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Chapter 3

SVision: A deep learning
approach to resolve complex
structural variants

Abstract Complex structural variants (CSVs) encompass multiple breakpoints and
are often missed or misinterpreted by state-of-the-art long-read variant detection
algorithms. As an increasing number of CSVs have been revealed through intensive
breakpoint analysis and visual confirmation, there is an urgent demand of novel algo-
rithms for detecting and characterizing CSVs at scale for future clinical applications.
In this chapter, we develop SVision, a deep-learning based multi-object recognition
framework, to automatically detect and characterize both simple and complex SVs
from sequence image. SVision consists of three major modules: 1) an encoder that
codes the differences and similarities between variant feature sequence and reference
sequence as a denoised image; 2) a targeted multi-object recognition framework that
detects and characterizes CSVs via a convolutional neural network in the denoised
image; and 3) an illustrator that creates and unifies the detected CSV as a graph
representation. Comprehensive evaluations on both simulated and real datasets
reveal that SVision outperformed other algorithm and could accurately detect and
characterize CSVs. Moreover, SVision resolved 80 CSVs with 25 distinct structures
from an individual genome, from which we found CSVs disrupting important neural
development genes and CSVs revealing the ancestral state of the human genome.

The SVision program (v1.3.6) and trained model are available at GitHub (https:

//github.com/xjtu-omics/SVision).

39

https://github.com/xjtu-omics/SVision
https://github.com/xjtu-omics/SVision


CHAPTER 3. SVISION

3.1 Introduction

Complex structural variants (CSVs) contain multiple breakpoints and may
delete, duplicate, and/or invert multiple segments of DNA, creating events
that are both larger and more likely to be deleterious than simple structural
variants [12, 82]. For instance, in 2015, by integrating short- and long-read
sequencing, the 1000 Genomes Project (1KGP) revealed that 6% of deletions
and 80% of inversions in NA12878 were complex events [5]. In 2020, the
Pan-Cancer Analysis of Whole Genomes Consortium uncovered 22 out of
31 histology groups containing 10 to 1,000 complex breakpoints per sample
through short-read sequencing of 2,658 cancer samples [6].

Previous short-read-based approaches to CSV detection require intensive
breakpoint analysis and subsequent manual inspections with complementary
data [11]. Even though long-reads have greatly facilitated phased structural
variation (SV) detection [10], three major issues have impeded their usage in
CSV detection. Firstly, the model-based inference approach, initially designed
for simple SV discovery from short-read [1], requires the construction of each
SV model for fitting aberrant alignment patterns and prohibits effective
discovery of largely unexplored CSV structures [8, 18]. Secondly, ambiguous
alignments at repetitive regions complicate SV discovery, leading to false
calls or missing events. Lastly, the current subjective definition of CSV
types based on predefined models lacks a unified and computer-interpretable
framework [12], hindering cross-study comparison of CSVs.

In Section 3.2, materials and related methods are described in details.
Moreover, results are discussed in Section 3.3 and conclusions are drawn in
Section 3.4.

3.2 Material and methods

This section introduces the workflow of SVision and provide detailed descrip-
tion of SVision’s three major components. Moreover, related methods, such
as performance evaluation, CSV analysis, etc., are described in details.

3.2.1 Overview of SVision

SVision begins by encoding pairs of sequences, a given read and its counterpart
in reference genome, as an image showing sequence similarity and difference
adapting variant detection to a multi-object recognition problem amenable
to an existing deep learning framework. SVision is composed of three core
components: an encoder that represents the differences and similarities
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3.2. MATERIAL AND METHODS

between a variant supporting read and its corresponding segment in the
reference genome as a denoised image, a targeted multi-object recognition
(tMOR) framework that detects and characterizes CSVs via a convolutional
neural network (CNN) in the denoised image, and an illustrator that creates
and unifies each detected CSV as a graph representation from the denoised
image (Figure 3.1A).

To generate a denoised image, the encoder first collects aberrant long-read
alignments, the so-called variant feature sequence (VAR), and its aligned
segment on the reference genome, referred to as reference sequence (REF).
For a VAR, the encoder identifies matched and unmatched bases, from which
the matched and the locally realigned unmatched sequences are combined to
create VAR-to-REF and REF-to-REF images (Figure 3.1B). Since the repet-
itive sequences are present in both variant feature and reference sequences,
the variant signature can be isolated and accentuated when the reference
background is removed. Thus, a denoised image is created for each feature
sequence by subtracting the REF-to-REF image from its corresponding
VAR-to-REF image, which reduces false calls introduced by repeats.

In the tMOR step, since a denoised image might contain more than
one SV, SVision uses a two-step image segmentation process to first obtain
a one-variant image, containing the full structure of a SV. Then, SVision
defines each location surrounding a breakpoint in the one-variant image as a
Segment of Interest (SOI), and SOIs that are collected from a one-variant
image are recognized as a single CSV through a pre-trained CNN.

The third component of SVision, illustrator, adopts a graph-based ap-
proach to depict different CSV structures. A given CSV graph structure and
its topologically equivalent events are combined through detection of isomor-
phic graphs. Additionally, SVision reports the CSV graph in the Reference
Graphical Fragment Assembly (rGFA) format introduced by MiniGraph [29].
Finally, SVision clusters similar one-variant images that supports an event
and integrates CNN prediction probability of each one-variant image and
similarity across one-variant images in a cluster to measure confidence of an
event.

3.2.2 Three-channel coding of sequence

SVision takes the sequence alignment file in BAM format and reference file as
input. The encoder consists of two major steps, i.e., variant feature sequence
selection and sequence coding. Variant feature sequences are directly identified
from long-read aberrant alignments containing SV signatures, such as inter-
read and intra-read alignments. Intra-read alignments are derived from
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CHAPTER 3. SVISION

Figure 3.1: Overview of SVision. (A) Overview of the SVision workflow. (B)
Details of three major modules implemented in SVision.
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3.2. MATERIAL AND METHODS

reads spanning the entire SV locus, while inter-read alignments are obtained
from reads that are aligned to larger SV event, resulting in supplementary
alignments. SVision identifies additional SV signatures by applying a k-mer
based realignment approach for unmapped segment in feature sequence,
such as ‘I’s from CIGAR string and gap sequence obtained from inter-read
alignments. Then, sequence differences and similarities derived from matched
and unmatched segments between variant feature sequence (VAR) and its
corresponding segment on the reference genome (referred to as REF) is coded
as an image.

The image contains three channels, including (0, 0, 255), (0, 255, 0),
and (255, 0, 0), to code the matched, the duplicated and the inverted
segments, respectively. Given the three-channel image, SVision first creates
the REF-to-REF image through k-mer realignment. As for VAR-to-REF
image, matched segments obtained from CIGAR string and supplementary
alignments, originating from the aligner’s outputs, are directly used for
image coding to reduce computational cost, and realignment results are
further added to complete image coding. The denoised image is obtained by
subtracting the REF-to-REF image from the VAR-to-REF image. Because
the background originates from reference sequence context, the encoder
subtracts the segments of two images based on the REF sequence coordinates.
Specifically, if segments from two images overlap on the reference dimension
and their difference is larger than 50bp (minimum SV report size), the
encoder keeps the non-overlapping part of the segment in the similarity
image, where its coordinates are determined by the VAR-to-REF image.
Finally, the denoised image of each variant feature sequence is created and
saved as matrix along with segment information tables for further processing.

3.2.3 Detecting CSVs from denoised images via tMOR

In principle, for each denoised image, the regions where VAR and REF
are identical must be a straight line while SVs introduce discontinuous
segments. These discontinuous segments indicating putative variants and
their breakpoints in the denoised image are surrounded by segment signatures,
which are considered as breakpoint object and further defined as Segment
of Interest (SOI). Since long reads are likely to span more than one variant
in the denoised image, the tMOR contains a two-step image segmentation
process for further SOI recognition. Specifically, the tMOR first obtains a
so-called one-variant image, from the denoised image based on the following
steps.:

1. Sorting and tagging. We sort all segments in the denoised image by
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CHAPTER 3. SVISION

their positions on read in ascending order. Then, the major segment
is defined according to the matched segments derived from CIGAR
operations, while the minor segment should meet one of the following
conditions:

• Condition 1: the segment is derived from the hash-table based
realignment.

• Condition 2: the segment is inverted compared to the reference
genome.

• Condition 3: the segment is totally covered by another one.

2. Creating one-variant image. SVision partitions the denoised image into
several one-variant images via sequential combination of the major
segments. Specifically, each major segment and its neighboring major
segment along with the minor segments (if they exist) between them
are used to create a one-variant image.

Afterwards, SVision clusters similar one-variant images by measuring the
distance of segment signatures between one-variant images. Thus, one-variant
images in a cluster supports the same variant, and the size of a cluster
is termed as the number of variant supporting image. Secondly, SVision
collects SOIs from each one-variant image. Unlike traditional multi-object
recognition that uses complex algorithms to select regions of interest, the
segment signatures in the one-variant image enable efficient SOI identification
by sequentially combining both major and minor segments. Then, SOIs are
used as input for CNN prediction, and the interpreted SV types are given by
the labels involved in the training set, including deletion (DEL), inversion
(INV), insertion (INS), duplication (DUP) and tandem duplication (tDUP).
The CNN assigns the probability score to assess the existence of variant
subcomponents in the one-variant image.

3.2.4 Creating CSV graphs from denoised images

SVision uses a graph to unify the definition of different CSV types and
provides a computational method to compare different CSV graph structures.
To create a CSV graph G = (V,E), SVision first collects the node set V =
VS ∪ VI ∪ VD of G. Specifically, VS = {S1, S2, . . . , Sn}, VI = {I1, I2, . . . , Im}
and VD = {D1, D2, . . . , Dk}, where n, m and k are the number of skeleton
nodes, insertion nodes and duplication nodes in the graph, respectively.
Skeleton nodes are derived from major segments in a one-variant image and
sequence between discontinuous major segments on REF (i.e., concordant
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segments between VAR and REF). Insertion nodes consist of minor segments
in the one-variant image, while insertion nodes with known origins are
defined as duplication nodes, representing duplicated segments in the one-
variant image. Moreover, each node vi ∈ V is represented as a tuple vi =
(Seq ,MathitPos,Strand), which represents a segment in the one-variant
image. Here Seq indicates the segment sequence, Pos is the position of the
segment on VAR and Strand represents the forward or reverse strand of the
segment. The edges in G are collected by E = Ead∪Edp. Here Ead represents

a set of adjacency edges ejad = (vj , vj+1), connecting two adjacent nodes vj
and vj+1, and Edp represents a set of duplication edges edp, connecting the
duplicated node with its known origin.

Given a graph G, a CSV could be interpreted by visiting each node
through the Ead edges. Assume the CSV path is given as “S1+S3-S3-S4+”,
where ’+’ or ’-’ indicates the direction of visiting a specific node, i.e., node
Strand . Specifically, node S1 and S4 are visited in forward direction (+), while
S3 is visited in reverse direction (-), so that the path should be “S1+S1+S3-
S3-S4+S4+”. But for simplicity, only the intermediate nodes, such as S3, are
kept twice, whereas the start node (S1) and the end node (S4) are used once
in the path.

Determining the isomorphism of two graphs G1 = (V1, E1) and G2 =
(V2, E2) is a NP-hard problem, but the ordered nodes based on the reference
simplifies this problem. Therefore, SVision first compares the numbers of
edges and nodes between two graphs G1 and G2, which are considered as
different if either number is different. On the other hand, if graph G1 and G2

have topologically identical path in addition to the same numbers of nodes
and edges, they are isomorphic CSV graphs, i.e., G1 = G2. If graph G1 and
G2 have the same number of nodes and edges but differ in paths, we further
examine whether G1 and G2 share symmetric topology, since a variant might
be identified on either forward or minus strand, i.e., from 5’ to 3’ or from
3’ to 5’. In particular, we create a mirror graph G′

1 of the original graph
G1, and obtain a new path from G′

1. Similarly we also create G′
2 from G2.

Then, we cross compare whether the paths between G′
1 and G2 as well as

between G′
2 and G1 are topologically identical. We consider G1 and G2 to

be isomorphic if both comparisons are equal.

SVision keeps isomorphic graphs and symmetric graphs in two separate
files, enabling search of CSV events of the same structure. For each variant
call, SVision keeps all its breakpoints in the “BKPS” column in the INFO
field and a type (“SVTYPE” column). Especially for CSVs, their breakpoints
are kept with both coordinates and associated graph structure in the “BKPS”
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and “GraphID” column, respectively. Note that the “GraphID” is used to
search events of a specific graph structure in isomorphic and symmetric
graph output files. Moreover, SVision involves the graph breakpoints induced
from the CSV Reference Graphical Fragment Assembly (rGFA) file in the
“GraphBRPKS” column. Note that the “GraphID” and “GraphBRPKS”
columns are only reported when the parameter ’--graph’ and ’--qname’ are
activated.

3.2.5 Quality score of discoveries

SVision uses a score function to measure the quality of each discovery based
on consistency and prediction reliability derived from one-variant image
clusters:

• One-variant image consistency. Intuitively, the non-linear segments in
a given one-variant image indicate potential differences between REF
and VAR. We thus first compute the non-linear score for all images that
support each event, i.e., one-variant images originating from a variant
feature sequence cluster. The non-linear score of a one-variant image is
calculated by its segments coordinates and lengths. Specifically, for a
one-variant image with segments:

nonlinear scorei =

∑
k |k.refmid − k.readmid| × k.length

RefSpan

where the summation is over all segments k in image i, k.refmid and
k.readmid are the center of segment k on reference and read, respec-
tively, and k.length is the length of segment k. Then we normalize
the summation by dividing by RefSpan, which denotes the distance
between the leftmost and rightmost coordinates of the one-variant
image. Finally, for a SV of M supporting images, we calculate the
consistency score with the following equation:

Consistency =
Std({nonlinear score1, . . . ,nonlinear scoreM})

M

Here Std denotes standard deviation. Accordingly, we expect a smaller
consistency value for high-quality SV predictions.

• Prediction reliability. This part evaluates the deep learning prediction
quality. The last layer in the CNN architecture is a SoftMax layer,
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which outputs the probability of the prediction results. Therefore, we
use the average probability of all SOIs as the CNN reliability:

Reliability =

∑
s s.softmax× 100

#SOIs

where the summation is over all SOIs in a one-variant image. The
reliability will range from 0 to 100 because the SoftMax probabilities
always range from 0 to 1. We expect higher reliability values for accurate
SVs.

Finally, we sum up the two features and normalize it to range from 0 to 100:

qual = Consistency + (1− Reliability)

and

Normalized score =

(
1− sum(Scores)−min(Scores)

max(Scores)−min(Scores)

)
× 100

where Scores = {qual1, . . . , qualM}, and M is again the total number of
images supporting this variant.

3.2.6 Training data and CNN model training

The CNN model in SVision is trained with both real and simulated simple
SVs of DEL, INV, INS, DUP and tDUP, to avoid usually unbalanced numbers
of SV types in real data. We obtained real SVs from NA19240 (4,282) and
HG00514 (3,682) by selecting calls supported by both PacBio CLR reads
and Illumina reads [9]. In this integrated real SV set, we labeled SVs with
the above-mentioned five rearrangement types. We further used VISOR to
simulate SV events with the parameters ’-n 4000 -r 20:20:20:20:20 -l

1000 -s 500’, and simulated the PacBio CLR reads. For all training SVs,
their one-variant images and SOIs are created as we described in the above
sections, leading to 75,000 SOIs (15,000 per type) in total, where 50% SOIs
are from real events. These SOIs are shuffled for further CNN model training.

SVision adopts AlexNet, a widely-used CNN model, to recognize sequence
differences in similarity images. The AlexNet architecture consists of five
convolutional layers and three fully-connected layers. Specifically, the first
convolution layer loads images of size 224×224×3, and it uses the 11×11×3
convolution kernel with stride 4. The last three layers are fully connected
and contains a five-class SoftMax layer with inputs from the five preceding
convolution layers. In the end, the input SOIs are detected as either INS,
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DEL, INV, DUP, tDUP or mixed types for CSVs. We apply the idea of
transfer learning to train CNN with 75,000 SOIs. First, the parameters of all
layers in the CNN are initialized to the best parameter set that was achieved
on the ImageNet competition. Afterwards, we fine-tune the parameters of
the last three fully-connected layers on our data using back propagation and
gradient descent optimization with a learning rate of 0.001. The loss function
is defined as the cross entropy between predicted probability and the true
class labels. Moreover, SVision’s CNN architecture is lightweight and has
far fewer layers than complex CNN models such as ResNet and Inception
V3, which results in a highly efficient fine-tuning process with large batch
size (default: 128) even on a single CPU machine. To evaluate the trained
CNN model, we apply ten-fold cross validation, and the trained model at
each round is applied to an independent test set of 7,500 SOIs derived from
simulated SVs. Finally, SVision selects the model with the best performance.

3.2.7 Evaluating simple structural variants detection with
real data

To benchmark the performance on HG002, we follow the procedure introduced
by Genome-In-A-Bottle (GIAB), which has also been used by CuteSV. Briefly,
the high confidence insertion and deletion calls and high confidence regions
published by the GIAB consortium are used as ground truth. The HiFi reads
are aligned to reference hg19 by pbmm2 (https://github.com/Pacific
Biosciences/pbmm2, v1.4.0) with parameter ’--preset CCS’, while ONT
reads are aligned with pbmm2 default settings. The 5X and 10X coverage of
HiFi and ONT data were further obtained with SAMtools [20] ’-s’ option.
Sniffles (v1.0.12), CuteSV (v1.0.10), pbsv (v2.2.2), SVision (v1.3.6) and SVIM
(v1.4.0) were applied to the pbmm2 aligned file with default parameters.
The minimum supporting read was 2 and 3 for 5X and 10X data, while 10
was used for the original coverage. Moreover, the HiFi data of NA12878 was
aligned to reference GRCh38 with minimap2 default settings, of which all
callers were applied to detect SVs. To examine recall and precision, raw
SV calls supported by at least five reads were used to compare with PAV
calls. A correct detection (TP) should pass the 50% reciprocal overlap, while
others were considered as false detections (FN). Then, the recall, precision
and F-score are calculated as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN
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3.2. MATERIAL AND METHODS

F-score =
2× Precision× Recall

Precision + Recall

Note that TP + FP is the total number of SVs detected by each caller, and
TP + FN is the total number of SVs in the benchmark set.

3.2.8 Evaluating complex structural variant detection

First of all, the 10 simulated complex structural variant (CSV) types were
derived from types reported by the 1000 Genomes Project (1KGP) [5] and a
cohort study of autism spectrum disorder (ASD) [12]. The 1KGP reported
CSV types included ’Ins and Del’, ’Ins with Dup and Del’, ’Ins with MultiDup
and Del’, ’MultiDel with Inverted or non-inverted spacer’, ’Inv and Del’ and
’Inverted Dup’, were classified and combined to three basic CSV types (BCT).
Specifically, ’Inverted Dup’, labeled as BCT-ID1, was used to produce CSV
types ID1 and ID2. ’MultiDel with Inverted or non-inverted spacer’ and ’Inv
and Del’ (BCT-ID2) are simulated as ID4. Moreover, ’Ins and Del’, ’Ins with
Dup and Del’ and ’Ins with MultiDup and Del’ were considered as one type
(BCT-ID3) but of different insertion sequence, which were used to produce
ID5, ID6, ID7 and ID8.

Secondly, we expanded the simulated CSV types by introducing the study
of ASD. In this research, we noticed that reported CSV types ’delINV’,
’INVdel’ and ’delINVdel’ could be classified to BCT-ID2, and ’dupINV’,
’INVdup’, ’dupINVdup’ and ’IR’ were considered as BCT-ID1. BCT-ID3 was
found as ’INSdel’, ’cpdINSdel’, ’dupINVdel’, ’delINVdup’ and ’dDUPdel’.
Specifically, ’delINVdup’ was simulated as ID5 and ID8, while ’dDUPdel’
was simulated as ID6 and ID7. We also simulate ’dDUP’, the dispersed
duplication, as ID3, which was not included in 1000GP. In addition, we
produced two novel types ID9 and ID10 by combining BCT-ID2 and BCT-
ID3, where direct and inverted repeats were added to the deletion associated
with inversion events.

In terms of simulation, a CSV was essentially the combination of break-
points from simple structural variants (SSV), which were also termed as
nested events. The simulation process contained four major steps. VISOR [83]
was first used to simulate five simple SV (SSV) types (deletion, inverted
dispersed duplication, inverted tandem duplication, tandem duplication and
dispersed duplication), which were randomly implanted on reference genome
GRCh38. Secondly, we followed the procedure introduced by Sniffles to sim-
ulate CSVs, where SSVs of the above five types were randomly added to the
flanking regions of the existing SSVs implanted by VISOR in the first step.
Accordingly, 3,000 SSV of five types were created by VISOR with parameters
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’-n 3000 -r 20:20:20:20:20 -l 500 -s 150’. Then, we added extra vari-
ants required in predefined CSV types to existing SSVs by following the type
order deletion, inverted dispersed duplication, inverted tandem duplication,
tandem duplication and dispsersed duplication. For instance, we first used
deletions as seeds to create all deletion involved CSV instances, and turned to
instances of the next type until deletions were all used. Finally, the variation
genome with CSVs was used as input for the VISOR LASoR module to
simulate 30X HiFi reads and further aligned with ngmlr [18] (v0.2.7) default
settings. Note that VISOR is only used to simulate variants at one haplotype
in this chapter.

To examine the correctness of detected CSVs, we used closeness and size
similarity to assess whether two events are identical according to Truvari (ht
tps://github.com/spiralgenetics/truvari/) introduced by GIAB. The
closeness bpDist and size similarity sim between prediction and benchmark
were 500bp and 0.7, respectively. Moreover, we only considered predictions
with at least 10 support reads for the CSV performance comparison. For
example, assume a particular benchmark CSV [b.start, b.end, b.size], and a
prediction [p.start, p.end, p.size]; then a correct region-match should satisfy
the following equations:

max(|b.start− p.start|, |b.end− p.end| ≤ bpDist

and
b.size× sim ≤ p.size ≤ b.size× (2− sim)

Comparably, the exact-match not only required region-match but also re-
quired the correct detection of all subcomponents of the CSV, including
the subcomponent breakpoint type. Therefore, for a deletion-inversion that
contained two subcomponents, e.g., INV and DEL, the exact-match becomes
a three-step evaluation:

1. Region-match between predicted CSV and benchmark deletion-inversion
event.

2. For each subcomponent, we examine the breakpoint closeness and event
size as well as the detected type.

3. The correct detection should pass condition 1) and 2). The subcom-
ponent match is considered as either deletion or inversion correctly
detected in 2).

In this study, we only considered INS, DEL, DUP and INV as subcomponent
types in the evaluation. Any benchmark CSVs without a matched prediction
were counted as false negatives.
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In addition, we used CSVs from NA12878 to assess the performance of
SVision. The CSV set of NA12878 was obtained from the 1000 Genomes
Project (1KGP) publication [5], including events from the supplementary
tables 12 and 15 in the original publication, containing 62 and 251 CSV
sites in hg19 coordinates, respectively. Based on the latest HiFi sequencing
of NA12878 released by Human Genome Structural Variants Consortium
(HGSVC) [10], we aligned HiFi reads with ngmlr (v0.2.7) default settings
and manually inspected the Dotplot of every read that overlaps with the
CSV site. Briefly, SAMtools and Gepard [84] were used to extract HiFi reads
and generate Dotplot, respectively. Afterwards, SVision was applied to the
ngmlr (v0.2.7) alignment for CSV discovery with default settings.

3.2.9 Analysis and validation of high-quality CSVs detected
from HG00733

SVision was run under the default setting except parameters ’-s 5 --graph

--qname’. The HiFi reads of HG00733 were aligned to reference GRCh38
by ngmlr (v0.2.7) with the default setting. Firstly, the events detected by
SVsion at low mapping quality regions, centromeres, genome gap regions,
etc., were excluded from analysis. These regions were obtained from https:

//github.com/mills-lab/svelter/tree/master/Support/GRCh38 and
the UCSC genome centromere for reference GRCh38. Then, we applied the
following steps to filter CSVs from the raw callset:

1. Filtering CSVs of length larger than 100kbp;

2. Filtering CSVs without complete graph representation, where the path
ends with other node types instead of ’S’ and

3. For multiple CSVs at one site, we only kept the one with the largest
number of supporting reads.

SVision revealed two special complex structures, i.e., a structure consisting
of nodes ’S:2,I:2,D:1’ and path ’S1+I1+I1+I2+I2+S2+’ as well as another
structure consisting of nodes ’S:2,I:1,D:1’ and path ’S1+I1+I1+S2+’, which
were visually confirmed as local targeted site duplication and tandem du-
plication. Events of these two structures were also filtered because they
were considered as simple events from biological perspective. Afterwards, we
used RepeatMasker and tandem repeat finder (TRF) annotated files from
UCSC genome browser to annotate the CSVs passed the filters through BED-
tools [85] intersect option. The repeat type was assigned if the CSV region
overlaps with the repeat element, while the size or percentage of overlaps was
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not required. For CSVs with multiple repeat types, the one with the largest
overlapping region with the CSV was chosen. Meanwhile, CSV was annotated
as STR if the repeat unit length <7bp; otherwise, it was annotated as VNTR.
Finally, we termed all CSVs outside of VNTR/STR regions as high-quality
CSVs, which were further validated and used for further analysis. The PAV
and short-read data matched CSV loci were obtained through BEDtools
without requiring overlap size. For the short-read data, a matched CSV locus
was considered as completely reconstructed if both breakpoint positions and
types matched what SVision reported, otherwise as partially reconstructed
events if either breakpoints or types agreed with SVision’s prediction.

The PAV merged call set from 35 haplotype-resolved samples was used to
explore the frequency of CSV on CNTN5. In addition, the RNA-Seq data of
precuneus and primary visual cortex from both control and disease samples
were obtained from a recent study of Alzheimer’s disease [86] to understand
the potential functional impact of CSV on CNTN5. The paired-end RNA
data was aligned with hisat2 default setting, from which the duplicated exon
signature could be observed from discordant read-pairs alignment, i.e., read-
pair aligned in reverse and forward direction. The insertion-inversion-insertion
event at chr9:74,283,222-74,283,473 detected by SVision, it was reported as
insertion of variant id chr9-74283228-INS-1797 by a recent study conducted
by HGSVC[10]. The insertional sequence was extracted from HiFi assembly
and Blast against several primate genomes. Moreover, the assemblies of
chimpanzee and gorilla were mapped to GRCh38 with minimap2 and called
variant with PAV, from which the same insertion event was identified.

We validated 80 CSVs detected by SVision in HG00733 via 1) graph-
based alignment; 2) contig-based visual confirmation; and 3) PCR and Sanger
sequencing:
Graph-based alignment. For each CSV graph in rGFA format, we extracted
the CSV locus spanning reads with SAMtools and aligned these reads to
each CSV graph via GraphAligner (v1.0.12) with the default setting. A
CSV was successfully validated if a single ONT read could be aligned to the
corresponding variant path specified in the rGFA file. We then counted the
number of long reads covering the entire VAR path as the number of support
for this CSV event.
Contig-based visual confirmation. To examine the internal structure of CSVs,
the phased-assembly specified in the PAV (v1.1.2, TIG REGION column) at
the reported variant region was used for further analysis. We first extracted
the contig sequence harboring variant based on the coordinates provided
in the ’PAV TIG REGION’. For example, a sequence containing variant
was extracted from the h1 assembled genome for ’1|1’ and ’1|0’ genotype,
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while from h2 assembled genome for ’0|1’. In order to validate a CSV struc-
ture containing a complex insertion, we extended 5kbp both upstream and
downstream the CSV region to extract the reference genome via BEDtools
getfasta option, from which the origin of the inserted sequence could be
identified. Afterwards, Gepard was used to create the Dotplot of contig
sequence (vertical axis in the Dotplot) and reference sequence (horizontal
axis in the Dotplot) for each CSV locus. Based on each contig Dotplot, the
manual validation contained two tiers of metrics: 1) whether the reported
region contains a variant; and 2) whether the SVision reported structure is
identical to what was revealed by Dotplot. A CSV was considered completely
reconstructed if both 1) and 2) were satisfied, while others were considered
as inconclusive events.

PCR and Sanger sequencing. We first determined that about half of the 80
CSVs (39/80) were intractable for PCR due to their location within segmental
duplications, the size of the amplicon needed to validate the rearrangement,
or the simple repeat nature of the rearrangement. We then randomly selected
20 of the remaining rearrangements, and performed BLAT on the local region
from the HG0733 assembly data. We next attempted to PCR each of the 20
CSVs. Briefly, we designed primers flanking the CSV or flanking breakpoints
within the CSV for each of the 20 events. Next, we attempted to amplify
each region using Takara LA taq. We obtained the predicted band size for 12
of the 20 variant loci; the remaining 8 regions did not amplify in 3 separate
attempts with alterations of the PCR conditions and template amounts. All
PCR products were sent to Sanger sequencing and validated as on target,
and contained the correct amplicon with the breakpoint from the assembly
and SVision call.

3.2.10 Data availability

Both the HiFi and Oxford Nanopore sequencing data for HG002 are available
at the Genome in a Bottle (GIAB) FTP site (ftp://ftp.ncbi.nlm.nih.g
ov/giab/ftp/data/AshkenazimTrio/HG002 NA24385 son/). The PacBio
HiFi sequencing data. For NA12878 is available at http://ftp.1000geno
mes.ebi.ac.uk/vol1/ftp/data collections/HGSVC2/release/v1.0/a

ssemblies/20200628 HHU assembly-results CCS v12/haploid reads/.
Primary raw PacBio HiFi sequencing data for HG00733 is from http://ftp.

1000genomes.ebi.ac.uk/vol1/ftp/data collections/HGSVC2/workin

g/20190925 PUR PacBio HiFi/, and the high-quality phased assemblies is
available at http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data colle

ctions/HGSVC2/working/20200417 Marschall-Eichler NBT hap-assm/.
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The Oxford Nanopore sequencing data used for graph-based validation is
from http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data collections

/hgsv sv discovery/working/20181210 ONT rebasecalled/. The latest
HG00733 PAV (v1.1.2) call is from http://ftp.1000genomes.ebi.ac.uk/

vol1/ftp/data collections/HGSVC2/working/20210806 PAV VCF/, and
the latest release of PAV calls for 35 samples is from http://ftp.1000geno

mes.ebi.ac.uk/vol1/ftp/data collections/HGSVC2/release/v2.0/i

ntegrated callset/. The RNA-Seq data of precuneus and primary visual
cortex could be accessed in SRA with PRJNA720779.

3.3 Results

In this section, we first evaluate the performance of detecting simple SVs using
benchmark sets of HG002 and NA12878. Then, the performance of detecting
CSVs is assessed on both simulated CSVs and real CSVs in NA12878. We
further apply SVision to HG00733 to detect novel CSV loci and types.

3.3.1 Evaluating simple SV detection with real data

To start with, we explored how well the sequence-to-image coding schema
and the CNN model perform across different long-read sequencing platforms
for canonical SV detection, where SVision, CuteSV, pbsv, SVIM and Sniffles
were applied to the HG002 genome (≈27X PacBio HiFi and ≈47X Oxford
Nanopore, ONT). The results showed that SVision outperforms other callers
at different coverages, where the F-score of SVision ranged from 0.83 to
0.90 for HiFi and from 0.76 to 0.92 for ONT (Figure 3.2A). In addition, we
examined the performance with NA12878 PAV calls released by HGSVC [10],
consisting of deletions, insertions and inversions. The result was consis-
tent with the performance evaluated by HG002 benchmark, where SVision
achieved the highest F-score (Figure 3.2B). Moreover, SVision was more
sensitive than other callers across different SV size range with high precision,
especially for SVs ranged from 50 to 300bp, where SVision detected 10%
more PAV calls than others (Figure 3.2C, Figure 3.2D). Altogether, our
results suggested that SVision was able to detect canonical SVs accurately
compared with the model-based callers, and SVision was versatile across
sequencing platforms and varying sequencing depth.
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Figure 3.2: Performance of detecting simple structural variants from real
data. (A) F-score of detecting variants in HG002 evaluated with Truvari. (B)
Recall and precision of detecting NA12878 Phased Assembly Variant (PAV)
calls. (C) Recall of detecting NA12878 PAV calls at different size range. (D)
Precision of detecting NA12878 PAV calls at different size range.
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3.3.2 Performance of detecting complex structural variants

Furthermore, the performance was assessed on simulated CSVs of 10 types
extracted from the 1KGP [5] and a cohort study of autism disorders [12].
The simulated genome harboring 3,000 CSVs (300 per each of 10 types)
was created on one haplotype and sequenced at 30X coverage in HiFi mode.
Motivated by Sniffles [18], we introduced region-match and exact-match for
performance evaluation. The region-match requires correct detection of the
CSV site, while exact-match requires correct detection of both the CSV site
and its subcomponents (i.e., the deletions and insertions that comprise a
CSV). For the region-match, the recall and precision of SVision were 91%
and 93%, while those of the second-best tool CuteSV were 62% and 36%,
respectively (Figure 3.3A). A significant proportion of CSV sites were missed
by CuteSV because the observed novel signatures were beyond the predefined
SV models, while the low precision could be largely attributed to partial CSV
detection (Figure 3.3B). By exact-match, SVision detected 89% of the CSVs,
more than double of Sniffles, while other callers were not able to characterize
any CSVs (Figure 3.3A).

To examine the performance of detecting CSV from real data, we first
manually curated 62 complex deletion and 251 complex inversion sites in
NA12878 reported by 1KGP [5]. As a result, 18 CSVs were verified (two
from the 62 deletion sites, 16 from the 251 inversion sites), while the rest of
the events were simple SVs (one duplication, two inversions and 57 deletions)
(Figure 3.4A). This suggested the manual curation through visualization was
one of the critical steps for CSV detection. Given the manually curated CSV
benchmark, SVision automatically and correctly characterized the internal
structure of all CSVs (Figure 3.4A), including two CSVs failed to interpret
with short-read data, i.e., a deletion replaced by an inverted segment and
a duplicated segment (Figure 3.4B) and a complex insertion consisting of
inverted duplication and dispersed duplications (Figure 3.4C). Moreover,
SVision was able to distinguish simple event from the complex ones at complex
genomic regions. For example, a simple deletion (chr9:71,895,338-71,896,537)
at a region flanked by duplicates (inverted and dispersed) was detected as
CSV based on short-read (Figure 3.4D), while SVision correctly detected it
as a simple deletion. Taken together, our results suggest that SVision can
detect both simple and complex structural variants from long-read data with
high sensitivity and accuracy.
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Figure 3.3: Performance of detecting simulated complex structural variants.
(A) Performance of detecting simulated complex structural variants (CSVs),
which was evaluated with recall (vertical axis), precision (horizontal axis) and
F-score (F, dashed line). (B) The recall of model-based callers for detecting
subcomponents (i.e., DUP-duplication, DEL-deletion, INV-inversion) of CSV
evaluated with region-match. Briefly, for a region matched discovery, we
evaluated the recall of the reported types by each caller.
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Figure 3.4: Performance of detecting complex structural variants in NA12878.
(A) Performance of SVision detecting CSVs from NA12878 evaluated by exact
match, where SVision detected all complex events. (B) A deleted sequence re-
placed with dispersed duplication and inverted duplication, which is correctly
characterized by SVision. (C) SVision characterized a complex insertion,
consisting of two dispersed duplications and one inverted duplication. Both
(B) and (C) are labeled as NA in the published calls. The top panels of (B)
and (C) are the discordant alignments derived from short-read sequencing
(i.e., one end unmapped and discordant alignment). The bottom panels of
(B) and (C) describe the abnormal alignment from long-read alignment. (D)
Diagram of misinterpreted complex event from short-read data, while SVision
correctly detected it as simple deletion.
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3.3.3 CSV mediated gene structure change and genome evo-
lution

To explore novel CSV loci and types, we further applied SVision to HG00733
(PacBio HiFi, ≈30X), where the CSVs were not well characterized. SVision
detected 80 high-quality CSVs of 25 unique types, where 20 CSV graphs
were novel types, accounting for half of the high-quality CSVs, and another
five graphs matched reported CSV types. Moreover, 18 and 28 CSV loci
overlapped genes and regulatory elements, respectively. We then introduced
computational and experimental approaches to validate the structure and
breakpoint junctions of the high-quality CSVs.

Firstly, the GraphAligner [34] was used to assess the internal structure
and breakpoints of CSVs by aligning ONT reads [9] to SVision CSV graph.
The graph alignments showed that single reads cover the entire paths of 79
CSV graphs, while one CSV graph path was covered by two different reads.
Secondly, the haplotype contigs used by Phased Assembly Variant (PAV) [10]
for SV discovery were used to examine the CSV internal structures. Among
the 73 PAV overlapping CSVs, 90% of them could be successfully recon-
structed via manual inspection, while others were challenging to characterize
visually but could be verified via GraphAligner (Figure 3.5A). In addition, 20
CSVs were randomly selected for experimental validation. Specifically, eight
CSVs failed PCR due to repetitive sequence or high GC content and the
other 12 events were successfully confirmed by PCR and Sanger. The above
validations indicated that SVision can detect and characterize CSV reliably
from long-read data. Compared with long-read calls, short-reads revealed 42%
of the CSV loci evaluated by region-match, where internal structures of 12%
CSV loci could be completely characterized via exact-match (Figure 3.5B).

Furthermore, we noticed that 18 CSV loci overlapped genes. For instance,
one CSV of novel type revealed by SVision (chr11:99,819,283-99,820,576),
consisting of tandem and inverted duplications, was missed by short-read [10]
and identified as a simple insertion by PAV [10] (Figure 3.5C). This CSV
modified the structure of an important nervous system development gene,
CNTN5, of which we identified both CSV allele and insertion allele of different
frequency among populations (Figure 3.5D). We also observed the duplicated
exon signature in the RNAseq data of human primary visual cortex and
precuneus [86].

Additionally, SVision identified an insertion-inversion-insertion event
(chr9:74,283,222-74,283,473), which was detected as a 1,737bp insertion by
PAV but completely missed in previous long-read call sets [9, 87] (Figure 3.6A).
This event was also re-genotyped by PanGenie, and it found 80% allele

59



CHAPTER 3. SVISION

frequency among 3,202 1KGP cohort [10]. The inserted sequence of this
CSV was also identified in primate genomes (Figure 3.6B), such as gorilla,
indicating the inserted state was ancestral and the reference was derived via
deletion and inversion.

Figure 3.5: Application of SVision on HG00733 HiFi data. (A) SVision de-
tected complex structural variants (CSVs) overlapped with Phased Assembly
Variant (PAV) calls and reconstructed with HiFi haplotype contigs. The
rare type represented a graph type containing less than five complex events.
Graph type A, B, C, D and E corresponded to graph ID 12, 15, 23, 27 and 28,
respectively. (B) Comparing SVision detected CSVs with short-read based
discoveries, evaluating with region match and exact match, respectively. (C)
The diagram of a novel CSV type revealed by SVision, and three allele states
(i.e., REF allele, CSV allele and INS allele) were identified at this locus
among the population. (D) The allele frequency of the complex event locus
shown in (C).
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Figure 3.6: Complex structural variant revealed ancestral state. (A) The
structure and breakpoint junction sequence of the variant is derived from
HiFi assembly. (B) Blast results of mapping the inserted sequence to primate
genomes, where the top hits include pan troglodytes and gorilla.
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3.4 Conclusion

In recent years, long-read sequencing technologies have revolutionized SV
detection and revealed two times more variation than short-reads [10]. While
long-read SV detection tools have improved considerably in the past six
years, none of them is able to correctly characterize multi-breakpoint events
and thereby leaving CSVs either uncalled or misinterpreted as simple SVs.
SVision fills this gap by applying a multi-object recognition framework to the
denoised image to detect both simple and complex SVs, and autonomously
identifies their structures without relying on predefined models. Future work
will focus on tumor SV detection, especially complex events and subclonal
SVs. Taken together, SVision is a valuable tool to facilitate the study of
complicated and novel CSVs, paving the way for the analysis of healthy and
cancer genomes in the future.

62


