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Chapter 4

SpotSV: An automated
approach for simple and
complex structural variants
validation

Abstract In the past several years, comparing with structural variants (SVs)

detection algorithms, there are a few approaches that have been developed to

evaluate the quality of detected SVs. As the decrease of long-read sequencing

price, accurate detection of SV breakpoints and type is critical to promote long-

read applications in both clinical and research settings. However, current manually

involved or experimental validation approaches is not applicable at scale in the big

data era.

In this chapter, we present SpotSV, an effective algorithm that automatically

validates SVs through denoised segments obtained from long-read sequencing data.

SpotSV evaluates each via two major modules: 1) selection of variant overlapping

reads; 2) collecting denoised segments and calculating validation score. We assessed

the performance of SpotSV with both simulated and real genomes across different

sequence depths. The evaluation results suggested that SpotSV is able to accurately

characterize the breakpoints and type of both simple and complex SVs with low read

depth. Moreover, by introducing denoised segments, SpotSV is able to assess SVs at

repetitive regions as accurate as those located at simple genomic regions. Recently,

long-read sequencing has been widely used in various genomic studies at scale, such

as different disease and species. SpotSV provides an option to automatically and

systematically assess the quality of detected SVs in high-throughput.
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CHAPTER 4. SPOTSV

4.1 Introduction

Structural variants (SVs) are among the major forms of genetic variations in
human genomes, affecting more than 50bp of the genomes compared with
single-nucleotide-variants (SNVs) and small insertions and deletions [1, 8].
SVs comprise different subclasses, such as deletions, insertions and complex
structural variant (CSV), which play important roles in numerous diseases
including cancers and genetic diseases [8]. In the past decade, a large number
of SV detection algorithms have developed for short-read and long-read
data [41], promoting our understanding of SV functional impact as well as
its role in adaptive selection in population [5]. Though long-read algorithms
have been proved to outperform short-read callers in terms of sensitivity
and specificity [9], some complex variant types or SVs at repetitive regions
are usually misinterpreted by existing algorithms. Therefore, orthogonal or
downstream SV validation methods are required to curate callsets generated
by different callers, especially for clinical applications.

Currently, experimental validation through PCR and Sanger sequencing
is considered as gold standard to validating detected SVs. However, exper-
imental validation is usually time consuming, and most importantly, it is
difficult to validate challenging variant classes and SVs at repeat regions.
This promotes the development of a high-throughput orthogonal validation
approach for detected SVs, including the breakpoint position and variant type.
Nowadays, several visualization methods have been developed for researchers
to manually assess the quality of detected SVs by either short-read or long-
read callers. For example, Samplot [88] creates images that display the read
depth and discordant alignments to validate SVs detected by short-read via
a machine learning approach. In addition, given that an increasing number
of CSVs have been identified, visualization methods, such as Ribbon [89], are
developed to view and assess large scale complex events detected in tumor
samples [90]. Note that these two representative approaches are not able to
accurately characterize the breakpoint for focal complex events (i.e., event
length smaller than 100kbp), which is important to understand the internal
structure of complex events and their formation mechanism.

Another approach is inspired by the sequence Dotplot [84], which es-
sentially visualizes the recurrence k-mer matrix of two sequences. Most
importantly, Dotplot enables precise variant structure interpretation, includ-
ing breakpoints, compared with the above-mentioned approaches. In the
past decade, this approach has been widely used to investigate the genome
rearrangements between different species, while it requires long sequence
which is not applicable for short-read data. With the rapid development of
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4.1. INTRODUCTION

long-read sequencing technologies, creating a sequence Dotplot becomes a
common approach to manually assess the predicted SVs, especially complex
events [5]. Briefly, the alternative sequence (i.e., long-read sequencing of
individual genome) is compared against the reference sequence through a
fixed size sliding window, called k-mer, and the matches are plotted for
visual confirmation purpose. However, this manual curation, coupled with
expert-level knowledge of SV structure, are time-consuming and inefficient
at large scale for high-throughput validation. VaPoR [72] is the first method
that investigates and scores each SV prediction by autonomously analyzing
the k-mers within a read against both an unmodified reference sequence at
that loci as well as rearranged referencing pertaining to the predicted SV
structure.

Moreover, it has been shown that tandem repeat regions, such as Variable
Number Repeat Region (VNTR), are hotspots for SVs [87], and long-read
sequencing greatly improves the detection compared with short-read sequenc-
ing, especially for insertions. Though long reads facilitate insertion detection,
it is difficult for detection algorithms to characterize the internal structure
of insertion that might consist of duplications. Furthermore, distinguishing
insertions from duplications is critical to understand how SVs affect gene
structure, thereby enabling precise analysis of functional impact. In addition,
an increasing number of detected CSVs and novel CSV types [6, 12] have
been reported from healthy and disease genomes, which introduces another
layer of difficulty for validating SVs. Altogether, there is an urgent demand
of developing novel method for validating SVs at complex genomic regions
and CSVs.

Here, we present an effective sequence-based validation tool, SpotSV,
that uses either long reads or assemblies to assess each predicted SV. In
general, SpotSV characterizes each predicted SV by examining the denoised
segments obtained from 1) SV modified sequence (PRED) against long read
sequence (READ) comparison and 2) reference sequence (REF) against
READ. Accordingly, a correct prediction would maximize the difference in
REF-to-READ comparison, while minimize the difference in PRED-to-READ
comparison. Notably, to overcome the difficulties of validating SVs at complex
genomic regions, the denoised segments could be isolated by removing REF-
to-REF from the PRED-to-READ and REF-to-READ because the reference
context is presented in both PRED-to-READ and REF-to-READ. Afterwards,
a validation score derived from denoised segments is used to assess the
correctness of the predicted SV. We then evaluate the performance of SpotSV
on a series of simulated and real datasets. The results suggest that our
approach could accurately distinguish positive and negative predictions of
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CHAPTER 4. SPOTSV

simple and complex SVs, especially SVs at repetitive regions, and it is also
able to assess and refine the breakpoint of predicted SVs.

In Section 4.2, materials and related methods are described in details.
Moreover, results are discussed in Section 4.3 and conclusions are drawn in
Section 4.4.

4.2 Material and methods

In this section, we introduce the workflow of SpotSV and its three major
components. Then, we use both simulated data and publicly available real
data to assess the performance of SpotSV.

4.2.1 Overview of SpotSV

SVs modify the reference sequence (REF) based on detected type and
breakpoint position, thus the modified sequence, referring to as predicted
sequence (PRED), is identical to long reads (READ). Accordingly, we define
SV validation as a problem of maximizing the differences of READ and REF
sequence, while minimizing the differences of READ and PRED. SpotSV is
developed to assess each SV with three major steps (Figure 4.1): (i) creating k-
mer recurrence matrices for REF against READ and PRED against READ;
(ii) collecting denoised segments from REF-to-READ k-mer matrix and
PRED-to-READ k-mer matrix separately; (iii) calculating SV validation
score and assessing breakpoints. Specifically, a k-mer recurrence matrix is
created by sliding a fixed-size substring (k-mer) with single steps through
each sequence to mark positions where two sequences are identical.

Given the k-mer recurrence matrix, SpotSV removes identical sequence
substrings that appeared in the same position on the reference sequence,
resulting in so-called REF-to-READ and PRED-to-READ k-mer recurrence
matrices. Then, SpotSV obtains denoised segments from REF-to-READ
and PRED-to-READ k-mer recurrence matrices for assessing the quality of
predicted SVs. The denoised segments enable accurate characterization of
SVs at repetitive regions as well as CSVs. Finally, SpotSV adds validation
score and refined breakpoints for each predicted SV in a Variant Call Format
(VCF) file. Moreover, SpotSV provides REF-to-READ Dotplots and denoised
REF-to-READ Dotplots based on the k-mer recurrence matrix for visual
confirmation.
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4.2. MATERIAL AND METHODS

Figure 4.1: Overview of SpotSV. SpotSV consists of two major modules:
1) Read selection and 2) Denoise and evaluate. Module 1) is designed to
select variant overlapping reads, containing reads across entire events and
those only covering the breakpoint junctions. Module 2) consists of two steps.
Firstly, selected reads are realigned and denoised to obtain denoised segments.
Secondly, SpotSV uses denoised segments to assess the quality of detected
SVs.
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CHAPTER 4. SPOTSV

4.2.2 Modify reference sequence with predicted structural
variants

SpotSV uses predicted SV type and genomic position to modify the reference
sequence at the predicted locus, which is referred to as predicted sequence
(PRED). Specifically, given predicted SV breakpoints [ℓ, r] and size len,
SpotSV extracts the segment between [ℓ− 1000, r + 1000] from the reference
genome to obtain the reference sequence (REF). Then, the segment between
[1000, 1000+len] from REF is modified to create PRED based on predicted SV
type and length. The above process is applied to SVs containing more than two
breakpoints on reference genome, including deletion, inversion, duplication
and other complex SV types. For example, if a deletion of size 1,000bp
is detected at [20000, 21000], its corresponding REF is extracted between
[19000, 22000] from the reference genome and PREF sequence is obtained by
deleting the sequence from 1000 to 2000 in the REF. To modify the reference
genome containing duplications, especially dispersed duplications, SpotSV
uses left most position ℓ as source position, from which the sequence of
length len is copied and inserted to the rightmost position r, the destination
position. For insertion with a single breakpoint on the reference genome,
SpotSV extracts REF from p− 1000 to p+ 1000 on reference genome and
obtains PRED by inserting the sequence of size len at position 1000 on REF.
The REF and PRED sequences are then used to create REF-to-READ and
PRED-to-READ k-mer recurrence matrices, respectively.

4.2.3 Generating denoised segments based on k-mers

SpotSV identifies cooccurrence of substrings (k-mers) in two sequences
and generates a raw REF-to-READ and PRED-to-READ k-mer recurrence
matrix, which is visualized as sequence Dotplot in SpotSV outputs. By
default, SpotSV uses k-mers of length 31bp and requires an exact match
between sequences by comparing consecutive k-mers. Once encountering an
unmatched k-mer, SpotSV generates a segment of length k + n consisting of
n matched k-mers, where k is the length of the k-mer. To resolve repetitive
regions, SpotSV introduces a novel process to isolate and boost the SV
signature by removing reference background. Firstly, SpotSV uses REF to
create a k-mer recurrence matrix representing reference context, from which
a set of repeated segments and their position on the reference genome is
obtained. Secondly, SpotSV traverses all segments obtained from raw REF-
to-READ according to the segment positions on the reference genome, and
remove segments that have been identified as repeated segments in reference
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4.2. MATERIAL AND METHODS

sequence comparison. For two identical sequences, the k-mer recurrence
matrix only has values on main diagonal, while repeat sequences add values
to other cells in the matrix. Compared with repeat sequences, SVs break the
continuity of the values on the main diagonal at predicted breakpoint position,
and move values right after a breakpoint position to either horizontal axis
or vertical axis direction by SV length. For example, if vertical axis and
horizontal axis of a recurrence matrix indicate the reference sequence and
read sequence, respectively, a deletion manipulates the recurrence matrix by
shifting the values along the vertical axis by length L. It should be noted
that segments on the main diagonal at the 5’ breakpoint position flanking
regions and segments on the 3’ breakpoint shifted by SV length are retained
during repeats removal. This repeat elimination process is applied to each
read spanning predicted SV, from which denoised segments are obtained for
further assessment. Since DNA is double stranded, containing forward and
minus strand, the above process is also applied to the reverse complementary
sequence to find potential matches on the minus strand, enabling validation
of inversions. In addition, denoised segments in READ-to-REF are used to
determine breakpoints of a predicted SV. Finally, denoised segments are also
used to create a Dotplot in SpotSV outputs for visual confirmation.

4.2.4 Calculating structural variant validation score

Given a denoised segment set, the difference of two sequences could be
measured by calculating distance between segments and diagonal. In principle,
distance would approach zero when measuring two identical sequences, while
SVs alter the sequence and thus would produce large distance. Specifically,
assuming a predicted SV s is spanned by m reads, for a read i containing n
denoised segments, the distance d of denoised segment j is defined as vertical
distance to diagonal, which is calculated as:

ds,i,j =
1

3
((xs,i,j,start − ys,i,j,start)

+(xs,i,j,mid − ys,i,j,mid ) + (xs,i,j,end − ys,i,j,end ))

Here xs,i,j,start and ys,i,j,start are the start position of segment j on x-axis and
y-axis, respectively, xs,i,j,mid and ys,i,j,mid are the middle position of segment
j on x-axis and y-axis, respectively, while xs,i,j,end and ys,i,j,end are the end
position of segment j on x-axis and y-axis, respectively. Then, the average
distance of all segments belonging to a read is calculated as:

ds,i,avg =
1

n

n∑
j=1

ds,i,j

69



CHAPTER 4. SPOTSV

Since correct SV prediction maximizes difference of REF-to-READ and
minimizes difference of PRED-to-READ, the SV validation score is com-
prised of two parts. The average distance of REF-to-READ is calculated as
ds,i,avg,ref ∈ [0,+∞). Similar to ds,i,avg,ref , we define the average distance of
PRED-to-READ as ds,i,avg,predict ∈ [0,+∞). Then, SpotSV normalizes these
two scores to assess the predicted SV:

Scores,i =

{
1− ds,i,avg,predict/ds,i,avg,ref if ds,i,avg,ref > 0
0 otherwise

Moreover, for Scores,i < 0, it is set to Scores,i = 0, thus Scores,i ∈ [0, 1].
Read i is not supporting the predicted SV if Scores,i = 0, while Scores,i = 1
indicates read i supports the predicted SV. Finally, for a predicted SV
spanned by m reads, SpotSV uses the highest score as final validation score
in the output:

Scores,highest = max([Scores,1, . . . ,Scores,i, . . . ,Scores,m])

However, due to sequencing errors, we consider that read i supports a
predicted SV if Scores,i > Scorethreshold, where Scorethreshold = 0.8, from
which SpotSV identifies the number of reads that support SV s and estimates
the gentype.

4.2.5 Data availability

Using the same simulation workflow as described in Chapter 2 and Chapter 3,
non-overlapping simple deletions, inversions, insertions and duplications
as well as five CSV types are independently incorporate into GRCh38 in
both heterozygous and homozygous states. Notably, four subtypes of du-
plications are simulated, including tandem duplication (tDUP), inverted
tandem duplication (itDUP), dispersed duplication (dDUP) and inverted
dispersed duplication (idDUP), where itDUP and idDUP are classified as
complex event according to previous studies. Moreover, we include another
three well-characterized types from previous studies, i.e., deletion associ-
ated with insertion (Del-Inv), deletion associated with dispersed duplication
(Del-dDUP) and deletion associated with inverted dispersed duplications
(Del-idDUP). In total, we simulate 20,000 SV events at whole genome scale,
and the number of events is equally distributed for the simulated SV types.
The number of SVs for each chromosome (from chromosome 1 to chromosome
X) is selected based on the ratio of chromosome length. The 20,000 simulated
SVs are kept in BED format and used as positive cases for performance
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evaluation, while another 1,000 negative cases not overlapping with the
positive ones are added to the benchmark BED file, making a benchmark
that contains 20,000 positive and 1,000 negative cases. The types of negative
cases are randomly assigned based on simulated SV types. It should be noted
that the 1,000 negative cases are not implanted into the simulated genome
containing 20,000 positive cases, thus negative cases should be validated as
false prediction. The simulated genome is further sequenced to different HiFi
read depth, ranging from 5X to 30X, with default parameter specified in VI-
SOR [83]. The HiFi reads are aligned to the reference GRCh38 with pbmm2
(https://github.com/PacificBiosciences/pbmm2) default settings.

For the real dataset, both the HiFi and ONT data for HG002 are obtained
from ftp://ftp.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG

002 NA24385 son, which were initially sequenced by the Genome-In-A-Bottle
(GIAB) and the high-quality benchmark for HG002 used in this chapter is
obtained from ftp://ftptrace.ncbi.nlm.nih.gov/giab/ftp/data/Ashk

enazimTrio/analysis/NIST SVs Integration v0.6/. We use both HiFi
and ONT data to compare SpotSV with VaPoR on validating SVs in the
benchmark. Since VaPoR is not able to run on chromosome 4 of real data
due to a coding error, we only examine the performance on other autosomes
as well as sex chromosomes.

4.3 Results

In this section, we first evaluate SpotSV on validating simulated data that
contains both simple and complex SVs. Then, using the high-quality bench-
mark set of HG002, we compare the performance of SpotSV and VaPoR by
assessing the number of correctly validated SVs.

4.3.1 Evaluating SpotSV with simulated data

We first examined the impact of aligners on SpotSV, where SpotSV was
applied to simulated reads aligned by pbmm2, minimap2 [17] and ngmlr [18],
respectively. The results showed that percentage of SpotSV validated SVs
was independent of aligners, such as 97.91%, 97.40%, 97.39% of SVs were
validated on pbmm2, minimap2 and ngmlr aligned data at validation score
cutoff 0.9, respectively (Figure 4.2A). We then investigated the performance
of SpotSV on pbmm2 aligned simulation data. Since the simulated dataset
contained 20,000 positive events (Table 4.1), it was expected that the majority
of SpotSV validation scores ranged from 0.8 to 1 for both homozygous and
heterozygous events across different coverages (Figure 4.2B). Using a high
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CHAPTER 4. SPOTSV

validation score 0.9 as cutoff, SpotSV was able to successfully validate 85% of
SVs even with 5X low-coverage data, and 95% SVs could be validated with
a validation score cutoff 0.8 (Figure 4.2C). Additionally, we identified 336
simulated SVs at repetitive regions and examined the sensitivity of validation
for these SVs. By introducing denoised segments, the average sensitivity
difference of validating SVs inside and outside repeat regions was around 2%
across different coverages at a validation score cutoff of 0.8. For example,
applying SpotSV on 20X coverage data, 93% and 95% of SVs inside and
outside repeat regions were validated, respectively (Figure 4.2). Moreover,
SpotSV could validate heterozygous SVs located at repetitive regions as
sensitive as homozygous SVs.

DEL INS INV tDUP itDup dDUP idDUP DEL+ DEL+ DEL+
INV dDUP idDUP

chr1 164 164 164 164 164 164 164 164 164 163
chr2 160 160 160 160 160 160 160 160 160 159
chr3 131 131 131 131 131 131 131 131 131 130
chr4 126 126 126 126 126 126 126 126 126 125
chr5 120 120 120 120 120 120 120 120 120 119
chr6 113 113 113 113 113 113 113 113 113 112
chr7 105 105 105 105 105 105 105 105 105 104
chr8 96 96 96 96 96 96 96 96 96 95
chr9 91 91 91 91 91 91 91 91 91 90
chr10 88 88 88 88 88 88 88 88 88 87
chr11 89 89 89 89 89 89 89 89 89 88
chr12 88 88 88 88 88 88 88 88 88 87
chr13 76 76 76 76 76 76 76 76 76 75
chr14 71 71 71 71 71 71 71 71 71 70
chr15 67 67 67 67 67 67 67 67 67 66
chr16 60 60 60 60 60 60 60 60 60 59
chr17 55 55 55 55 55 55 55 55 55 54
chr18 53 53 53 53 53 53 53 53 53 52
chr19 39 39 39 39 39 39 39 39 39 38
chr20 42 42 42 42 42 42 42 42 42 41
chr21 31 31 31 31 31 31 31 31 31 31
chr22 34 34 34 34 34 34 34 34 34 34
chrX 103 103 103 103 103 103 103 103 103 103

Table 4.1: Number of simulated structural variants at different chromosomes.

We further assessed the true positive rate and false positive rate at
different validation score cutoffs for all simulated events. The results showed
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4.3. RESULTS

Figure 4.2: Performance of validating simulated structural variants across
different coverages. (A) Sensitivity of validating simulated structural variants
(SVs) at different validation score cutoffs using long reads mapped with
different aligners. (B) The distribution of validation score of homozygous
and heterozygous SVs at different sequence coverages. (C) The sensitivity of
validation simulated SVs at different validation score cutoffs across different
coverages. (D) The true positive rate and false positive rate of validating
simulated SVs at different validation score cutoffs. (E) The sensitivity of
validating SVs inside and outside of repetitive regions.
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that the AUC (Area Under Curve) was 0.92 for homozygous SVs while
using 5X low-coverage data, and it increased to 0.94 for 20X coverage data
(Figure 4.2D), which was evaluated as optimal coverage for efficient and
effective SV detection [91].

Figure 4.3: Receiver operating characteristic curve of validating five simple
structural variant types. (A) The true positive rate and false positive rate
of validating deletion (DEL), insertion (INS) and inversion (INV) across
different coverages. (B) The true positive rate and false positive rate of
validating dispersed duplication (dDUP) and tandem duplication (tDUP)
across different coverages.

We then examined the performance of validating SVs of different types.
For homozygous SV of different types, even using 5X coverage data, AUC
of SpotSV could reach 0.98, 0.98 and 0.93 for validating deletion, insertion
and inversion, respectively (Figure 4.3A). Duplication was a special form of
insertion, where the inserted sequence either originated from the segment
adjacent to the insertional breakpoint or from a remote position, forming
so-called tandem duplication and dispersed duplication. It was usually chal-
lenging to distinguish insertions from duplications as well as to identify
tandem and dispersed duplications for existing callers. SpotSV was able to
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correctly validate tandem duplications and dispersed duplications in high
AUC, i.e., 0.80 and 0.96, respectively, making it a valuable method to curate
duplications (Figure 4.3B, Figure 4.3C). In terms of homozygous complex
SVs of five types, the average AUC was 0.91 while applied to 30X coverage
data, and the highest AUC of five types was 0.99 for validating deletion
associated inversions (Figure 4.4). We also observed that there were no
significant changes of AUC for validating heterozygous simple and complex
SVs at 30X coverage data.

Altogether, the above results indicate that SpotSV could accurately
validate both simple and complex SV types even with 5X coverage data.

Figure 4.4: Receiver operating characteristic curve of validating five complex
structural variant types. idDUP: inverted dispersed duplication, itDUP:
inverted tandem duplication, Del-idDup: deletion associated with inverted
dispersed duplication, Del-Inv: deletion associated with inversion, Del-dDup:
deletion associated with dispersed duplication.
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4.3.2 Validating structural variants in a well-characterized
genome

We next compared the sensitivity of SpotSV and VaPoR using high-confident
SVs in HG002 released by the Genome in a Bottle (GIAB) Consortium [92].
The HG002 callset contains 14,588 deletions and 15,432 insertions, and
each deletion or inversion is assigned to a different ’RETYPE’ according
to sequence features at variant loci (Table 4.2). For example, a deletion
(DEL) is defined as ’SIMPLEDEL’ if this variant deleted an unique sequence,
otherwise it is defined as ’CONTRACT’, indicating deletion of a sequence
entirely similar to the remaining sequence. We evaluate the sensitivity of
validating all 30,020 SVs using HiFi and ONT data at different sequence
coverages. As a result, SpotSV was able to examine 96% and 98% of SVs
when applied to 5X HiFi and ONT data, respectively, and other SVs were not
able to be assessed due to lack of variant spanning reads (Figure 4.5A). While
using high-coverage HiFi and ONT data, 99% of SVs could be examined
by SpotSV. Comparably, VaPoR was able to assess around 40% SVs and
others were labeled as ‘NA’ while using ONT data and low coverage HiFi
data (Figure 4.5A). For SVs that could be assessed by SpotSV and VaPoR,
we investigated the sensitivity under various validation score cutoffs. Though
sensitivity was negatively correlated with validation score cutoff, SpotSV
consistently outperformed VaPoR across different coverages and validation
score cutoffs (Figure 4.5B). The performance was especially prominent for
ONT data, where SpotSV correctly validated 40% more SVs that VaPoR
(Figure 4.5B).

SVTYPE REPTYPE
SIMPLE- SIMPLE- SUBS- SUBS- DUP CON- SUM
DEL INS DEL INS TRACT

DEL 8334 0 976 2 4 5171 14588
INS 209 7008 69 1243 6849 53 15432

Table 4.2: Number of structural variants in the HG002 benchmark set.

Moreover, we noticed a significant sensitivity decrease of VaPoR and
SpotSV at a validation score around 0.1, while the sensitivity of VaPoR
also decreased significantly at a validation score around 0.5 across different
coverages and platforms (Figure 4.5B). We then examined the performance of
validating 927 DEL and 921 INS events that are located at highly repetitive
regions from HG002 benchmark. The results show that SpotSV was able
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4.3. RESULTS

Figure 4.5: Performance of validating structural variants in HG002. (A)
The distribution of validation score assessed by SpotSV and VaPoR for all
structural variants (SVs) in the HG002 benchmark. NA indicates SVs that
coule not be assessed. (B) The sensitivity of validating all SVs in HG002
using different validation score cutoffs. (C) The sensitivity of validating SVs
at repetitive regions using different validation score cutoffs.
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to validate SVs at highly repetitive regions as sensitive as those outside
of repeats, while the average sensitivity decrease for VaPoR was around
10% when applied to SVs located at repetitive regions (Figure 4.5C). For
example, a deletion at a highly repetitive region of validation score 1.0 was
correctly validated by SpotSV because SpotSV used the denoised segment
for validation (Figure 4.6A), while VaPoR assigned a validation score of 0.3
(Figure 4.6B).

Furthermore, we found VaPoR was not able to assess two adjacent SVs,
while SpotSV not only validate this event but also identifies an extra SV
breakpoint (Figure 4.6C). Our results demonstrated that SpotSV was able to
effectively validate SVs at genomic regions of different complexity, especially
for tandem repeat regions.

4.3.3 Structural variant breakpoint validation and accuracy

One of the challenges of SV discovery is the precise determination of break-
point positions at single nucleotide resolution. Some of the previous short-read
algorithms, such as Pindel [36] and Manta [42], could detect single nucleotide
resolution breakpoints, but their SV detection capability was limited by the
read length and repetitive elements. Moreover, a recent study conducted
by the 1000 Genomes Project (1KGP) reported that the median confidence
interval of breakpoints identified by short-read callers was ±85bp across
all events [5]. We therefore assessed whether SpotSV was able to identity
accurate breakpoints by using simulated SVs and SVs from the HG002
benchmark set. Briefly, breakpoints of HG002 SVs were used as ground truth
breakpoints, which were only compared to SpotSV identified breakpoints
because validated breakpoints were not included in VaPoR outputs.

The results showed that most of SpotSV identified breakpoints were
±200bp apart from breakpoints of ground truth calls, with a small portion of
breakpoint offset ranging from 200bp to 500bp (Figure 4.7A). Though distri-
bution of breakpoints identified from 5X ONT data was flattened compared
with 5X HiFi data, high coverage ONT data facilitated accurate breakpoint
detection of SpotSV, leading to similar results compared to 27X HiFi data
(Figure 4.7A). In addition, we assessed the breakpoint accuracy of SVs at
genomic regions of different complexity. Specifically, ’DEL-SIMPLEDEL’
and ’INS-SIMPLEINS’ were SVs identified at simple genomic regions, while
DEL and INS classified as other ’REPTYPE’ were considered at complex
regions, referred to as ’DEL-Complex’ and ’INS-Complex’. By comparing
breakpoint offsets of these two groups of calls, we found that SpotSV was
able to identify breakpoints of SVs at complex genomic regions as accurate
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4.3. RESULTS

Figure 4.6: Examples of SpotSV validated SVs. (A) SpotSV validates a
deletion at a tandem repeat region of validation score 1.0, while VaPoR (B)
calculates a validation score of 0.3 for this event. (C) SpotSV identifies a
variant locus containing two insertions, but this event was labeled as ’NA’
by VaPoR.
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as those at simple genomic regions (Figure 4.7B).

Figure 4.7: Breakpoint accuracy of SpotSV on HG002 calls. (A) Overall
breakpoint offsets evaluated on HiFi and ONT data. (B) The distance of
benchmark breakpoints to breakpoint identified by SpotSV from 27X HiFi
data. The breakpoint comparison is grouped by the complexity of variant
loci. Specifically, ’INS-SIMPLEINS’ and ’DEL-SIMPLEDEL’ are considered
as variant occurred at simple genomic region, while ’INS-Complex’ and
’DEL-Complex’ are labeled as other ’REPTYPE’ instead of ’SIMPLEDEL’
or ’SIMPLEINS’.
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4.4 Conclusion

In this chapter, we presented an automated simple and complex SV assess-
ment approach based on denoised segments, named SpotSV, for validating
predicted SVs using long-read sequencing data. SpotSV obtains denoised
segments by subtracting reference context from predicted sequences modified
with the profile of SVs, thereby reducing the impact of repeat sequences on
SV validation that are usually inaccessible by existing methods. Moreover,
SpotSV implements the functions to discriminate several subclasses of dupli-
cations from insertions, such as tandem and dispersed duplications, which
are particular challenging to validate and important for functional analysis.
The performance assessed on simulated and real data suggests that SpotSV
can accurately validate SVs inside and outside of repetitive regions, with
the capability of discriminating genomic loci containing incorrect discoveries
or correct detection with inaccurate SV profiles (i.e., type and breakpoints).
Future work will focus on optimizing local sequence realignment, especially
for detected SV loci containing multiple breakpoints.

Recently, genome assembly based on long-reads has become a popular
approach for genomic study, and SV validation from reads is an important
orthogonal approach to assess SVs detected from assemblies of different
species. Moreover, as the long-read sequencing price decreases, there is an
urgent need of assessing SVs from clinical perspectives. Therefore, SpotSV is
a valuable method that enables efficient SV assessment for different genomic
studies.
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