating recall and precision of each algorithm

We first used the evaluation method Truvari (https://github.com/spira
lgenetics/truvari) developed by Genome-In-A-Bottle (GIAB) to examine
the performance of each algorithm on HG002. The specific steps of SV
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5.2. MATERIALS AND METHODS

calling and processing for SVIM, Sniffles, CuteSV and pbsv were given by
CuteSV (https://github.com/tjiangHIT/sv-benchmark). Furthermore,
for SVision, SV with ’Covered’ filter was considered as passed calls in the
algorithm, and we replaced the ’Covered’ with ’PASS’ for the usage of option
’--passonly’ in Truvari. The raw calls of NanoVar were directly used as
input for Truvari evaluation.

Moreover, the PAV call sets of NA19240, HG00733 and HG00514 were
used to evaluate each algorithm. Note that the breakends, such as transloca-
tions, were first excluded from the raw detections and SVs ranging from 50bp
to 100kbp were included in the analysis. BEDtools [85] (v2.30.0) was used to
find the correct detections via the 50% reciprocal overlap test, while those
failing the overlap test were considered as false detections. Specifically, we
used command ’bedtools intersect -c -a pav.bed -b algorithm.bed

-f 0.5 -r’ to count the unique number of matched ground truth calls. Given
the number of ground truth calls (N), number of detections (D) and number
of correct detections (D), the Recall, Precision and F-score were calculated
as follows:

Precision = C/D

Recall = C/N

F-score =
2× Precision× Recall

Precision + Recall

5.2.3 Identification and classification of PAV calls missed by
each algorithm

Using command ’bedtools intersect -c -a pav.bed -b algorithm.bed

-f 0.5 -r’, the missed PAV calls of each algorithm were labeled as zero
matches in the last column of the output. Then, the simple repeats and
Repeat Masker files obtained from UCSC Genome Browser were used to label
the repeat element and calculate the percentage of repeat overlap. For simple
repeats, the VNTR was assigned if the repeat unit length was longer than
7bp, otherwise, it was considered as STR. In this study, we only used repeat
element LINE, SINE, LTR, VNTR and STR, while other repeat elements
were classified as Others.

Additionally, we developed a pipeline to classify missed PAV calls ac-
cording to the read mapping signatures. Firstly, the missed PAV calls were
classified to three types of regions according to the average read mapping
quality (avgmapq), including i) no read mapping region (No reads), ii) low

87

https://github.com/tjiangHIT/sv-benchmark


CHAPTER 5. ASSESSING REPRODUCIBILITY

mapping quality regions (Low mapq, avgmapq < 20) and high confident
mapping regions (High mapq, avgmapq ≥ 20). The average mapping quality
threshold was set according to the default minimum read quality used for SV
detection algorithms. Secondly, we extracted the potential SV signature reads
that span the PAV calls in the high confident mapping quality regions. In
general, the ’I’ and ’D’ tags in the CIGAR string, and the primary reads and
their supplementary alignments were collected and used to identify deletion
(DEL), insertion (INS), inversion (INV) and duplication (DUP) signatures.
The total number of SV signature reads spanning PAV calls was referred
to as signature count. Afterwards, we applied the same implementation as
Truvari to match PAV calls and detected SV signature reads. Specifically,
for a given SV signature read with start and end position, we calculated the
minimum distance between this signature and PAV call as well as their size
similarity. If the minimum distance and the size similarity of a signature read
was smaller than 500bp and larger than 0.5, respectively, it was considered
as the nearest signature.

5.2.4 Evaluating breakpoint accuracy

To evaluate the breakpoint accuracy of each caller, the correct detection,
compared with the benchmarks (i.e., PAV calls and short-read calls) was
considered as the nearest one with similar size, where the distance and size
similarity threshold were 500bp and 0.5, respectively. Note that for short-read
benchmark calls, we used Manta with default settings to detected SVs from
Illumina reads and evaluate the minimum breakpoint shift of overlapped
detections as described above. We calculated the minimum breakpoint shift
of the concordant detections to evaluate the breakpoint accuracy of each
caller. For the breakpoint assessment of recurrent SVs, SURVIVOR [112] was
used to identify the recurrent SVs among three samples for each caller with
command ’SURVIVOR 500 3 0 0 0 50’, while translocations were excluded
in breakpoint accuracy assessment. For other SV types, the breakpoint
accuracy was evaluated by calculating the standard deviation of variant start
and end position in the merged VCF file. If the standard deviation of both
start and end position was smaller than 50bp, the corresponding recurrent
SV was considered as accurate detection.
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5.2.5 Examine call set overlaps between platforms and align-
ers

For each caller, the overlapped and unique calls of different platforms and
aligners were identified with SURVIVOR, running command ’SURVIVOR 500

1 0 0 0 50’. In particular, we only examined whether an SV was detected
at a specific region of different aligners or platforms, while the SV type was
not considered. For example, the ngmlr and minimap2 unique and overlapped
calls detected by SVision on HiFi reads was obtained from the ‘SUPP VEC’
value of SURVIVOR merged output. Specifically, ’SUPP VEC=11’ indicates
overlapped calls, while ’SUPP VEC=10’ or ’SUPP VEC=01’ represents aligner
unique detections. This comparison between aligners of identical platform
was termed as fixed-platform, and the same process was applied to compare
the detections between different platforms mapped with identical aligner,
referring as fixed-aligner. Afterwards, the same repeat annotation procedure
was applied to annotate the unique calls from fixed-platform and fixed-aligner.
This process was also applied to identify tumor unique calls, which were
obtained from variant of ’SUPP VEC=10’.

5.2.6 Data availability

Both the HiFi and ONT data for HG002 are obtained from ftp://ftp.ncbi

.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002 NA24385 son, and
the benchmark [92] for HG002 used in this chapter is from ftp://ftp-trace.

ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST S

Vs Integration v0.6/. The HiFi data for NA19240, HG00733 and HG00514
are obtained from http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/dat

a collections/HGSVC2/working/, and the ONT data [9] for these samples
are available at http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data c

ollections/hgsv sv discovery/working/20181210 ONT rebasecalled/.
The Phased Assembly Variant (PAV, v1.1.2) [10] for NA19240, HG00733
and HG00514 are downloaded from http://ftp.1000genomes.ebi.ac.uk/

vol1/ftp/data collections/HGSVC2/working/20210806 PAV VCF/. The
normal ONT data for COLO829 is obtained from Sequence Read Archive
(SRA) with ERR2752451, and the tumor ONT data is downloaded with
ERR2752452. The somatic SV truth set of COLO829 is obtained from
https://github.com/UMCUGenetics/COLO829 somaticSV .
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CHAPTER 5. ASSESSING REPRODUCIBILITY

5.3 Results

In this section, we first assess the impact of aligners and platforms on SV
detection consistency of each alignment-based detection methods. Then, we
examine the recall and precision of each method affecting by aligners and plat-
forms. Moreover, we systematically compare SVs detected by alignment-based
approach and assembly approach, especially their breakpoint consistency.
Finally, using tumor-normal paired sample, we assess the impact of aligners
on detecting germline and somatic SVs.

5.3.1 Evaluating the impact of aligners and platforms on
detection algorithms

Platform and aligner independency is one of the important features for
detection algorithm in clinical usage. The detection consistency was thus
assessed with three well-characterized samples (i.e., NA19240, HG00733 and
HG00514) sequenced by HiFi and ONT technologies. As a result, more SVs
were detected from minimap2 aligned data than that of ngmlr, and such
difference was even significant for ONT data (Figure 5.1A). Though the
percentage of detected deletions and insertions per genome varied across
platform and aligner combinations, 20% more insertions and deletions were
detected from minimap2 alignments than that of ngmlr. Notably, approxi-
mately 98% of SVIM discoveries were insertions or deletions from minimap2
aligned HiFi data, which was 15% and 38% more than pbsv and NanoVar
detected, respectively (Figure 5.2).

Further analysis showed that a large number of duplications (around
≈7,000 without aligner or platform bias) detected by NanoVar was the major
factor leading to a lower proportion of detected insertions and deletions
(Figure 5.1C). We also noticed that the large number of duplications detected
from ngmlr aligned data contributed to 20% difference of detected insertions
and deletions between aligners for each caller (Figure 5.1C). Though pbsv,
CuteSV, Sniffles and NanoVar could distinguish duplications from insertions,
SVIM was the first algorithm that was capable of detecting tandem du-
plications (DUP:TANDEM) and dispersed duplications (DUP:INT), where
around 10 dispersed duplications and 100 tandem duplications per genome
were identified. Note that SVision and Sniffles were capable of identifying
CSVs, where SVision reported ≈100 CSVs per sample and Sniffles identified
three types of CSV (i.e., DEL/INV, DUP/INS and INVDUP) (Figure 5.1C).

We then examined the impacts of aligners on SV detection from different
platforms, termed fixed-platform evaluation. The overlapping calls between
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Figure 5.1: Overview of structural variants detected by six callers from
three samples. (A) Number of structural variants of three samples detected
from data generated by different aligners and platforms. (B) Percentage of
deletions and insertions detected by each caller. (C) Number of detected
structural variants of different types, excluding insertions and deletions.
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two aligners were around 80% for both ONT and HiFi reads (Figure 5.2A),
and breakpoint difference of most aligner concordant calls was less than 20bp
(Figure 5.2B). Notably, breakpoint difference of pbsv calls was closer to 0bp
on both platforms compared with other callers, indicating SV breakpoints
reported by pbsv were less affected by aligners. Further analysis of aligner
discordant calls revealed that all callers identified more duplications from
ngmlr aligned HiFi and ONT data (Figure 5.2C), which was consistent with
our previous observation on overall discoveries (Figure 5.1C), suggesting SV
types reported by callers were depend on aligners. We reasoned that this
limitation was largely due to the model-based SV detection approach, so that
more duplications were detected from duplication like abnormal alignments
observed in ngmlr aligned data.

In addition, we evaluated the platform influences, referred to as fixed-
aligner evaluation, where the percentage of platform concordant calls ranged
from 70% to 90% for different callers (Figure 5.2D). Though the platform
concordant call took 90% of SVIM HiFi discoveries, three times more ONT
unique calls were observed than HiFi unique calls (Figure 5.2D). Moreover,
consistent with fixed-platform evaluation, pbsv produced concordant SV
breakpoints of platform concordant calls (Figure 5.2E), suggesting pbsv was
able to report consistent SV breakpoints that are less affected by aligners or
platforms. Altogether, our results suggested that aligners played an important
role in producing consistent SV breakpoints and types across platforms for
each caller.

5.3.2 Evaluation recall and precision of detection algorithms
using different benchmarks

Furthermore, it was critical to understand the sensitivity and specificity of
detection algorithms for clinical applications. Therefore, we first benchmarked
SVision, pbsv, CuteSV, Sniffles, NanoVar and SVIM with ground truth SVs
of sample HG002. The ground truth set was an integration of multiple
platforms and released by Genome-In-A-Bottle (GIAB), containing high-
confident deletion and insertion calls, which had been widely used to evaluate
the performance of SV detection algorithms [92]. The callers were applied
to 30X HiFi data and 47X ONT data aligned with minimap2 and ngmlr,
respectively. The results showed that SVision, pbsv, SVIM, CuteSV and
Sniffles outperformed NanoVar across platforms and aligners. In addition, we
noticed that all callers achieved the best performance on minimap2 aligned
HiFi and ONT reads, and CuteSV achieved the highest F-score, followed
by SVision, Sniffles and pbsv (Figure 5.3A). Though callers produced fewer
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5.3. RESULTS

Figure 5.2: Effects of aligners and platforms on structural variants detection.
(A-C) Fixed-platform evaluation of each caller. (A) Percentage of aligner
concordant calls among all discoveries detected from ngmlr (vertical axis)
and minimap2 (horizontal axis) alignments. (B) Breakpoint difference of
aligner concordant calls. (C) Percentage of structural variant (SV) types
among aligner discordant calls, i.e., minimap2 (horizontal axis) and ngmlr
(vertical axis). (D-E) Fixed-aligner evaluation of each caller. (D) Percentage
of platform concordant calls detected among all SVs detected from ONT
(vertical axis) or HiFi (horizontal axis) reads. (E) Breakpoint difference of
platform concordant calls.
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correct detections on ngmlr aligned data, the precision of the six callers was
comparable to minimap2 or even higher on ONT reads. For example, the
precision of SVision detections on the minimap2 aligned ONT data was 80.5%,
which increased to 89.9% on the ngmlr aligned ONT data (Figure 5.3A).

Figure 5.3: Evaluating recall and precision of six callers using different
benchmarks. (A) Performance evaluated on sample HG002 HiFi and ONT
data. (B) Average recall and precision evaluated on HG00514, HG00733 and
NA19240.

In addition, PAV callsets of HG00514, HG00733 and NA19240 were used
as ground truth to assess recall and precision of each caller. The PAV calls
were detected from the highly contiguous haplotype assemblies released by
HGSVC [10], which significantly improved the SV discoveries at repetitive
regions compared with the HG002 truth set. Thus, the PAV callset was able
to evaluate SV detection algorithms at both simple and complex genomic
regions. Briefly, the SVs detected from mapped reads (i.e., HiFi and ONT
aligned with minimap2 and ngmlr) of each caller were compared with the
PAV calls by examining the reciprocal overlaps. Since translocation (BND)
was not included in PAV calls, the BNDs from the raw calls from each caller
were excluded and SVs ranging from 50bp to 100kbp were used for the
performance assessment. As a result, all algorithms achieved their own best
performance on minimap2 aligned HiFi reads, where SVision and pbsv ranked
first on minimap2 and ngmlr aligned HiFi reads across samples, respectively
(Figure 5.4B). We reasoned that this biased performance was largely due
to the method of detecting PAV calls, i.e., detecting from the minimap2
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aligned HiFi assemblies with extra alignment trimming. Though SV detection
performance on ONT reads was not comparable with HiFi reads, the F-score
of each caller based on different aligners were approximately equal, indicating
less impact from aligners. Altogether, our results indicated that aligners
affect more than platforms on recall and precision, where Sniffles, SVision,
pbsv and CuteSV showed similar performance and consistently outperformed
NanoVar across different platforms and aligners.

5.3.3 Features of PAV calls missed by detection algorithms

We then examined PAV calls missed by each caller on three samples (i.e.,
NA19240, HG00733 and HG00514), aiming to understand limitations of
alignment-based SV detection algorithms. The missed PAV calls were con-
sidered those without matched detections via the reciprocal overlap test,
and the best recall of detecting PAV calls was around 70% (Figure 5.3B).
Among missed PAV calls, 70% and 28% of missed PAV calls were insertions
and deletions, respectively (Figure 5.4A). Moreover, 80%, 70% and 60%
of NanoVar, pbsv and CuteSV uniquely missed PAV calls were insertion,
respectively, whereas more than 60% of SVIM and Sniffles missed PAV calls
were deletions (Figure 5.4B). Further repeat annotation revealed that a large
majority (≈70%) of missed SVs overlapped with VNTR regions, followed
by STR regions (≈10%) (Figure 5.4C). These results suggested that an
assembly-based approach significantly increased the sensitivity of detecting
insertions and SVs in tandem repeat regions (i.e., VNTR and STR) compared
with alignment-based detection. The above results were consistent with the
conclusion drawn by HGSVC, where the predominant increase of PAV was
among small SVs (<250bp) localized to simple repeat sequences.

Though the assembly-approach achieved remarkable results on SV detec-
tion, it was difficult to generalize for tumor genomes because of heterogeneity
and aneuploidy. Therefore, we investigated whether the missed PAVs were
detectable from alignment-based approaches. Firstly, we noticed that 80% of
missed PAVs were located at high mapping quality regions (Figure 5.4D), pro-
viding confident alignments for SV signature reads identification. Afterwards,
for missed PAV calls at high mapping quality regions, variant spanning reads
were extracted and analyzed to find SV signatures. The results showed that
the percentage of missed PAV calls with SV signature reads was independent
of aligners for both HiFi and ONT reads, where NanoVar failed to report SVs
from 88% and 77% of the genomic regions with SV signatures (Figure 5.4E).

Furthermore, we examined the nearest SV signatures, providing the direct
evidence of detecting missed PAV calls. In principle, missed PAVs were not
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able to be discovered from read mapping if we cannot identify the nearest SV
signatures. On average, approximately 55% of missed PAVs contained nearest
signatures for HiFi reads aligned with both aligners, whereas ONT reads
were likely to produce more nearest signatures when aligned with minimap2
(Figure 5.4E). This indicated that half of missed PAV calls in high mapping
quality regions could be recovered, while they were missed by routine SV
callers due to the inaccurate breakpoints in repeat regions. Specifically, the
nearest signatures could be identified from 90% of the missed PAV regions
contained signatures, and the highest average PAV recall rate (≈70%) was
achieved by minimap2 aligned HiFi reads, and we thus reasoned 17% more
PAVs in high mapping quality regions could be detected based on signatures.
Our analysis indicated that most of the PAV missed calls at simple repeat
regions contain SV signature reads, and these PAV calls could be detected
with proper breakpoint fine mapping.

5.3.4 Examining the effects of platforms and aligners on
breakpoint accuracy

In addition, accurate breakpoints are critical to the downstream SV func-
tional annotation such as gene annotation and known pathogenetic vari-
ant annotation, and we thus investigated the breakpoint accuracy of each
caller by comparing with two independent call sets generated via orthogo-
nal approaches, i.e., phased assembly and short-read. For phased assembly
evaluation, using PAV calls, the breakpoint difference of ≈80% concordant
calls were smaller than 50bp for minimap2 and ngmlr across different callers
(Figure 5.5A). Moreover, consistent with the fixed-platform (Figure 5.2B)
and fixed-aligner (Figure 5.2E) evaluation, pbsv achieved the most accurate
breakpoints (breakpoint difference smaller than 10bp) without aligner and
platform bias (Figure 5.5A). We next divided the concordant calls into two
groups: i) accurate detections (breakpoint difference smaller than 50bp, Fig-
ure 5.5B) and ii) inaccurate detections (breakpoint difference larger than
50bp), and found that a significant number of inaccurate detections were
located at VNTR regions (78%) (Figure 5.5C). This suggested that the
breakpoints of SVs detected from read and assembly were largely different at
simple repeat regions, especially in VNTR. Due to the aligner bias of PAV
calls, breakpoint accuracy was further evaluated with short-read data, of
which pbsv also showed the most accurate breakpoints and it was independent
of aligners and platforms (Figure 5.6A).

On the contrary, the breakpoint accuracy of other callers was dependent
on aligners, where we found the percentage of breakpoint shift smaller than
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Figure 5.4: Features of missed Phased Assembly Variant by six callers. (A)
Distribution of missed Phased Assembly Variants (PAVs) detected from
different aligners and platforms. (B) Types of caller uniquely missed PAV
calls. (C) Repeat annotation of missed PAVs. (D) Mapping quality of the
missed PAV loci, including no read mapping (No reads), low mapping quality
(Low mapq) and high mapping quality (High mapq). (E) Missed PAV loci
that had signatures and nearest signature identified from long reads aligned
with minimap2 and ngmlr.
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10bp increased 30% on minimap2 aligned reads (Figure 5.6A). Both PAV
and short-read data revealed that HiFi data paired with minimap2 would
produce the most accurate breakpoints for all callers. To avoid potential
aligner bias of the benchmarks, we assessed the breakpoint accuracy of dif-
ferent callers by comparing the breakpoints of recurrent SVs among different
samples. As a result, SVs detected by callers except SVision were likely to
have consistent breakpoints on minimap2 aligned HiFi or ONT data, where
Sniffles outperformed other callers among different platforms and aligners
(Figure 5.6B). Our results suggested that the selection of aligner was critical
to get consistent breakpoints for routine SV detection algorithms, while tan-
dem repeat regions (i.e., VNTR) required extra breakpoint refinement if the
caller was applied to repeat expansion related diseases, such as Huntington
disease.

5.3.5 Effects of aligners on tumor SV detection

The above results suggested that aligners play an important role for consistent
SV detection. We then evaluated the impact of aligner for tumor genome
analysis, especially the performance of detecting somatic SVs from tumor
unique calls. Briefly, each routine SV caller was used to detect SVs from
tumor (ONT, ≈60X coverage) and normal (ONT, ≈40X coverage) data
of COLO829 separately, and the filtering-based approach was applied to
identify tumor unique calls, which are also called putatively somatic SVs.
As a result, the total number of SVs detected by NanoVar from tumor
and normal tissues was independent of aligners, whereas Sniffles, CuteSV
and SVIM detected more SVs from minimap2 alignments comparing to
ngmlr, thereby leading to 5% more minimap2 unique detections than that of
ngmlr (Figure 5.7A). Furthermore, we investigated the impact of aligners on
identifying tumor unique calls, which is one of the critical steps to obtain
somatic SVs. The results showed that the percentage of tumor unique calls
obtained from NanoVar and Sniffles was less affected by aligners (Figure 5.7B),
and NanoVar had the largest number of tumor unique calls, i.e., 7,626 and
7,676 from minimap2 and ngmlr alignments, respectively.

On average, 50% of the tumor unique calls were inside the repetitive re-
gions, of which the majority of them were annotated as SINE or LINE. As for
the SV types of tumor unique calls, ≈4,500 putatively somatic deletions were
identified from SVIM calls detected based on minimap2 alignments, which
was four times more than detected insertions (≈1,000 events) (Figure 5.7C).
Comparably, approximately 3,300 of the tumor unique calls identified from
NanoVar was translocations, attributing to 44% of the tumor unique calls,
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Figure 5.5: Evaluating the breakpoint accuracy of structural variants detected
by six callers with Phased Assembly Variant. (A) The breakpoint difference
(BpDiff ) of concordant calls between callers’ detections and Phased Assembly
Variants (PAVs). (B) The repeat annotation of accurate calls (BpDiff ≤
50bp). (C) The repeat annotation of inaccurate calls (BpDiff > 50bp).
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Figure 5.6: Evaluating the breakpoint accuracy with short-read data and
assessing breakpoints of recurrent structural variants. (A) The breakpoint
difference (BpDiff) of structural variants (SVs) detected by six callers and
those detected by short-read data. (B) The breakpoint accuracy of recurrent
SVs among three samples (i.e., NA19240, HG00733 and HG00514).
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and it was independent of aligners (Figure 5.7C). Furthermore, 1,500 pu-
tatively somatic translocations were identified from pbsv calls using ngmlr
alignments, which was 15 times more than translocations identified from
minimap2 alignments. In addition, we assessed the putative somatic SVs
with the COLO829 somatic benchmark, containing 78 (i.e., 38 deletions, 13
translocations, 7 duplications, 7 inversions and 3 insertions) high-quality
SVs released by a multi-platform study. As a result, though 57 ground truth
somatic SVs were missed by one of the five callers, all somatic insertions were
correctly detected. In addition, 35 out of 57 ground truth SVs, consisting of
six translocations, 21 deletions, five inversions and three duplications, could
not be detected by any combination of callers and aligners. We thus rea-
soned that integration of discoveries from different callers might substantially
increase the detection sensitivity.

5.4 Conclusion

SVs are important types of genomic alterations to form population diver-
sity [5] and to drive disease progression, such as tumorigenesis [6], but are
more difficult to detect than small variants from short-read data due to the
limited read length. In the past five years, the long-read sequencing tech-
nologies and the newly developed algorithms greatly facilitate the detection
of SVs from both healthy [113] and tumor genomes [114], improving our
understanding of the functional impact of SVs. Remarkably, the SV detection
based on haplotype-resolved assembly enables the haplotype-aware germline
SV detection, and significantly improves the detection at complex genomic
regions, such as segmental duplication and variable number tandem repeat
(VNTR) [9, 10]. Though studies have attempted to evaluate the performance
of routine SV detection algorithms, we explored the major factors affecting
the ability of different algorithms in detecting SVs in complex genomic re-
gions and somatic SVs. Overall, using public HiFi and ONT data from four
healthy genomes and ONT data from a normal-tumor paired sample, we
evaluated multiple aligners and SV callers to assess the routine SV detection
algorithms by comparing with PAV calls and high-quality somatic truth set.

In this chapter, we examined the performance of each SV caller with two
aligners (i.e., minimap2 and ngmlr). The alignment time and memory usage
had been systematically evaluated in other studies [115], which was out of
the scope of this study. For both HiFi and ONT platforms, all callers tend to
detect more SVs on minimap2 aligned data than that of ngmlr, while SVIM
produced more ONT unique calls on both aligners. Since the same parameters
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Figure 5.7: Evaluating the filtering-based somatic structural variants detection
of the six callers. (A) Comparison of structural variants (SVs) detected from
both tumor and normal tissues (left panel) and percentage of aligner unique
calls detected by each caller (right panel). (B) Percentage of tissue unique
calls detected by each caller (top panel) and repeat annotation of caller
unique calls (bottom panel). (C) SV types of tumor unique calls identified
from each caller.
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were used for each caller on different platforms and aligners, SVIM might
need specific parameter tuning for ONT data. Moreover, we found that
aligner was the major factor affecting the number of detected SVs and their
breakpoint accuracy, whereas the breakpoint of pbsv were less affected by
aligners and platforms. Therefore, we recommend using pbsv with either
minimap2 or ngmlr for the initial SV for a new sample. In terms of the recall
and precision of callers, both the GIAB and PAV benchmarking suggested
the bias of minimap2 paired with HiFi data. Though these two benchmarks
showed limitations for evaluation, they suggested that SVision, Sniffles, pbsv,
CuteSV and SVIM showed similar performance and outperformed NanoVar.
In addition, Sniffles and CuteSV showed the highest precision for all of the
HiFi and ONT data tested, while SVision call sets generally had a higher
recall rate. Therefore, Sniffles and CuteSV should be used when high precision
was the priority, pbsv was recommended when accurate breakpoint were
required, and SVision should be considered if high sensitivity was desired.

Additionally, and uniquely to this study, we investigated the features
of PAV calls missed by read-based detection to assess whether read-based
calling was capable of generating comprehensive call set. It was expected
that most of the missed PAV calls were found at VNTR regions and insertion
was the major SV type missed by read-based detection. While our results
suggested that the majority of the missed PAV loci contained SV signature
reads, and most importantly, this was not depending on aligners, indicating
the read-based detection would recover most of the PAV calls.

Moreover, since we also observed high SV breakpoint concordance on
different platforms using identical aligner, the selection of sequencing platform
would have less impact on SV detection for a new sample. However, it should
be noted that the majority of the inaccurate and inconsistent calls were
found at tandem repeat regions, so that disease associated with repeat
expansion requires extra downstream analysis or specific algorithms, such
as Straglr [116] and NanoSatellite [101]. Another critical step in studying
tumor genomes was to characterize the somatic SVs, which were considered
closely related to the tumorigenesis. Due to lack of long-read based somatic
SV detection algorithms, we only evaluated the recall of detecting somatic
SVs in tumor unique calls. However, this approach identified ground truth
somatic SVs in low precision, suggesting an urgent demand of standalone
somatic SV detection algorithms in the community.

Altogether, our analysis suggested that alignment-based callers would
uncover a near comprehensive and high-quality call set of a genome, while the
filtering-based approach for somatic SV discovery was suboptimal, leading to
high false positive rate. Thus, as the detection of SVs from long-reads becomes
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routine and gradually applied to investigate tumor genomes, it is imperative to
start to consider and work towards developing robust pipelines or algorithms
for SV detection in tumors. Moreover, we expect resources from ONT and
PacBio to accumulate as the technology improves and the sequencing price
decreases, which leaves great opportunities for better somatic benchmark
generation and future algorithm development for clinical applications.
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