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Chapter 1

Introduction and background

This thesis is about developing algorithms for structural variant detection,
validation and analysis. We focus on long-read sequencing technologies. In this
chapter, we explain the biological background, the sequencing technologies
and computational approaches for the analysis of human genomes. We also
mention our contributions and research questions.

1.1 Computational genomics

Computational genomics is an interdisciplinary field, combining biology,
computer science, information engineering, mathematics and statistics, that
develops and applies computational methods to analyze deoxyribonucleic
acid (DNA) sequences for predictions or novel discoveries.

DNA is a molecule composed of two polynucleotide chains that form a
double helix structure carrying genetic instructions for development, function-
ing, growth, reproduction, etc. The two DNA strands consist of monomeric
units called nucleotides, where each nucleotide is composed of one of four
nitrogen-containing nucleobases, cytosine (C), guanine (G), adenine (A) or
thymine (T). From the computational perspective, a genomic sequence is a
special type of string, consisting of four characters (i.e., A, T, C and G), and
contains many repeated substrings.

One of the common applications of computational genomics is to assess
the similarity between strings or in a set of strings, such that the candidate
genes, genome evolution, genetic variants, etc. can be inferred or identi-
fied. Given that genetic variants are the major sources to form population
differences and to drive diseases (i.e., cancer, autism disorder, Alzheimer,
etc.), the detection of genetic variants has become a major focus in the
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field of computational genomics since the development of high-throughput-
sequencing (HTS) technologies [1]. Briefly, genetic variants are identified
by comparing an individual genome (alternative sequence, ALT) with a
reference genome (reference sequence, REF). To detect genetic variants in
the sequencing era, computer science and statistical approaches have been
applied, the Burrows-Wheeler Transform [2] and FM-index [3] were used to
perform efficient sequence alignment, the convolutional neural network []
was used to identify single-nucleotide-polymorphism (SNP), etc. Genome
rearrangement or structural variants (SV) is another form of genetic variants,
and usually affects a substring containing more than 50 characters, whereas a
SNP only replaces one single character. In the past decade, great efforts have
been made to generate longer DNA sequences and to optimize algorithms
for the discovery and genotyping of genome rearrangements.

1.2 Emerging DNA sequencing technologies

The hybridization-based microarray approaches (i.e., for comparative genomic
hybridization (CGH) and SNP microarrays) are first used to infer copy
number gains or losses compared to a reference sample or population, whereas
these approaches cannot identify balanced SVs (i.e., inversion), as well as
their structures [1]. Another approach is the single-molecule analysis, such as
fluorescent in situ hybridization (FISH) and spectral karyotyping, providing
the first glimpses of common and rare SVs, such as the translocation mediated
BCR-ABL fusion in Leukemia [!]. However, their low throughput and low
resolution limit their application to a few individuals and to particularly
large SVs (=500kb to 5Mb).

The advent of next-generation-sequencing (NGS) technology or the so-
called short-read sequencing promises to revolutionize the SV studies, and
replaces the microarrays for high-throughput personal genomes variant detec-
tion. Most importantly, the NGS technology opens the field of detecting and
genotyping SVs with HTS technologies, and DNA sequences produced by
HTS technologies are termed as read [1]. So far, the most widely-used NGS
technology is the read-pair technology, which has been applied to several
population-scale genome studies, such as the 1000 Genomes Project [5],
International Cancer Genome Consortium (ICGC) [6], Genome Aggregation
Database (gnomAD) [7], etc. Starting from 2015, a considerable increase
of novel HTS technologies that leverage single-molecule-sequencing (SMS)
strategies, has led to platforms that produce reads several orders of magnitude
longer than short-read data, enabling the direct detection of many previously
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undetected SVs. The most representative SMS platforms are single molecule
real-time sequencing (SMRT') invented by Pacific Bioscience (PacBio) and
single stranded DNA nanopore sequencing invented by Oxford Nanopore
Technology (ONT). The average DNA sequence length, i.e., read length,
generated by PacBio and ONT is around 15kbp. To get the entire human
genome of 3Gbp, an individual genome is usually sequenced multiple times,
called sequencing coverage. For example, if a genome is sequenced at 30X
coverage, the fragmented DNA sequences could span the entire genome 30
times. In this thesis, NGS or short-read data is referred to as paired-end
sequencing, and long-read data or long-read sequencing is referred to as DNA
sequences produced by PacBio and ONT sequencers.

1.3 Genome structural variations are important

In the past decade, widespread application of whole-genome HTS technology
for the genetic variant detection has shown that difference between individu-
als is presented as single-nucleotide-variants (SNVs), small insertions and
deletions (indels, <50bp) and SVs. Compared with SNVs and indels, SVs
are extremely diverse in size and type, ranging from 50bp to megabases of
the genome. SVs (Figure 1.1A) consist of copy number variations (CNVs),
which include deletions (DEL), insertions (INS) and duplications (DUP),
as well as balanced rearrangements, such as inversions (INV) and inter- or
intra-chromosomal translocations (TRA, Figure 1.1B) [3]. These four types
were discovered and defined in the early stages of the Human Genome Project
(HGP) based on short-read sequencing, and we define them as simple SVs or
canonical SVs.

Recently, based on the most advanced single-molecule-sequencing (SMS)
technology, producing long-read data, a series of studies conducted by the
Human Genome Structural Variation Consortium (HGSVC) has estimated
that each human genome contains approximately 20,000-25,000 SVs, which
doubles the number of SVs estimated by next-generation-sequencing technol-
ogy (NGS) [9]. Remarkably, SMS facilitates the high-quality haplotype-aware
human genome assembly and phased SV detection. The Phased Assembly
Variant (PAV) allows researchers to establish their population frequency,
identify ancestral haplotypes and discover new associations with respect to
gene expression, splicing, and candidate disease loci [10].

Additionally, another special type of SVs, consisting of multiple combina-
tions of the simple SV types, is called complex SV [11] (CSV, Figure 1.1C).
In 2015, the 1KGP first profiled the CSVs of a healthy genome, of which the
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A Diagrams of simple structural variants B Diagrams of translocation
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Figure 1.1: Diagrams of simple and complex structural variants. (A) Diagrams
of four simple structural variants, including deletion (DEL), insertion (INS),
duplication (DUP) and inversion (INV). (B) The diagram of a transloca-
tion (TRA), combining sequences from two different chromosomes. (C) The
diagrams of two complex structural variant types (i.e., TypeA and TypeB).

CSVs were detected with intensive breakpoint analysis and manual curations
based on SMS. This study first applied long-read data to resolve the structure
of CSVs and suggested that 8% and 68% of the simple deletions and inver-
sions are complex events [5]. In 2017, a group of researchers systematically
analyzed the CSVs in a cohort of 689 patients with autism spectrum disorder
and other developmental abnormalities, which was the biggest CSV study
based on linked-read sequencing [12]. They identified 11,735 distinct large SV
sites, and estimated each genome harbors 14 large CSVs on average. Notably,
this study also found a high percentage of inversion associated CSVs, which
took 84.4% of the detected CSVs.

Cancer is another complex disease, where the genome of cancer patients
was changed dramatically during tumorigenesis, resulting in a great number
of simple and complex SVs. The study conducted by ICGC profiled the SVs
in 2,685 samples of 38 tumor types based on NGS, and first identified a
group of unclassified or complex SV types in tumor genomes [0].

In Chapter 2 and Chapter 3, novel algorithms are developed to detect
both simple and complex SVs from short- and long-read data, respectively. In
addition, though SVs could be identified, an orthogonal approach to validate
the correctness (i.e., breakpoint accuracy and type) is also important for
future downstream analysis and clinical applications. Therefore, we developed
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a novel algorithm to assess the quality of SVs detected by different algorithms
in Chapter 4. Moreover, accumulating studies have revealed the unique
strength of using long-read data to detect SVs from disease genomes, such
as cancer and Mendelian disease. For example, a study of undiagnosed rare
disease patients successfully identified three pathogenic CSVs that cannot
be resolved by short-read data, suggesting the strength of using long-reads
to characterize the exact breakpoints and structure of CSVs. In Chapter 5,
we systematically evaluate the performance of the state-of-the-art long-read
algorithms for both germline and somatic SV detection.

Besides the influence in downstream molecular and cellular processes,
such as transcription and regulation [13], SVs are also important sources to
understand the DNA damage repair mechanisms in the pathophysiological
process of complex diseases such as cancer [14]. For example, the homologous
recombination deficiency (HRD) has been used as an important biomarker
to select drugs for a certain group of cancer patients [15].

In general, SVs are usually classified as recurrent and non-recurrent
rearrangement to investigate their formation separately, where the recurrent
SVs share the same size and genomic content in unrelated individuals, while
the nonrecurrent ones have unique size and genomic content at a given locus
in unrelated individuals [14]. CSVs often have more than one breakpoint
junction and genomic interval of copy number change that can be observed
at loci with susceptibility to nonrecurrent rearrangements, and replication-
based mechanisms have been proposed to underlie the formation of CSVs as
a result of interactive DNA template switches during replicative repair of
single-ended, double-stranded DNA breaks [14]. In Chapter 2 and Chapter 3,
the microhomology was identified to be the major mechanism for CSV
formation, and we identified that different microhomology configurations at
the breakpoint junction led to different forms of CSV. It should be noted that
correct characterization of CSV formation requires accurate configuration
of the breakpoint and structure, which is usually difficult to achieve using
short-read data.

1.4 Detecting structural variation

Indeed, SVs of an individual genome manipulate the sequence of the reference
genome, resulting in the so-called alternative sequence, and different types
of SVs alter the reference sequence in different ways. In principle, all reads
would be properly aligned if the sample’s genome is identical to the reference,
whereas the abnormally aligned reads footprint the signatures of SVs. For
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instance, a deletion event indicates the sample genome missed one fragment
of DNA sequence that was found in the reference genome (Figure 1.2A). The
start and end position on the reference genome of the altered sequence are
called breakpoints or breakpoint junctions, which are the junctions between
alternative and reference sequence of the sample.

It should be noted that the SV breakpoint is defined according to the
reference coordinate system, thus insertion only has one breakpoint junction
on the reference compared with deletion, inversion and duplication (Fig-
ure 1.2B). The number of breakpoint junctions is often used to distinguish the
simple and complex SVs, where CSVs usually have more than two breakpoint
junctions. Afterwards, according to the altered sequence originating from
different SV types, detection algorithms first build the SV signature model
from the abnormally aligned reads for each type, where the model essentially
depicts the pattern indicating how reads are aligned across the breakpoint
junctions (Figure 1.3A). Therefore, to detect SVs, it is important to know
how a specific SV type alters the reference sequence and its corresponding
pattern inferred from the alignment. Once the SV signature models are built
for each type, the detection algorithm would fit the observed read alignments
with the expected model to make the detection. This approach is considered
as a model-based approach, containing two major steps: i) SV signature
modeling and ii) model fitting.

The model-based approach is initially designed for short-read data due
to lack of SV spanning sequences, while assembly of short-reads provides
longer DNA sequences and improves the detection performance. Briefly, the
assembly based approach first collects all abnormally aligned reads to produce
longer sequences based on the De Bruijn graph [21, 22] or string graph [23, 24].
Then, the assemblies are realigned to the focal regions, which is used to fit the
prebuilt SV signature models for discoveries. Moreover, because the assemblies
might span multiple breakpoint junctions, the assembly approach is widely
used to detect CSVs from short-read data. Though the assembly approach is
able to detect multiple breakpoints of CSVs, it often requires further efforts
to filter redundant breakpoints and identify breakpoints belonging to the
same events [0, 11].

The long-read technology produces even longer sequences than the as-
semblies from short-read data. It greatly simplifies simple SV detection from
both signature modeling and model fitting because of variant spanning reads
(Figure 1.3B). For CSV detection, though the long-read data avoid the as-
sembly issues, it also follows the model-based approach, such as Sniffles [15],
which is the only algorithm that detects two specific types of complex events
with extra models (Figure 1.3C). However, CSVs are largely unexplored and
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contain complex breakpoint configurations [25], making them challenging to
model in a brute-force way. Moreover, current studies interpret and define
CSVs in various ways, hindering the generalization of CSV study between
researchers. Thus, one of the major objectives of this thesis is to develop
novel algorithms for CSV detection without models.
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Figure 1.2: Breakpoints of two simple structural variants. (A) The breakpoints
defined for a deletion, including the 5’ breakpoint and 3’ breakpoint on the
reference. (B) The breakpoint defined for an insertion, which only has one
breakpoint.

1.5 Pairwise sequence alignment for nucleotide se-
quences

Pairwise nucleotide sequence alignment has been used to investigate the
differences between multiple genomes, to create the evolutionary tree for
species, etc., which is one of the classical computational biology problems.
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Figure 1.3: Structural variant alignment signature derived from short-read
and long-read sequencing. (A) The short-read alignment signatures of three
simple structural variants (SV), i.e., deletion (DEL), inversion (INV) and
duplication (DUP). (B) The DEL alignment signature derived from long-read
alignment. (C) The alignment signature of a complex structural variant
(CSV) that is derived from long-read data.
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MUMMer [16], using suffix-trees, is the most widely used algorithm for
large-scale genome alignment, and it has been used to investigate the genome
rearrangements between genomes.

Detecting SVs is similar to genome rearrangement detection between
genomes, whereas the most advanced SMS technologies only produce frag-
mented DNA sequences, making it difficult for a MUMMer like approach to
detect SVs genome-wide. Therefore, in order to detect SVs from an individ-
ual genome, the fragmented DNA sequences are first aligned to the human
reference genome. The most common whole genome alignment algorithms,
i.e., minimap2 [17] and ngmlr [1%], adopt a typical seed-chain-align procedure
to map the sequenced reads to the reference genome.

Briefly, for each query sequence (DNA sequence), minimap2 takes query
minimizer as seeds, i.e., a longest exact match between query sequence and
reference, and identifies sets of colinear matches as chains. Afterwards, dy-
namic programming is used to extend from the ends of the chains and to
close regions between adjacent matches in chains. Fortunately, the long-read
data spanning the SV site enables pairwise read and reference sequence
comparison, promoting correct characterization of CSV structure. In Chap-
ter 3, a light-weighted focal sequence realignment is proposed to refine the
potential breakpoints of CSVs. This realignment approach is also based on
seed-and-extension, whereas the gaps between nonlinear matches are not
extended and considered to contain breakpoints.

The reference genome was first published in 2001 by HGP and has been
significantly improved due to long-read technologies [19]. Although studies
based on long-read data suggest that the reference could not easily serve
as a standard genome, the routine genomic analysis, such as SV detection,
still uses the reference genome as a universal genome. Thus, it should be
noted that SVs of an individual genome are the different sequences compared
with the reference genome, and the same reference is used to explore SVs in
populations. Currently, the human genome is at version 38 (GRCh38), which
now has fewer than 1,000 reported gaps, driven by the efforts of the Genome
Research Consortium (GRC) [19].

The standard format of the alignment output is the Sequence Alignment
Map (SAM) [20], and the Binary Alignment Map (BAM) is the binary version
of a SAM file. The BAM file is usually used as input for SV detection, while
recently another form of compressed BAM file (CRAM) is introduced for
processing the large data volumes for population scale genome studies.
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1.6 Usage of graphs for structural variants detec-
tion and analysis

A graph, consisting of nodes and edges, is an important data structure to
model many types of relations and processes in physical, biological, social and
information systems, and has a wide range of useful applications. There are
three major graph types, i.e., undirected graphs, directed graphs and weighted
graphs, and they have been broadly used for computational genomics. One
of the most important applications of graphs is genome assembly, especially
since the development of HTS technologies. The ultimate purpose of genome
assembly is to build each chromosome from the fragmented DNA sequences.
The method can be classified into reference guided assembly and de novo
assembly, where de novo assembly achieves a real personal genome [26].

The development of long-read sequencing greatly promotes the de novo
genome assembly, where two major graph data structures (i.e., De Bruijn
graph and string graph) are used to produce long contiguous pieces of sequence
(contigs). For the De Bruijn graph, each k-mer (a length k substring of a
DNA sequence) is an edge directed from node A to node B if the (k — 1)-mer
in node A is a prefix, and that in B is a suffix of the k-mer [21]. Different from
the De Bruijn graph, the nodes in string graphs are reads and edges connect
two overlapping reads [24]. In the past decade, several optimized graph data
structures based on either De Bruijn graph [22] or string graph [23] have
been proposed to achieve the longest continuous sequence. Currently, with
the PacBio hifi-fidelity (HiFi) reads, assemblers such as hifiasm [23] perform
graph trio binning on the string graph to generate the final haplotype-resolved
assembly of human genomes.

As we mentioned in the above section, realignment of short-read de
novo assembly is a popular approach for both simple and complex SV
detection. Another approach uses graphs but avoids assembly, aiming to
identify fragmented DNA sequences that originated from the same longer
piece of sequence, from which SVs could be accurately detected with short-
read. For example, CLEVER [27] organized all abnormally aligned short-
reads into a read alignment graph, where max-cliques were detected and
statistically evaluated for their potential to reflect insertion or deletion based
on the pre-built signature models. Inspired by CLEVER and the nature of
SV, either SVs or CSVs would alter one or more genomic segments at a
focal region and lead to disordered segment connections compared to the
reference. Specifically, SVs or CSVs change the connection relation of DNA
segments at the breakpoint junctions, and the reads across the junction will
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Figure 1.4: Overview and examples of detecting structural variants with a
graph. (A) The connection graph created from short-read alignment on a
deletion event, where node 1 and 2 indicate the mapping position of the
read-pair on the reference genome (i.e., anchor position of read-pair). The
connection provided by read-pair alignment is considered as alternative (ALT)
edge in the graph. (B) Given the whole genome graph built based on (A),
a structural variant is detected as a subgraph. (C) The graph is used to
represent a complex structural variant based on long-read alignment, each
node in the graph indicating a segment with tail and head. E.g., segment b
produces two nodes in the graph: bt and bh. Similar to an edge in a short-read
connection graph, the ALT edge is obtained from long-read mapping.
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connect segments that are distant or discontinuous on the reference genome.
For example, a deletion indeed connects two distant segments that are not
adjacent on the reference genome (Figure 1.4A). Thus, we are able to create
a segment connection graph (Figure 1.4A) from short-read (i.e., paired-end
reads) alignments according to the signature model (Figure 1.3A), where the
anchored positions of a mapped read are used as nodes and two nodes could
be obtained from one paired-end read mapping (i.e., one end corresponds to
one node). In terms of the edge set, one part of the edges are derived from
the reference connection, indicating the identical connections between two
adjacent segments on the reference, while the alternative edges are given by
the abnormal aligned paired-end reads. Then, a SV or CSV is modeled as
a subgraph that is involved in the genome wide segment connection graph
(Figure 1.4B).

In Chapter 2, this segment connection graph is called signal graph, and
we add extra attributes to the nodes and edges for CSV detection. However,
using the current linear reference genome for variant detection, some major
allele events have been observed and shown to be population specific variants,
which might mislead further variant analysis. Therefore, another important
application for graphs is to encode the population genetic diversities, pro-
ducing the so-called graph genome [28, 29] or variation graph [30, 31, 32],
which is then used as reference for variant detection. Given a graph reference,
algorithms for efficient building, augmenting, storing, querying and variant
calling are under active development [33, 34]. In 2018, the first genome-wide
full pipeline of using graphs is developed, named vg [32], which improves read
mapping sensitivity and increases the variant calling recall, and effectively
removes reference bias.

Inspired by the above applications, we consider the graph to be a powerful
data structure to represent complex events, such as the junction-balanced
genome graph [35] which has been proposed to infer and classify complex
rearrangements observed in tumor genomes. In Chapter 2, the CSV detected
as a subgraph from the signal graph could be interpreted from the graph
connections, which also enables the comparison of different types of CSVs.
Inspired by the SV subgraph introduced in Chapter 2, the graph is used
to represent and interpret complex events detected from long-read data in
Chapter 3. This CSV mini-graph induced from long-read data contains nodes
from matched segments between reference and alternative sequence, where
the edges originate from the alternative sequence (Figure 1.4C). Note that in
the long-read induced graphs, each node not only indicates the position on
reference but also the matched segment sequences, which is different from
the one derived from short-read data. Moreover, we introduce head and tail
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annotation of each segment to indicate potential inversions. For example
(Figure 1.4C), a segment is inverted, and the head is connected with an
alternative edge observed in long read. Given the CSV mini-graph, we are able
to compare different CSV events and identify those of the same type based
on isomorphic graphs. Moreover, this mini-graph provides a so-called SV
graph reference, such that the same event at identical loci could be identified
or genotyped among populations via graph-based sequence alignment.

1.7 Frequent subgraph mining

Frequent subgraph mining raised great interest in the data mining community
since 2000, and had a broad application in many fields, such as social media,
chemical compound analysis, etc. The idea behind frequent subgraph mining
is to "grow” candidate subgraphs, in either a breadth first or depth first
manner, and then determine if the identified candidate subgraph occurs
frequently enough in the graph data set for them to be considered interesting.
Effective candidate subgraph generation is required to avoid the generation
of duplicate or superfluous candidates, and the occurrences counting needs
examination of graph isomorphism.

According to different applications, the optimization of frequent subgraph
mining algorithms usually focuses on i) candidate generation strategy; ii)
reduction of search space and iii) graph structure comparison. In Chapter 2,
the abnormal short-read alignments, footprinting potential SVs, were coded
in a signal graph (Figure 1.4B). Since SVs alter the focal genome by adding
alternative edges or removing reference edges in the signal graph, the SV or
CSV could be detected as a local maximal subgraph. In addition, a real SV
or CSV graph structure usually occurs more frequently than the subgraph
induced from alignment artifacts, thus the algorithm of detecting frequent
local maximal subgraphs was developed to identify both simple and complex
events (Figure 1.5). According to the specific application, this algorithm
optimized the approach of saving the signal graph and comparing graph
structure.

1.8 Objective and outline of the thesis

The main research questions for this thesis include i) detecting complex
structural variants without prior knowledge and ii) reproducing structural
variants detection among different datasets. The three main perspectives of
this thesis are i) to develop novel algorithms for the detection of genomic
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Figure 1.5: A toy example for detecting frequent maximal subgraphs from
the signal graph. The subgraphs starts growth with purple node, from
which subgraphs of size 2 and frequency 2 are obtained by adding red node.
Furthermore, green node that satisfies the growth constraint are added to
existing graph of size 2, resulting in subgraphs of size 3 and frequency 3.
Finally, a frequent subgraph consisting of purple, red and green node is
detected.
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structural variation, especially for complex structural variations, from the
short-read data (i.e., for the Illumina sequencer) and long-read data (i.e., for
the PacBio and ONT platforms), ii) to develop structural variation validation
algorithms and iii) to evaluate a pipeline or pipelines for detecting germline
and clinically relevant structural variations.

First, for the paired-end sequencing, we use a graph data structure to
encode the footprints of SVs from a given alignment and detect both simple
and complex SVs by mining the frequent maximal subgraphs (Chapter 2).
In the graph, a node consists of abnormal alignments, such as split-reads
and discordant alignments. For the edges, two adjacent nodes are connected
via a reference edge, and paired-end reads could connect two distinct nodes,
referring to alternative edges. Afterwards, a frequent maximal subgraph
is considered as a SV, and we set a frequency threshold for users to filter
potential subgraphs made by background noise. However, since the paired-end
reads are only approximately one hundred base pairs in length, it becomes
challenging or even impossible to detect and interpret the whole structure
of SVs, especially for complex ones. Given that the SMS provides long
DNA sequencing that could cover the entire SV structure, in Chapter 3,
we automate the detection and interpretation of both simple and complex
SVs by recognizing the sequence differences coded in the image. Briefly,
we visualize each alignment as a sequence similarity image, for which the
multi-object recognition framework is applied to detect SVs without any
predefined signature models. Then, we introduce a graph to represent and
classify different classes of complex SVs.

Given that SMS based population scale SV study becomes common, the
orthogonal approach to validate detected SVs is in great demand for the
community, especially for the potential clinical application. In Chapter 4,
inspired by the sequence similarity image, we provide a novel approach called
SpotSV, to validate and characterize simple and complex SVs occurring
in genomic regions of different complexity. In general, SpotSV validates a
given SV in two major steps: i) simulating an alternative sequence with SV
profile and ii) pairwise comparison of the reads and the simulated alternative
sequence.

As the sequencing price drops, long-read technologies have been applied
to study population genetic diversities, evolution, etc. Notably, in the past
two years, several studies have shown the power of using long-read data
to investigate disease genomes (i.e., for tumor and Mendelian diseases).
Therefore, in Chapter 5, we aim to evaluate the existing long-read detection
algorithms for both germline and somatic SV discovery. Specifically, we use
five samples sequenced by PacBio HiFi and ONT, two alignment algorithms
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and six widely-used detection algorithms, to examine and compare the
performance of each detection algorithm.

In Chapter 6, conclusions are drawn and further perspectives are dis-
cussed.

In this thesis, Chapter 2 and Chapter 3 are based on the following
publications:

e Jiadong Lin, Xiaofei Yang, Walter Kosters, Tun Xu, Yanyan Jia, Songbo
Wang, Qihui Zhu, et al. “Mako: a graph-based pattern growth approach
to detect complex structural variants.” Genomics, proteomics & bioin-
formatics, 2021.

e Jiadong Lin, Songbo Wang, Peter Audano, Deyu Meng, Jacob Flores,
Walter Kosters, Xiaofei Yang, Peng Jia, Tobias Marschall, Christine
Beck and Kai Ye. “SVision: A deep learning approach to resolve complex
structural variants.” Nature Methods (Under revision, submission ID:
NMETH-BC48137), 2022.
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1.9 List of abbreviations

Aligner Algorithm that maps long-read data to human reference genome
BAM Binary alignment map

Caller A certain algorithm for structural variant detection

Callset A set of structural variants discovered by detection algorithms
CCS C(ircular consensus sequencing

CGH Comparative genomic hybridization
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1.9. LIST OF ABBREVIATIONS

CLR Continuous long read

CNV Copy number variation

CRAM Compressed BAM file

CSV Complex structural variant

GIAB Genome in a bottle

HGSVC Human genome structural variation consortium
HiFi Long-read data generated by PacBio CCS sequencing
HGP Human genome project

HRD Homologous recombination deficiency

HTS High throughput sequencing

Long-read Long-read data generated by SMS technology, such as a PacBio
sequencer

NGS Next-generation sequencing
ONT Oxford nanopore technology
PacBio Pacific Bioscience

PAV Phased assembly variant
NGS Next generation sequencing
SAM Sequence alignment map

Short-read Paired-end data generated by NGS technology, such as an
Illumina sequencer

SMS Single molecule sequencing
SNP Single nucleotide polymorphism
SNV Single nucleotide variant

SV Structural variant

1KGP 1000 Genomes project
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