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Chapter 2

Mako: A graph-based pattern
growth approach to detect
complex structural variants

Abstract Complex structural variants (CSVs) are genomic alterations that have

more than two breakpoints and are considered as the simultaneous occurrence of

simple structural variants. However, detecting the compounded mutational signals

of CSVs is challenging through a commonly used model-match strategy.

We systematically analyzed the multi-breakpoint connection feature of CSVs, and

proposed Mako, utilizing a bottom-up guided model-free strategy, to detect CSVs

from paired-end short-read sequencing. Specifically, we implemented a graph-based

pattern growth approach, where the graph depicts potential breakpoint connections,

and pattern growth enables CSV detection without pre-defined models. Compre-

hensive evaluations on both simulated and real datasets revealed that Mako out-

performed other algorithms. Notably, validation rates of CSV on real data based

on experimental and computational validations as well as manual inspections are

around 70%, where the medians of experimental and computational breakpoint

shift are 13bp and 26bp, respectively. Moreover, the Mako CSV subgraph effectively

characterized the breakpoint connections of a CSV event and uncovered a total of

15 CSV types, including two novel types of adjacent segments swap and tandem

dispersed duplication. Further analysis of these CSVs also revealed the impact of

sequence homology in the formation of CSVs.

Mako is publicly available at https://github.com/xjtu-omics/Mako.
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CHAPTER 2. MAKO

2.1 Introduction

Computational methods based on next-generation sequencing (NGS) have
provided an increasingly comprehensive discovery and catalog of simple
structure variants (SVs) that usually have two breakpoints, such as deletions
and inversions [36, 37, 38, 39, 40, 41, 42]. In general, these approaches follow
a model-match strategy, where a specific SV model and its corresponding
mutational signal model are proposed. Afterward, the mutational signal
model is used to match observed signals for the detection (Figure 2.1A).
This model-match strategy has proved effective for detecting simple SVs,
providing us with prominent opportunities to study and understand genome
evaluation and disease progression [5, 9, 43, 44]. However, recent research has
revealed that some rearrangements have multiple, compounded mutational
signals and usually cannot fit into the simple SV models [5, 11, 45, 46,
47, 48] (Figure 2.1B). For example, in 2015, Sudmant et al. systematically
categorized 5 types of complex structural variants (CSVs) and found that a
remarkable 80% of 229 inversion sites were complex events [5]. Collins et al.
used long-insert size whole genome sequencing (liWGS) on autism spectrum
disease (ASD) and successfully resolved 16 classes of 9666 CSVs from 686
patients [12]. In 2019, Lee et al. revealed that 74% of known fusion oncogenes
of lung adenocarcinomas were caused by complex genomic rearrangements,
including EML4-ALK and CD74-ROS1 [48]. Though less frequently reported
compared with simple SVs, these multiple breakpoint rearrangements were
considered as punctuated events, leading to severe genome alterations at
once [14, 43, 49, 50, 51]. This dramatic change of genome provided distinctive
evidence to study formation mechanisms of rearrangement and to understand
cancer genome evolution [12, 45, 46, 49, 51, 52, 53, 54, 55].

However, due to the lack of effective CSV detection algorithms, most
CSV-related studies screen these events from the “sea” of simple SVs through
computational expensive contig assembly and realignment, incomplete break-
points clustering, or even targeted manual inspection [5, 11, 48]. In fact, many
CSVs have already been neglected or misclassified in this “sea” because of
the incompatibility between complicated mutational signals and existing SV
models. Although the importance and challenge for CSV detection have been
recognized, only a few dedicated algorithms were proposed for CSVs discovery,
and they followed two major approaches guided by the model-match strategy.
TARDIS and SVelter utilize the top-down approach, where they attempt
to model all the mutational signals of a CSV event instead of modeling
specific parts of signals. In particular, TARDIS [56] proposed sophisticated
abnormal alignment models to depict the mutational signals reflected by
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2.1. INTRODUCTION

Figure 2.1: Explanation of simple and complex structure variants alignment
models derived from abnormal read-pairs. (A) Three common simple SVs and
their corresponding abnormal read-pair alignment on the reference genome,
representing by red, blue, and green arrows. (B) The alignment signature
of two CSVs, each of them, involves two types of signatures that can be
matched by a simple SV alignment model.

dispersed duplication and inverted duplication. The pre-defined models were
then used to fit observed signals from alignments for the detection of the
two specific CSV types. Indeed, this was complicated and greatly limited by
the diverse types of CSV. To solve this, SVelter [57] replaced the modeling
process for specific CSVs with a randomly created virtual rearrangement.
And CSVs were detected by minimizing the difference between the virtual
rearrangement and the observed signals. On the other hand, GRIDSS [58]
represents the assembly-based approach, which detects CSVs through extra
breakpoints discovered from contig-assembly and realignment. Though the
assembly-based approach is sensitive for breakpoint detection, it lacks cer-
tain regulations to constrain or classify these breakpoints and leave them
as independent events. As a result, these model-match-guided approaches
would substantially break up or misinterpret the CSVs because of partially
matched signals (Figure 2.1B). Moreover, the graph is another approach that
has been widely used for simple [27, 37] and complex [49, 59] SV detection.
Notably, ARC-SV [59] uses clustered discordant read-pairs to construct an
adjacency graph and adopts a maximum likelihood model to detect complex
SVs, showing the great potential of using the graph to detect complex SVs.
Accordingly, there is an urgent demand for a new strategy, enabling CSV
detection without pre-defined models as well as maintaining the completeness
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CHAPTER 2. MAKO

of a CSV event.
In this chapter, we propose a bottom-up guided model-free strategy,

implemented as Mako, to effectively discover CSVs all at once based on
short-read sequencing. Specifically, Mako uses a graph to build connections of
mutational signals derived from abnormal alignment, providing the potential
breakpoint connections of CSVs. Meanwhile, Mako replaces model fitting
with the detection of maximal subgraphs through a pattern growth approach.
Pattern growth is a bottom-up approach, which captures the natural features
of data without sophisticated model generation, allowing CSV detection
without pre-defined models. We benchmarked Mako against five widely used
tools on a series of simulated and real data. The results show that Mako is an
effective and efficient algorithm for CSV discovery, which will provide more
opportunities to study genome evolution and disease progression from large
cohorts. Remarkably, the analysis of subgraphs detected by Mako highlights
the unique strength of Mako, where Mako was able to effectively characterize
the CSV breakpoint connections, confirming the completeness of a CSV
event. Moreover, we systematically analyzed the CSVs detected by Mako on
three healthy samples, revealing a novel role of sequence homology in CSV
formation.

In Section 2.2, materials used in this chapter and related methods are
described in details. Then, results are discussed in Section 2.3 and conclusions
are drawn in Section 2.4.

2.2 Materials and methods

In this section, we introduce the workflow of Mako and its major compo-
nents for CSV detection. Moreover, related methods used for performance
evaluation and orthogonal validation are described in details.

2.2.1 Overview of Mako

Given that a CSV is a single event with multiple breakpoint connections,
breakpoints in the current CSV are not connected with false-positive break-
points or those from unrelated events. Thus, we formulate the discovery of
CSVs as maximal subgraph pattern detection in a signal graph. Accordingly,
Mako detects CSVs with NGS data in two major steps, e.g., signal graph
creation and subgraph detection (Figure 2.2). Firstly, Mako collects and clus-
ters abnormally aligned reads as signal nodes and defines two types of edges
to build the signal graph G = (V,E), with V = {v1, v2, . . . , vn} and E =
Epe ∪ Eae. Each signal node v ∈ V is represented as v = (type, pos,weight),
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Figure 2.2: Overview of Mako. Mako first builds a signal graph by collecting
abnormally aligned reads as nodes, and their edge connections are provided
by paired-end alignment and split alignment. Afterward, Mako utilizes the
pattern growth approach to find a maximal subgraph as a potential CSV site.
In the example output, the maximal subgraph G contains nodes A, B, C, and
D, whereas F is not able to be appended because of no existing edge (dashed
line). The CSV is derived from this subgraph with estimate breakpoints and
complexity score, where the discovered CSV subgraph contains four different
nodes, one Aae edge and two Epe edges of type Del and Inv.
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CHAPTER 2. MAKO

where type, pos, and weight denote the abnormal alignment type, node po-
sition, and the number of supporting abnormal reads, respectively. For the
edge set, each edge in Epe and Eae is represented as epe = (vi, vj , rp ∪ sr)
and eae = (vi, vj , dist), respectively, where vi, vj ∈ V . Specifically, Epe rep-
resents paired edges from a certain number of supporting read-pairs (rp)
or split-reads (sr). Eae indicates the adjacent edges induced from the refer-
ence genome, connecting two adjacent signal nodes at some distance (dist).
Secondly, Mako applies a pattern growth approach to detect the maximal
subgraphs as potential CSVs at the whole genome-scale. Meanwhile, the
attributes of the subgraph are used to measure the complexity, and CSV
types are determined by the edge connection types of the corresponding
subgraphs (Figure 2.2).

2.2.2 Building signal graph

To create the signal graph, Mako collects abnormally aligned reads that
satisfy one of the following criteria from the alignment file: 1) clipped portion
with minimum 10% size fraction of the overall read length; 2) split reads with
high mapping quality; 3) discordant read-pairs. As a result, one group of
signal nodes is created by clustering clipped-reads or split-reads at the same
position on the genome, which is filtered by weight and the ratio between
weight and the coverage at pos. Another group of signal nodes is derived
from clusters of discordant read-pairs, where the clustering distance is the
estimated average insert size minus two times read length. It should be
noted that a discordant alignment produces two nodes, and Mako separately
clusters discordant alignments with multiple abnormally aligned types, such
as abnormal insert size and incorrect mapping orientation. We adopt the
procedure introduced by Chen [39] to avoid using randomly occurring discor-
dant alignment. Additionally, edges are created alone with the signal nodes,
where multiple types of edges might co-exist between two nodes.

2.2.3 Detecting CSVs with pattern growth

Pattern growth has been widely used in many areas [60, 61, 62, 63, 64, 65],
such as Indel detection in DNA sequences [36, 54]. For CSV detection, the
subgraph pattern starts at a single node and grows by adding one node
each time until it cannot find a proper one (Algorithm I in Figure 2.3).
During graph mining, the subgraph is allowed to grow according to the
increasing order of pos value for each node, and backtracking is only allowed
for nodes involved in the current subgraph. In Algorithm I, we build the
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index-projection while graph mining, where the current graph G is used where
prefix α and their corresponding suffix graphs are used to build the index-
projection G|α. This index-projection contains nodes of coordinates bigger
than its suffix coordinates on the reference genome. Note that pattern growth
via adjacent edges is conditional on the distance constraint (minDist) because
these edges are derived from the reference genome instead of alternatives.
For example, Mako detects the maximal subgraph ACBD by visiting nodes
A, C, B, and D, while the edge between D and E is constrained because of
the larger distance (Figure 2.2).

Input: Signal graph G = (V,E), parameters minFreq , minDist
Output: A set of CSV subgraphs O = {g1, . . . , gn} with freq(gj) ≥ minFreq

1: procedure findMaximalSubgraph(G,minFreq ,minDist)
2: Initialize freq types to type frequency of nodes in V ; i← 0
3: Build index-projection G|∅ of G
4: for α in freq types do
5: Build index-projection G|α
6: if freq(α) ≥ minFreq then
7: i← i+ 1; gi ← α
8: multiLocPatternGrowth(O, gi, G|α,minFreq ,minDist)
9: end if
10: end for
11: end procedure

Figure 2.3: Algorithm I: Detect maximal subgraphs.

Given that the signal graph contains millions of nodes at the whole genome
scale, we adopt the “seed-and-extension” [66, 67] strategy to accelerate
subgraph detection. Moreover, the discovered subgraphs not only differ in
edge connections but also in node type of the subgraph. Therefore, we propose
an algorithm that starts at multiple signal nodes of the same type at the
whole genome scale, while extends locally for subgraph detection (Algorithm
II in Figure 2.4). The parameter minFreq is used to measure the frequency of
detected subgraphs, and Mako uses minFreq = 1 to avoid missing subgraphs
of rare CSVs or incomplete ones. The detected CSV subgraph provides the
connections between multiple breakpoints of a CSV, and the attributes of
the subgraph are used to measure the complexity of CSVs. Accordingly,
Mako defines the boundary of CSVs using the leftmost and rightmost pos
value of the nodes and utilizes the number of identical node types multiplied
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by the number of Epe edges as a complexity measurement score, CXS. For
example, the discovered CSV subgraph ACBD has a CXS score of 8 due
to four different node types, e.g., A, C, B, and D, and two paired edges
(Figure 2.2, a toy example of executing the algorithm is shown in Figure 1.5).

1: procedure multiLocPatternGrowth(O, g,G|g,minFreq ,minDist)
2: Initialize adj list with adjacent node direct after g through E
3: for node in adj list do
4: if nodeInRange(g,node) then
5: g′ ← g + node
6: O.append(g′)
7: multiLocPatternGrowth(O, g′, G|g′ ,minFreq ,minDist)
8: end if
9: end for
10: end procedure

11: procedure nodeInRange(g, v)
12: Put the nodes in g in increasing order of pos value: v0, . . . , vm
13: v′ ← vm
14: if freq(v) > minFreq then
15: if dist(v′, v) < minDist then
16: return True
17: else
18: for i← m downto 0 do
19: if ∃ epe between v and vi then
20: return True
21: end if
22: end for
23: end if
24: end if
25: return False
26: end procedure

Figure 2.4: Algorithm II: Multi-location subgraph growth.

2.2.4 Performance evaluation

Since CSVs contain multiple breakpoints, we propose two tiers of stringency
for their evaluation, e.g., unique-interval match and all-breakpoint match.
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For a unique-interval match, the correct predicted breakpoints shall be within
500bp distance to the leftmost and rightmost breakpoints of a benchmark
CSV. For the all-breakpoint match initially proposed by Sniffles, the bench-
mark CSV is divided into separate subcomponents, and each of them should
be correctly detected. For a CSV with inversion flanked by two deletions
containing three components, the correct prediction of all breakpoints for
the three components is considered as an all-breakpoint match. Meanwhile,
if only one prediction is close to the leftmost and rightmost breakpoints
of the CSV, this prediction is considered as a unique-interval match. For
simulated CSVs, true positive (TP) is defined as predictions satisfying either
match criterion, while predictions not in the benchmark are false positives
(FP). False negatives (FN) are events in the benchmark set that are not
matched by predictions. Whereas it is usually challenging to measure the
false positives for real data due to the lack of a curated CSV set, we only
consider the number of correct discoveries.

2.2.5 Preparing CSV benchmarks for performance evaluation

In this chapter, we use both simulated and real CSVs to benchmark the perfor-
mance of different callers. We follow the workflow introduced by Sniffles [18]
to create simulated CSVs. Firstly, VISOR [68] is used to create deletion (Del),
inversion (Inv), inverted tandem duplication (Invdup), tandem duplication
(Tandup), and dispersed duplication (Disdup). These events, termed as basic
operations, are implanted and marked on the reference genome GRCh38 to
generate an alternative genome. Secondly, CSVs are created by randomly
adding basic operations to those marked operations, leading to a new genome
harboring CSVs (CSV genome). Meanwhile, the purity parameter of VISOR
is used to produce homozygous and heterozygous CSVs. Afterward, VISOR
generates simulated paired-end reads based on the CSV genome with wgsim
(https://github.com/lh3/wgsim) and aligns them to the reference genome
with BWA-MEM [67]. According to the above-generalized simulation proce-
dures, we create reported CSV types published by previous studies [5, 12]
and randomized CSV types.

In terms of the real data, we are not aware of any public CSV benchmarks
due to the breakpoint complexity and underdeveloped methods [5, 11, 57,
69, 70]. Fortunately, PacBio reads could span multiple breakpoints of CSVs,
providing direct evidence to validate CSVs through sequence Dotplot [71].
Thus, we curate the CSV benchmark from a simple SV callset by breakpoint
clustering and manual inspection. For SV clustering, each of them is consid-
ered as an interval, and hierarchical clustering with the average method is
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CHAPTER 2. MAKO

used to find interval clusters. We then use the threshold that could produce
the most clusters for merging clusters, which could potentially reduce the
number of missed CSVs. Given these simple SV clusters, we apply Gepard
to create Dotplots based on PacBio HiFi reads and manually investigate
each Dotplot. Since CSVs are rare and might appear at the minor allele, we
create Dotplot for each long read that spans the corresponding region.

2.2.6 Orthogonal validation of Mako detected CSVs

To fully characterize Mako’s performance on real data, we use experimental
and computational validation as well as manual inspections of CSVs from
HG00733. The raw CSV calls from HG00733 are obtained by selecting events
with more than one link type observed in the subgraph. For the experimental
validation, Primer3 (https://github.com/primer3-org/primer3) is used
to design PCR primers, where primers are selected within the extended
distance but 200bp outside of the boundaries of the breakpoints defined by
Mako. BLAT (https://users.soe.ucsc.edu/~kent/) search is performed
at the same time to ensure all primer candidates have only one hit in the
human genome. Afterward, we select amplification products with the expected
product size and bright electrophoretic bands for Sanger sequencing. The
obtained Sanger sequences are aligned against the reference allele of the CSV
site and visualized with Gepard for breakpoint inspection.

As for the computational validation, two orthogonal data obtained from
the Human Genome Structural Variant Consortium (HGSVC) are used,
e.g., Oxford Nanopore sequencing (ONT) and HiFi contigs. We first apply
VaPoR [72] on the ONT reads to validate CSVs, referred to as ONT validation.
Additionally, we apply a k-mer based breakpoint examination based on
haplotype-aware HiFi contigs, from which we calculate the difference between
the k-mer breakpoints and predicted breakpoints.

Furthermore, we manually curate detected CSVs via Dotplots created by
Gepard, which is similar to the procedure of creating the benchmark CSV
for real data. For CSVs at highly repetitive regions, we further validate them
according to specific patterns.

2.2.7 Data availability

The high coverage Illumina data (i.e., short-read data) for NA19240, HG00733
and HG00514 can be obtained from http://ftp.1000genomes.ebi.ac.u

k/vol1/ftp/datacollections/hgsvsv discovery/data/, and the SVelter
callset for NA19240 is available at http://ftp.1000genomes.ebi.ac.u
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k/vol1/ftp/datacollections/hgsvsvdiscovery/working/2016072

8SVelter UMich/. The PacBio HiFi reads for NA19240, HG00733 and
HG00514 were obtained from http://ftp.1000genomes.ebi.ac.uk/vo

l1/ftp/data collections/HGSVC2/working/, the HiFi assembly for
HG00733 is from http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/dat

acollections/HGSVC2/working/20200628HHUassembly-resultsCCS v

12/assemblies/phased/, and the ONT reads for HG00733 are available
at http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/datacollections/h
gsvsvdiscovery/working/20181210ONT rebasecalled/. Moreover, the
short-read data, long-read data and SV callset for SK-BR-3 can be obtained
from http://labshare.cshl.edu/shares/schatzlab/www-data/skbr3/.

2.3 Results

In this section, we evaluate the performance of detecting CSVs using both
simulated and real data. Moreover, we apply Mako to three samples (i.e.,
HG00514, HG00733 and NA19240), aiming to detect novel CSVs and under-
stand CSV formation mechanisms. The original publication can be found at
https://www.sciencedirect.com/science/article/pii/S16720229210

01431, where related supplementary materials can be downloaded.

2.3.1 Mako effectively characterizes multiple breakpoints of
CSV

The most important feature for a CSV is the presence of multiple breakpoints
in a single event. Thus, we first examined the performance of multiple
breakpoints detection for Mako, Lumpy, Manta, SVelter, TARDIS, and
GRIDSS. The results were evaluated according to the all-breakpoint match
criteria on both reported and randomized CSV-type simulations. Overall, for
the heterozygous (HET) (Figure 2.5A) and homozygous (HOM) (Figure 2.5B)
simulation, Mako was comparable to GRIDSS, and those two methods
outperformed other algorithms. For example, GRIDSS, Mako and Lumpy
detected 50%, 51% and 46% for reported HET CSV breakpoints, while
they reported 53%, 54% and 44% for randomized ones. Because the graph
encoded both multiple breakpoints and their substantial connections for
each CSV, Mako achieved better performance on randomized events, which
included more subcomponents than the reported ones. Indeed, by comparing
reported and randomized simulation, the breakpoint detection sensitivity
(Figure 2.5A, Figure 2.5B) of Mako increased, while that of other algorithms
dropped except for GRIDSS. Although the assembly-based method, GRIDSS,

29

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/datacollections/hgsvsvdiscovery/working/20160728SVelter_UMich/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/datacollections/hgsvsvdiscovery/working/20160728SVelter_UMich/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/datacollections/hgsvsvdiscovery/working/20160728SVelter_UMich/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/working/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/working/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/datacollections/HGSVC2/working/20200628HHUassembly-resultsCCS_v12/assemblies/phased/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/datacollections/HGSVC2/working/20200628HHUassembly-resultsCCS_v12/assemblies/phased/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/datacollections/HGSVC2/working/20200628HHUassembly-resultsCCS_v12/assemblies/phased/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/datacollections/hgsvsvdiscovery/working/20181210ONT_rebasecalled/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/datacollections/hgsvsvdiscovery/working/20181210ONT_rebasecalled/
http://labshare.cshl.edu/shares/schatzlab/www-data/skbr3/
https://www.sciencedirect.com/science/article/pii/S1672022921001431
https://www.sciencedirect.com/science/article/pii/S1672022921001431


CHAPTER 2. MAKO

is as effective as Mako for breakpoint detection, it lacks a proper procedure
to resolve the connections among breakpoints.

Figure 2.5: Performance comparison on simulated CSVs with different match
criteria. All-breakpoint match (A and B) and unique-interval match (C–F)
evaluation of selected tools for detecting simulated CSVs. (A) The sensi-
tivity of detecting heterozygous CSVs breakpoints. (B) The sensitivity of
detecting homozygous CSVs breakpoints. The red and purple bar indicates
randomized and reported CSV types, respectively. (C) Evaluation of reported
heterozygous CSV simulation. (D) Evaluation of reported homozygous CSV
simulation. (E) Evaluation of randomized heterozygous CSV simulation. (F)
Evaluation of randomized homozygous CSV simulation. From (C) to (F), the
performance is evaluated by recall (vertical axis), precision (horizontal axis)
and F-score (dotted lines). The right top corner of the plot indicates better
performance. The c5–c30 indicates coverage, e.g., c5 indicates 5X coverage.
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2.3.2 Mako precisely discovers CSV unique-interval

CSV is considered as a single event consisted of connected breakpoints, and we
have demonstrated that Mako was able to detect CSV breakpoints effectively.
However, the breakpoint detection evaluation only assesses the discovery of
basic components for a CSV and lacks examination for CSV completeness.
We then investigated whether Mako could precisely capture the entire CSV
interval even with missing breakpoints. According to the unique-interval
match criteria, Mako consistently outperformed other algorithms for both
reported and randomly created CSVs, while SVelter and GRIDSS ranked
second and third, respectively.

For the reported CSVs at 30× coverage (Figure 2.5C, Figure 2.5D), the
recall of Mako was 94% and 92%, which was significantly higher than SVelter
(49% and 57%) for both reported HET and HOM CSVs, respectively. Due
to the randomized top-down approach, SVelter was able to discover some
complete CSV events, but it may not explore all possibilities. Remarkably,
we noted that Mako’s sensitivity was even better for randomized simulation
(Figure 2.5E, Figure 2.5F), which was consistent with our previous observation
(Figure 2.5A, Figure 2.5B). In particular, at 30X coverage, Mako detected
203% more HET CSVs than SVelter (Figure 2.5E), probably due to the
complementary graph edges for accurate CSV site discovery.

2.3.3 Performance on real data

We further compared Mako with SVelter, GRIDSS, and TARDIS on whole-
genome sequencing data of NA19240 and SKBR3. Firstly, we compared
the callsets of different callers, and we found that Mako shared most calls
with GRIDSS (Figure 2.6A, Figure 2.6B), which was consistent with our
observation in simulated data (Figure 2.5). Furthermore, we examined the
discovery completeness of 59 (NA19240) and 21 (SKBR3) benchmark CSVs
(Table 2.1). Because Manta and Lumpy contributed to the CSV benchmark
sets, they were excluded from the comparison. The results showed that Mako
performed the best for the two benchmarks with different CXS thresholds,
while TARDIS ranked second (Figure 2.6C). Given that inverted duplication
and dispersed duplication dominated the benchmark set and that TARDIS
has designed specific models for these two types, TARDIS detected more
events of these two duplication types than SVelter and GRIDSS. SVelter
only detected three benchmark CSVs for SKBR3 because the randomized
approach may not explore all combinations of CSVs. Based on the above
observation, we concluded that the graph-based model-free strategy of Mako
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performed better than that of either randomized model (SVelter) or specific
model (TARDIS) with few computational resources.

Figure 2.6: Overview of performance on NA19240 and SKBR3 for Mako,
GRIDSS, SVelter and TARDIS. (A) Venn diagram of NA19240 callsets.
(B) Venn diagram of SKBR3 callsets. The Venn diagrams are created
by 50% reciprocal overlap via a publicly available tool Intervene with
‘--bedtools-options’ enabled. The MergedSet is obtained from the original
publication. (C) The percentage of completely and uniquely discovered CSVs
from the NA19240 and SKBR3, respectively. The results of Mako are shown
according to different CXS thresholds.

2.3.4 CSV subgraph illustrates breakpoints connections

Having demonstrated the performance of Mako on simulated and real data, we
surveyed the landscape of CSVs from three individual genomes. Specifically,
CSVs from autosomes were selected from Mako’s callset with more than one
edge connection type observed in the subgraph, leading to 403, 609, and 556
events for HG00514, HG00733, and NA19240, respectively (Figure 2.7A).

We systematically evaluated all CSV events in HG00733 via experimental
and computational validation as well as manual inspection. For experimental
validation, we successfully designed primers for 107 CSVs, where 15 out of 21
(71%, Table 2.2) were successfully amplified and validated by Sanger sequenc-
ing. The computational validation showed up to 87% accuracy, indicating a
combination of methods and external data is necessary for comprehensive
CSV validation. Further analysis showed that the medians of breakpoint
shift were 13bp and 26bp compare to breakpoints given by experimental and
computational evaluation. We observed that approximately 54% of CSVs
were found in either STR or VNTR regions, contributing to 75% of all events
inside the repetitive regions (Figure 2.7A). For the connection types, more
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Type NA19240 SKBR3 Description

disDup 15 12 Dispersed duplication
invDup 18 - Inverted duplication
delINV 7 5 Deletion associated with inversion
delDisDup 5 1 Deletion associated with dispersed

duplication
delInvDup 1 - Deletion associated with inverted

duplication
disDupInvDup 2 2 Dispersed duplication with

inverted duplication
insINV 1 - Insertion associated with inversion
tanTrans 1 - Adjacent segments swap
delSapDel 8 1 Two deletions with inverted or

non-inverted spacer
tanDisDup 1 - Tandem dispersed duplications

Table 2.1: Summary of benchmark CSVs. The CSV type abbreviations and
their corresponding descriptions are also listed.

than half of the events contain Dup and Ins edges in the graph, indicating
duplication involved sequence insertion. Moreover, around 40% of the events
contain Del edges (Figure 2.7B), showing two distant segment connections
derived from either duplication or inversion events.

We further examined whether the CSV subgraph depicts the connections
for each CSV via discordant read-pairs. Interestingly, we observed two rep-
resentative events with four breakpoints at chr6:128,961,308–128,962,212
(Figure 2.7C) and chr5:151,511,018–151,516,780 (Figure 2.7D) from NA19240
and SKBR3, respectively. Both events were correctly detected by Mako, but
missed by SVelter and reported more than once by GRIDSS and TARDIS. In
particular, the CSV at chr6:128,961,308-128,962,212 that consists of two dele-
tions and an inverted spacer was reported twice and five times by GRIDSS
and TARDIS. The event at chromosome 5 that consists of deletion and
dispersed duplication was reported four and three times by GRDISS and
TARDIS. These redundant predictions complicate and mislead downstream
functional annotations. On the contrary, Mako was able to completely detect
the above two CSV events and also capable of revealing the breakpoint
connections of CSVs encoded in the subgraphs. The above observations
suggested that Mako’s subgraph representation is interpretable, so that we
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can characterize the breakpoint connections for a given CSV event.

Figure 2.7: Two representative CSV subgraphs identified by Mako. The top
panel of (A) and (B) are IGV views of the two events, and the alignments
are grouped by read-pair orientation. The dark blue shows reverse-reverse
alignments, light blue represents forward-forward alignments, green represents
reverse-forward alignments, and red indicates the alignment of large insert
size. The bottom panels of (A) and (B) are subgraph structures discovered by
Mako. The colored circles and solid lines are nodes and edges in the subgraph.
(C) The alignment model of deletions with inverted spacer. (D) The alignment
model of deletion associated with dispersed duplication. In (C) and (D),
short arrows are paired-end reads that span breakpoint junctions, and their
alignments are shown on the reference genome with the corresponding ID
in the circle. Note that a single ID may have more than one corresponding
abnormal alignment type on the reference.
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Validation Strategy Total Valid Invalid Inconclusive

Experimental 21 15 (71%) 6 (29%) -
(PCR succeeded)

ONT reads 256 (42%) - 353 (58%)
HiFi contig 609 414 (68%) 191 (32%) -
ONT reads or 544 (87%) 76 (13%) -
HiFi contig

Manual HiFi reads 609 440 (72%) 169 (28%) -

Table 2.2: Summary of experimental and computational validation as well as
manual inspection for CSVs.

2.3.5 Contribution of homology sequence in CSV formation

Given 1,568 detected CSVs from three genomes, we further investigated the
formation mechanisms of these CSVs. Ongoing studies have revealed that
inaccurate DNA repair and the 2–33bp long microhomology sequence at
breakpoint junctions play an important role in CSV formation [14, 73, 74,
75, 76].

To further characterize CSVs’ internal structure and examine the impact
of homology sequence on CSV formation, we manually reconstructed 1,052
high-confident CSV calls given by Mako (252/403 from HG00514, 440/609
from HG00733, and 360/556 from NA19240) via Dotplots created by PacBio
HiFi reads (Figure 2.8A). The percentage of successfully reconstructed events
was similar to the orthogonal validation rate, showing CSVs detected by
Mako were accurate, and the validation method was effective. The high-
confident CSV callset contains 816 InsDup events with both insertion and
duplication edge connections. Further investigation revealed that these events
contain irregular repeat sequence expansion, making them different from
simple insertion or duplications. Besides, we found two novel types, which
were named adjacent segments swap and tandem dispersed duplication
(Figure 2.8B). We inferred that homology sequence mediated inaccuracy
replication was the major cause for these two types.

Furthermore, we observed that 134 CSVs contain either inverted or dis-
persed duplications. These CSVs containing duplications were mainly caused
by microhomology mediated break-induced replication (MMBIR) according
to previous studies [14, 74, 77]. It was known that different homology patterns
cause distinct CSV types (Figure 2.8C, Figure 2.8D). Surprisingly, one partic-
ular pattern of homology sequence yielded multiple CSV types (Figure 2.8E).
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Figure 2.8: Overview of Mako’s CSV discoveries from three healthy samples
and proposed CSV formation mechanisms. (A) Summary of discovered CSV
types, these types are reconstructed by HiFi PacBio reads, where a type with
fewer than 10 events was summarized as RareType. (B) Diagrams of two
novel and rare CSV types discovered by Mako. In particular, Mako finds three
events of adjacent segments swap and only one tandem dispersed duplication.
(C-E) Different replication diagrams explain the impact of homology pattern
for MMBIR produced CSVs. In these diagrams, sequence abc has been
replicated before the replication fork collapse (flash symbol). The single-
strand DNA at the DNA double-strand break (DSB) starts searching for
homology sequence (purple and green triangle) to repair. The above procedure
is explicitly explained as a replication graph, from which nodes are homology
sequences, and edges keep track of the template switch (dotted arrow lines)
as well as the normal replication at different strands (red lines). If there are
two red lines between two nodes, the sequence between these two nodes will
be replicated twice, as shown in (D).
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In particular situations of the three different homology patterns, DNA double
strand break (DSB) occurred after replication of the c fragment. According
to the MMBIR mechanism and template switch [53, 74, 75, 76], the pattern
I (Figure 2.8C) and pattern II (Figure 2.8D) yield one output, but pattern
III (Figure 2.8E) produces three different outcomes. The results provided
additional evidence for understanding the impact of sequence contents on
DNA DSB repair, leading to a better understanding of diversity variants
produced by CRISPR [78, 79].

2.4 Conclusion

Currently, short-read sequencing is significantly reduced in cost and has been
applied to clinical diagnostics and large cohort studies [48, 80, 81]. However,
CSVs from short-read data are not fully explored due to the methodology
limitations. Though long-read sequencing technologies bring us promising
opportunities to characterize CSVs [18, 45, 46], their application is currently
limited to small-scale projects, and the methods for CSV discovery are also
underdeveloped. As far as we know, ngmlr combined with Sniffles is the
only pipeline that utilizes the model-match strategy to discover two specific
forms of CSVs, namely deletion-inversion and inverted duplication. Therefore,
there is a strong demand in the genomic community to develop effective
and efficient algorithms to detect CSV using short-read data. It should
be noted that CSV breakpoints might come from either single haplotype
or different haplotypes, where two simple SVs from different haplotypes
lead to false positives. This may increase the false discovery rate due to a
lack of haplotype information. Therefore, the combination of short-read and
long-read sequencing might improve CSV discovery and characterization.

To sum up, we developed Mako, utilizing the graph-based pattern growth
approach, for CSV discovery with 70% accuracy and 20bp median breakpoint
shift. To the best of our knowledge, Mako is the first algorithm that utilizes
the bottom-up guided model-free strategy for SV discovery, avoiding the
complicated model and match procedures. Given the fact that CSVs are
largely unexplored, Mako presents opportunities to broaden our knowledge
of genome evolution and disease progression.
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