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Chapter 1

Introduction and background

This thesis is about developing algorithms for structural variant detection,
validation and analysis. We focus on long-read sequencing technologies. In this
chapter, we explain the biological background, the sequencing technologies
and computational approaches for the analysis of human genomes. We also
mention our contributions and research questions.

1.1 Computational genomics

Computational genomics is an interdisciplinary field, combining biology,
computer science, information engineering, mathematics and statistics, that
develops and applies computational methods to analyze deoxyribonucleic
acid (DNA) sequences for predictions or novel discoveries.

DNA is a molecule composed of two polynucleotide chains that form a
double helix structure carrying genetic instructions for development, function-
ing, growth, reproduction, etc. The two DNA strands consist of monomeric
units called nucleotides, where each nucleotide is composed of one of four
nitrogen-containing nucleobases, cytosine (C), guanine (G), adenine (A) or
thymine (T). From the computational perspective, a genomic sequence is a
special type of string, consisting of four characters (i.e., A, T, C and G), and
contains many repeated substrings.

One of the common applications of computational genomics is to assess
the similarity between strings or in a set of strings, such that the candidate
genes, genome evolution, genetic variants, etc. can be inferred or identi-
fied. Given that genetic variants are the major sources to form population
differences and to drive diseases (i.e., cancer, autism disorder, Alzheimer,
etc.), the detection of genetic variants has become a major focus in the
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field of computational genomics since the development of high-throughput-
sequencing (HTS) technologies [1]. Briefly, genetic variants are identified
by comparing an individual genome (alternative sequence, ALT) with a
reference genome (reference sequence, REF). To detect genetic variants in
the sequencing era, computer science and statistical approaches have been
applied, the Burrows-Wheeler Transform [2] and FM-index [3] were used to
perform efficient sequence alignment, the convolutional neural network []
was used to identify single-nucleotide-polymorphism (SNP), etc. Genome
rearrangement or structural variants (SV) is another form of genetic variants,
and usually affects a substring containing more than 50 characters, whereas a
SNP only replaces one single character. In the past decade, great efforts have
been made to generate longer DNA sequences and to optimize algorithms
for the discovery and genotyping of genome rearrangements.

1.2 Emerging DNA sequencing technologies

The hybridization-based microarray approaches (i.e., for comparative genomic
hybridization (CGH) and SNP microarrays) are first used to infer copy
number gains or losses compared to a reference sample or population, whereas
these approaches cannot identify balanced SVs (i.e., inversion), as well as
their structures [1]. Another approach is the single-molecule analysis, such as
fluorescent in situ hybridization (FISH) and spectral karyotyping, providing
the first glimpses of common and rare SVs, such as the translocation mediated
BCR-ABL fusion in Leukemia [!]. However, their low throughput and low
resolution limit their application to a few individuals and to particularly
large SVs (=500kb to 5Mb).

The advent of next-generation-sequencing (NGS) technology or the so-
called short-read sequencing promises to revolutionize the SV studies, and
replaces the microarrays for high-throughput personal genomes variant detec-
tion. Most importantly, the NGS technology opens the field of detecting and
genotyping SVs with HTS technologies, and DNA sequences produced by
HTS technologies are termed as read [1]. So far, the most widely-used NGS
technology is the read-pair technology, which has been applied to several
population-scale genome studies, such as the 1000 Genomes Project [5],
International Cancer Genome Consortium (ICGC) [6], Genome Aggregation
Database (gnomAD) [7], etc. Starting from 2015, a considerable increase
of novel HTS technologies that leverage single-molecule-sequencing (SMS)
strategies, has led to platforms that produce reads several orders of magnitude
longer than short-read data, enabling the direct detection of many previously
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undetected SVs. The most representative SMS platforms are single molecule
real-time sequencing (SMRT') invented by Pacific Bioscience (PacBio) and
single stranded DNA nanopore sequencing invented by Oxford Nanopore
Technology (ONT). The average DNA sequence length, i.e., read length,
generated by PacBio and ONT is around 15kbp. To get the entire human
genome of 3Gbp, an individual genome is usually sequenced multiple times,
called sequencing coverage. For example, if a genome is sequenced at 30X
coverage, the fragmented DNA sequences could span the entire genome 30
times. In this thesis, NGS or short-read data is referred to as paired-end
sequencing, and long-read data or long-read sequencing is referred to as DNA
sequences produced by PacBio and ONT sequencers.

1.3 Genome structural variations are important

In the past decade, widespread application of whole-genome HTS technology
for the genetic variant detection has shown that difference between individu-
als is presented as single-nucleotide-variants (SNVs), small insertions and
deletions (indels, <50bp) and SVs. Compared with SNVs and indels, SVs
are extremely diverse in size and type, ranging from 50bp to megabases of
the genome. SVs (Figure 1.1A) consist of copy number variations (CNVs),
which include deletions (DEL), insertions (INS) and duplications (DUP),
as well as balanced rearrangements, such as inversions (INV) and inter- or
intra-chromosomal translocations (TRA, Figure 1.1B) [3]. These four types
were discovered and defined in the early stages of the Human Genome Project
(HGP) based on short-read sequencing, and we define them as simple SVs or
canonical SVs.

Recently, based on the most advanced single-molecule-sequencing (SMS)
technology, producing long-read data, a series of studies conducted by the
Human Genome Structural Variation Consortium (HGSVC) has estimated
that each human genome contains approximately 20,000-25,000 SVs, which
doubles the number of SVs estimated by next-generation-sequencing technol-
ogy (NGS) [9]. Remarkably, SMS facilitates the high-quality haplotype-aware
human genome assembly and phased SV detection. The Phased Assembly
Variant (PAV) allows researchers to establish their population frequency,
identify ancestral haplotypes and discover new associations with respect to
gene expression, splicing, and candidate disease loci [10].

Additionally, another special type of SVs, consisting of multiple combina-
tions of the simple SV types, is called complex SV [11] (CSV, Figure 1.1C).
In 2015, the 1KGP first profiled the CSVs of a healthy genome, of which the

3
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A Diagrams of simple structural variants B Diagrams of translocation
chr1 27T,

C Diagrams of complex structural variants
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Figure 1.1: Diagrams of simple and complex structural variants. (A) Diagrams
of four simple structural variants, including deletion (DEL), insertion (INS),
duplication (DUP) and inversion (INV). (B) The diagram of a transloca-
tion (TRA), combining sequences from two different chromosomes. (C) The
diagrams of two complex structural variant types (i.e., TypeA and TypeB).

CSVs were detected with intensive breakpoint analysis and manual curations
based on SMS. This study first applied long-read data to resolve the structure
of CSVs and suggested that 8% and 68% of the simple deletions and inver-
sions are complex events [5]. In 2017, a group of researchers systematically
analyzed the CSVs in a cohort of 689 patients with autism spectrum disorder
and other developmental abnormalities, which was the biggest CSV study
based on linked-read sequencing [12]. They identified 11,735 distinct large SV
sites, and estimated each genome harbors 14 large CSVs on average. Notably,
this study also found a high percentage of inversion associated CSVs, which
took 84.4% of the detected CSVs.

Cancer is another complex disease, where the genome of cancer patients
was changed dramatically during tumorigenesis, resulting in a great number
of simple and complex SVs. The study conducted by ICGC profiled the SVs
in 2,685 samples of 38 tumor types based on NGS, and first identified a
group of unclassified or complex SV types in tumor genomes [0].

In Chapter 2 and Chapter 3, novel algorithms are developed to detect
both simple and complex SVs from short- and long-read data, respectively. In
addition, though SVs could be identified, an orthogonal approach to validate
the correctness (i.e., breakpoint accuracy and type) is also important for
future downstream analysis and clinical applications. Therefore, we developed

4
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a novel algorithm to assess the quality of SVs detected by different algorithms
in Chapter 4. Moreover, accumulating studies have revealed the unique
strength of using long-read data to detect SVs from disease genomes, such
as cancer and Mendelian disease. For example, a study of undiagnosed rare
disease patients successfully identified three pathogenic CSVs that cannot
be resolved by short-read data, suggesting the strength of using long-reads
to characterize the exact breakpoints and structure of CSVs. In Chapter 5,
we systematically evaluate the performance of the state-of-the-art long-read
algorithms for both germline and somatic SV detection.

Besides the influence in downstream molecular and cellular processes,
such as transcription and regulation [13], SVs are also important sources to
understand the DNA damage repair mechanisms in the pathophysiological
process of complex diseases such as cancer [14]. For example, the homologous
recombination deficiency (HRD) has been used as an important biomarker
to select drugs for a certain group of cancer patients [15].

In general, SVs are usually classified as recurrent and non-recurrent
rearrangement to investigate their formation separately, where the recurrent
SVs share the same size and genomic content in unrelated individuals, while
the nonrecurrent ones have unique size and genomic content at a given locus
in unrelated individuals [14]. CSVs often have more than one breakpoint
junction and genomic interval of copy number change that can be observed
at loci with susceptibility to nonrecurrent rearrangements, and replication-
based mechanisms have been proposed to underlie the formation of CSVs as
a result of interactive DNA template switches during replicative repair of
single-ended, double-stranded DNA breaks [14]. In Chapter 2 and Chapter 3,
the microhomology was identified to be the major mechanism for CSV
formation, and we identified that different microhomology configurations at
the breakpoint junction led to different forms of CSV. It should be noted that
correct characterization of CSV formation requires accurate configuration
of the breakpoint and structure, which is usually difficult to achieve using
short-read data.

1.4 Detecting structural variation

Indeed, SVs of an individual genome manipulate the sequence of the reference
genome, resulting in the so-called alternative sequence, and different types
of SVs alter the reference sequence in different ways. In principle, all reads
would be properly aligned if the sample’s genome is identical to the reference,
whereas the abnormally aligned reads footprint the signatures of SVs. For

5
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instance, a deletion event indicates the sample genome missed one fragment
of DNA sequence that was found in the reference genome (Figure 1.2A). The
start and end position on the reference genome of the altered sequence are
called breakpoints or breakpoint junctions, which are the junctions between
alternative and reference sequence of the sample.

It should be noted that the SV breakpoint is defined according to the
reference coordinate system, thus insertion only has one breakpoint junction
on the reference compared with deletion, inversion and duplication (Fig-
ure 1.2B). The number of breakpoint junctions is often used to distinguish the
simple and complex SVs, where CSVs usually have more than two breakpoint
junctions. Afterwards, according to the altered sequence originating from
different SV types, detection algorithms first build the SV signature model
from the abnormally aligned reads for each type, where the model essentially
depicts the pattern indicating how reads are aligned across the breakpoint
junctions (Figure 1.3A). Therefore, to detect SVs, it is important to know
how a specific SV type alters the reference sequence and its corresponding
pattern inferred from the alignment. Once the SV signature models are built
for each type, the detection algorithm would fit the observed read alignments
with the expected model to make the detection. This approach is considered
as a model-based approach, containing two major steps: i) SV signature
modeling and ii) model fitting.

The model-based approach is initially designed for short-read data due
to lack of SV spanning sequences, while assembly of short-reads provides
longer DNA sequences and improves the detection performance. Briefly, the
assembly based approach first collects all abnormally aligned reads to produce
longer sequences based on the De Bruijn graph [21, 22] or string graph [23, 24].
Then, the assemblies are realigned to the focal regions, which is used to fit the
prebuilt SV signature models for discoveries. Moreover, because the assemblies
might span multiple breakpoint junctions, the assembly approach is widely
used to detect CSVs from short-read data. Though the assembly approach is
able to detect multiple breakpoints of CSVs, it often requires further efforts
to filter redundant breakpoints and identify breakpoints belonging to the
same events [0, 11].

The long-read technology produces even longer sequences than the as-
semblies from short-read data. It greatly simplifies simple SV detection from
both signature modeling and model fitting because of variant spanning reads
(Figure 1.3B). For CSV detection, though the long-read data avoid the as-
sembly issues, it also follows the model-based approach, such as Sniffles [15],
which is the only algorithm that detects two specific types of complex events
with extra models (Figure 1.3C). However, CSVs are largely unexplored and

6
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contain complex breakpoint configurations [25], making them challenging to
model in a brute-force way. Moreover, current studies interpret and define
CSVs in various ways, hindering the generalization of CSV study between
researchers. Thus, one of the major objectives of this thesis is to develop
novel algorithms for CSV detection without models.

A Deletion and its breakpoints on reference
5' 3'
REF (T I .
/ TN

e 3' breakpoint

5' breakpoint

-
-
-
-

5' el 3'
ALT (T )

I
I
I .
I
I
I

B Insertion and its breakpoint on reference

5' 3'
REF (T I )
N

Breakpoint ‘1 N\
l\ \
|

\

5' \ 3
ALT T TN )

Figure 1.2: Breakpoints of two simple structural variants. (A) The breakpoints
defined for a deletion, including the 5’ breakpoint and 3’ breakpoint on the
reference. (B) The breakpoint defined for an insertion, which only has one
breakpoint.

1.5 Pairwise sequence alignment for nucleotide se-
quences

Pairwise nucleotide sequence alignment has been used to investigate the
differences between multiple genomes, to create the evolutionary tree for
species, etc., which is one of the classical computational biology problems.
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A SV alignment signature induced from short-read sequencing
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Figure 1.3: Structural variant alignment signature derived from short-read
and long-read sequencing. (A) The short-read alignment signatures of three
simple structural variants (SV), i.e., deletion (DEL), inversion (INV) and
duplication (DUP). (B) The DEL alignment signature derived from long-read
alignment. (C) The alignment signature of a complex structural variant
(CSV) that is derived from long-read data.
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MUMMer [16], using suffix-trees, is the most widely used algorithm for
large-scale genome alignment, and it has been used to investigate the genome
rearrangements between genomes.

Detecting SVs is similar to genome rearrangement detection between
genomes, whereas the most advanced SMS technologies only produce frag-
mented DNA sequences, making it difficult for a MUMMer like approach to
detect SVs genome-wide. Therefore, in order to detect SVs from an individ-
ual genome, the fragmented DNA sequences are first aligned to the human
reference genome. The most common whole genome alignment algorithms,
i.e., minimap2 [17] and ngmlr [1%], adopt a typical seed-chain-align procedure
to map the sequenced reads to the reference genome.

Briefly, for each query sequence (DNA sequence), minimap2 takes query
minimizer as seeds, i.e., a longest exact match between query sequence and
reference, and identifies sets of colinear matches as chains. Afterwards, dy-
namic programming is used to extend from the ends of the chains and to
close regions between adjacent matches in chains. Fortunately, the long-read
data spanning the SV site enables pairwise read and reference sequence
comparison, promoting correct characterization of CSV structure. In Chap-
ter 3, a light-weighted focal sequence realignment is proposed to refine the
potential breakpoints of CSVs. This realignment approach is also based on
seed-and-extension, whereas the gaps between nonlinear matches are not
extended and considered to contain breakpoints.

The reference genome was first published in 2001 by HGP and has been
significantly improved due to long-read technologies [19]. Although studies
based on long-read data suggest that the reference could not easily serve
as a standard genome, the routine genomic analysis, such as SV detection,
still uses the reference genome as a universal genome. Thus, it should be
noted that SVs of an individual genome are the different sequences compared
with the reference genome, and the same reference is used to explore SVs in
populations. Currently, the human genome is at version 38 (GRCh38), which
now has fewer than 1,000 reported gaps, driven by the efforts of the Genome
Research Consortium (GRC) [19].

The standard format of the alignment output is the Sequence Alignment
Map (SAM) [20], and the Binary Alignment Map (BAM) is the binary version
of a SAM file. The BAM file is usually used as input for SV detection, while
recently another form of compressed BAM file (CRAM) is introduced for
processing the large data volumes for population scale genome studies.
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1.6 Usage of graphs for structural variants detec-
tion and analysis

A graph, consisting of nodes and edges, is an important data structure to
model many types of relations and processes in physical, biological, social and
information systems, and has a wide range of useful applications. There are
three major graph types, i.e., undirected graphs, directed graphs and weighted
graphs, and they have been broadly used for computational genomics. One
of the most important applications of graphs is genome assembly, especially
since the development of HTS technologies. The ultimate purpose of genome
assembly is to build each chromosome from the fragmented DNA sequences.
The method can be classified into reference guided assembly and de novo
assembly, where de novo assembly achieves a real personal genome [26].

The development of long-read sequencing greatly promotes the de novo
genome assembly, where two major graph data structures (i.e., De Bruijn
graph and string graph) are used to produce long contiguous pieces of sequence
(contigs). For the De Bruijn graph, each k-mer (a length k substring of a
DNA sequence) is an edge directed from node A to node B if the (k — 1)-mer
in node A is a prefix, and that in B is a suffix of the k-mer [21]. Different from
the De Bruijn graph, the nodes in string graphs are reads and edges connect
two overlapping reads [24]. In the past decade, several optimized graph data
structures based on either De Bruijn graph [22] or string graph [23] have
been proposed to achieve the longest continuous sequence. Currently, with
the PacBio hifi-fidelity (HiFi) reads, assemblers such as hifiasm [23] perform
graph trio binning on the string graph to generate the final haplotype-resolved
assembly of human genomes.

As we mentioned in the above section, realignment of short-read de
novo assembly is a popular approach for both simple and complex SV
detection. Another approach uses graphs but avoids assembly, aiming to
identify fragmented DNA sequences that originated from the same longer
piece of sequence, from which SVs could be accurately detected with short-
read. For example, CLEVER [27] organized all abnormally aligned short-
reads into a read alignment graph, where max-cliques were detected and
statistically evaluated for their potential to reflect insertion or deletion based
on the pre-built signature models. Inspired by CLEVER and the nature of
SV, either SVs or CSVs would alter one or more genomic segments at a
focal region and lead to disordered segment connections compared to the
reference. Specifically, SVs or CSVs change the connection relation of DNA
segments at the breakpoint junctions, and the reads across the junction will

10
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Figure 1.4: Overview and examples of detecting structural variants with a
graph. (A) The connection graph created from short-read alignment on a
deletion event, where node 1 and 2 indicate the mapping position of the
read-pair on the reference genome (i.e., anchor position of read-pair). The
connection provided by read-pair alignment is considered as alternative (ALT)
edge in the graph. (B) Given the whole genome graph built based on (A),
a structural variant is detected as a subgraph. (C) The graph is used to
represent a complex structural variant based on long-read alignment, each
node in the graph indicating a segment with tail and head. E.g., segment b
produces two nodes in the graph: bt and bh. Similar to an edge in a short-read
connection graph, the ALT edge is obtained from long-read mapping.
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connect segments that are distant or discontinuous on the reference genome.
For example, a deletion indeed connects two distant segments that are not
adjacent on the reference genome (Figure 1.4A). Thus, we are able to create
a segment connection graph (Figure 1.4A) from short-read (i.e., paired-end
reads) alignments according to the signature model (Figure 1.3A), where the
anchored positions of a mapped read are used as nodes and two nodes could
be obtained from one paired-end read mapping (i.e., one end corresponds to
one node). In terms of the edge set, one part of the edges are derived from
the reference connection, indicating the identical connections between two
adjacent segments on the reference, while the alternative edges are given by
the abnormal aligned paired-end reads. Then, a SV or CSV is modeled as
a subgraph that is involved in the genome wide segment connection graph
(Figure 1.4B).

In Chapter 2, this segment connection graph is called signal graph, and
we add extra attributes to the nodes and edges for CSV detection. However,
using the current linear reference genome for variant detection, some major
allele events have been observed and shown to be population specific variants,
which might mislead further variant analysis. Therefore, another important
application for graphs is to encode the population genetic diversities, pro-
ducing the so-called graph genome [28, 29] or variation graph [30, 31, 32],
which is then used as reference for variant detection. Given a graph reference,
algorithms for efficient building, augmenting, storing, querying and variant
calling are under active development [33, 34]. In 2018, the first genome-wide
full pipeline of using graphs is developed, named vg [32], which improves read
mapping sensitivity and increases the variant calling recall, and effectively
removes reference bias.

Inspired by the above applications, we consider the graph to be a powerful
data structure to represent complex events, such as the junction-balanced
genome graph [35] which has been proposed to infer and classify complex
rearrangements observed in tumor genomes. In Chapter 2, the CSV detected
as a subgraph from the signal graph could be interpreted from the graph
connections, which also enables the comparison of different types of CSVs.
Inspired by the SV subgraph introduced in Chapter 2, the graph is used
to represent and interpret complex events detected from long-read data in
Chapter 3. This CSV mini-graph induced from long-read data contains nodes
from matched segments between reference and alternative sequence, where
the edges originate from the alternative sequence (Figure 1.4C). Note that in
the long-read induced graphs, each node not only indicates the position on
reference but also the matched segment sequences, which is different from
the one derived from short-read data. Moreover, we introduce head and tail

12



1.7. FREQUENT SUBGRAPH MINING

annotation of each segment to indicate potential inversions. For example
(Figure 1.4C), a segment is inverted, and the head is connected with an
alternative edge observed in long read. Given the CSV mini-graph, we are able
to compare different CSV events and identify those of the same type based
on isomorphic graphs. Moreover, this mini-graph provides a so-called SV
graph reference, such that the same event at identical loci could be identified
or genotyped among populations via graph-based sequence alignment.

1.7 Frequent subgraph mining

Frequent subgraph mining raised great interest in the data mining community
since 2000, and had a broad application in many fields, such as social media,
chemical compound analysis, etc. The idea behind frequent subgraph mining
is to "grow” candidate subgraphs, in either a breadth first or depth first
manner, and then determine if the identified candidate subgraph occurs
frequently enough in the graph data set for them to be considered interesting.
Effective candidate subgraph generation is required to avoid the generation
of duplicate or superfluous candidates, and the occurrences counting needs
examination of graph isomorphism.

According to different applications, the optimization of frequent subgraph
mining algorithms usually focuses on i) candidate generation strategy; ii)
reduction of search space and iii) graph structure comparison. In Chapter 2,
the abnormal short-read alignments, footprinting potential SVs, were coded
in a signal graph (Figure 1.4B). Since SVs alter the focal genome by adding
alternative edges or removing reference edges in the signal graph, the SV or
CSV could be detected as a local maximal subgraph. In addition, a real SV
or CSV graph structure usually occurs more frequently than the subgraph
induced from alignment artifacts, thus the algorithm of detecting frequent
local maximal subgraphs was developed to identify both simple and complex
events (Figure 1.5). According to the specific application, this algorithm
optimized the approach of saving the signal graph and comparing graph
structure.

1.8 Objective and outline of the thesis

The main research questions for this thesis include i) detecting complex
structural variants without prior knowledge and ii) reproducing structural
variants detection among different datasets. The three main perspectives of
this thesis are i) to develop novel algorithms for the detection of genomic
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Figure 1.5: A toy example for detecting frequent maximal subgraphs from
the signal graph. The subgraphs starts growth with purple node, from
which subgraphs of size 2 and frequency 2 are obtained by adding red node.
Furthermore, green node that satisfies the growth constraint are added to
existing graph of size 2, resulting in subgraphs of size 3 and frequency 3.
Finally, a frequent subgraph consisting of purple, red and green node is
detected.
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structural variation, especially for complex structural variations, from the
short-read data (i.e., for the Illumina sequencer) and long-read data (i.e., for
the PacBio and ONT platforms), ii) to develop structural variation validation
algorithms and iii) to evaluate a pipeline or pipelines for detecting germline
and clinically relevant structural variations.

First, for the paired-end sequencing, we use a graph data structure to
encode the footprints of SVs from a given alignment and detect both simple
and complex SVs by mining the frequent maximal subgraphs (Chapter 2).
In the graph, a node consists of abnormal alignments, such as split-reads
and discordant alignments. For the edges, two adjacent nodes are connected
via a reference edge, and paired-end reads could connect two distinct nodes,
referring to alternative edges. Afterwards, a frequent maximal subgraph
is considered as a SV, and we set a frequency threshold for users to filter
potential subgraphs made by background noise. However, since the paired-end
reads are only approximately one hundred base pairs in length, it becomes
challenging or even impossible to detect and interpret the whole structure
of SVs, especially for complex ones. Given that the SMS provides long
DNA sequencing that could cover the entire SV structure, in Chapter 3,
we automate the detection and interpretation of both simple and complex
SVs by recognizing the sequence differences coded in the image. Briefly,
we visualize each alignment as a sequence similarity image, for which the
multi-object recognition framework is applied to detect SVs without any
predefined signature models. Then, we introduce a graph to represent and
classify different classes of complex SVs.

Given that SMS based population scale SV study becomes common, the
orthogonal approach to validate detected SVs is in great demand for the
community, especially for the potential clinical application. In Chapter 4,
inspired by the sequence similarity image, we provide a novel approach called
SpotSV, to validate and characterize simple and complex SVs occurring
in genomic regions of different complexity. In general, SpotSV validates a
given SV in two major steps: i) simulating an alternative sequence with SV
profile and ii) pairwise comparison of the reads and the simulated alternative
sequence.

As the sequencing price drops, long-read technologies have been applied
to study population genetic diversities, evolution, etc. Notably, in the past
two years, several studies have shown the power of using long-read data
to investigate disease genomes (i.e., for tumor and Mendelian diseases).
Therefore, in Chapter 5, we aim to evaluate the existing long-read detection
algorithms for both germline and somatic SV discovery. Specifically, we use
five samples sequenced by PacBio HiFi and ONT, two alignment algorithms
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and six widely-used detection algorithms, to examine and compare the
performance of each detection algorithm.

In Chapter 6, conclusions are drawn and further perspectives are dis-
cussed.

In this thesis, Chapter 2 and Chapter 3 are based on the following
publications:

e Jiadong Lin, Xiaofei Yang, Walter Kosters, Tun Xu, Yanyan Jia, Songbo
Wang, Qihui Zhu, et al. “Mako: a graph-based pattern growth approach
to detect complex structural variants.” Genomics, proteomics & bioin-
formatics, 2021.

e Jiadong Lin, Songbo Wang, Peter Audano, Deyu Meng, Jacob Flores,
Walter Kosters, Xiaofei Yang, Peng Jia, Tobias Marschall, Christine
Beck and Kai Ye. “SVision: A deep learning approach to resolve complex
structural variants.” Nature Methods (Under revision, submission ID:
NMETH-BC48137), 2022.

Moreover, we contributed to the following publications:

e Peter Ebert, Peter A. Audano, Qihui Zhu, Bernardo Rodriguez-Martin,
David Porubsky, Marc Jan Bonder, Arvis Sulovari, Jiadong Lin, et al.
“Haplotype-resolved diverse human genomes and integrated analysis of
structural variation.” Science, 2021.

e Peng Jia, Xiaofei Yang, Li Guo, Bowen Liu, Jiadong Lin, Hao Liang,
Jianyong Sun, Chengsheng Zhang, and Kai Ye. “MSIsensor-pro: fast,
accurate, and matched-normal-sample-free detection of microsatellite
instability.” Genomics, proteomics & bioinformatics, 2020.

1.9 List of abbreviations

Aligner Algorithm that maps long-read data to human reference genome
BAM Binary alignment map

Caller A certain algorithm for structural variant detection

Callset A set of structural variants discovered by detection algorithms
CCS C(ircular consensus sequencing

CGH Comparative genomic hybridization
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1.9. LIST OF ABBREVIATIONS

CLR Continuous long read

CNV Copy number variation

CRAM Compressed BAM file

CSV Complex structural variant

GIAB Genome in a bottle

HGSVC Human genome structural variation consortium
HiFi Long-read data generated by PacBio CCS sequencing
HGP Human genome project

HRD Homologous recombination deficiency

HTS High throughput sequencing

Long-read Long-read data generated by SMS technology, such as a PacBio
sequencer

NGS Next-generation sequencing
ONT Oxford nanopore technology
PacBio Pacific Bioscience

PAV Phased assembly variant
NGS Next generation sequencing
SAM Sequence alignment map

Short-read Paired-end data generated by NGS technology, such as an
Illumina sequencer

SMS Single molecule sequencing
SNP Single nucleotide polymorphism
SNV Single nucleotide variant

SV Structural variant

1KGP 1000 Genomes project
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Chapter 2

Mako: A graph-based pattern
growth approach to detect
complex structural variants

Abstract Complex structural variants (CSVs) are genomic alterations that have
more than two breakpoints and are considered as the simultaneous occurrence of
simple structural variants. However, detecting the compounded mutational signals
of CSVs is challenging through a commonly used model-match strategy.

We systematically analyzed the multi-breakpoint connection feature of CSVs, and
proposed Mako, utilizing a bottom-up guided model-free strategy, to detect CSVs
from paired-end short-read sequencing. Specifically, we implemented a graph-based
pattern growth approach, where the graph depicts potential breakpoint connections,
and pattern growth enables CSV detection without pre-defined models. Compre-
hensive evaluations on both simulated and real datasets revealed that Mako out-
performed other algorithms. Notably, validation rates of CSV on real data based
on experimental and computational validations as well as manual inspections are
around 70%, where the medians of experimental and computational breakpoint
shift are 13bp and 26bp, respectively. Moreover, the Mako CSV subgraph effectively
characterized the breakpoint connections of a CSV event and uncovered a total of
15 CSV types, including two novel types of adjacent segments swap and tandem
dispersed duplication. Further analysis of these CSVs also revealed the impact of
sequence homology in the formation of CSVs.

Mako is publicly available at https://github.com/xjtu-omics/Mako.
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2.1 Introduction

Computational methods based on next-generation sequencing (NGS) have
provided an increasingly comprehensive discovery and catalog of simple
structure variants (SVs) that usually have two breakpoints, such as deletions
and inversions [36, 37, 38, 39, 40, 41, 42]. In general, these approaches follow
a model-match strategy, where a specific SV model and its corresponding
mutational signal model are proposed. Afterward, the mutational signal
model is used to match observed signals for the detection (Figure 2.1A).
This model-match strategy has proved effective for detecting simple SVs,
providing us with prominent opportunities to study and understand genome
evaluation and disease progression [5, 9, 13, 141]. However, recent research has
revealed that some rearrangements have multiple, compounded mutational
signals and usually cannot fit into the simple SV models [5, 11, 45, 16,

, 18] (Figure 2.1B). For example, in 2015, Sudmant et al. systematically
categorized 5 types of complex structural variants (CSVs) and found that a
remarkable 80% of 229 inversion sites were complex events [5]. Collins et al.
used long-insert size whole genome sequencing (iWGS) on autism spectrum
disease (ASD) and successfully resolved 16 classes of 9666 CSVs from 686
patients [12]. In 2019, Lee et al. revealed that 74% of known fusion oncogenes
of lung adenocarcinomas were caused by complex genomic rearrangements,
including EML4-ALK and CD74-ROS1 [18]. Though less frequently reported
compared with simple SVs, these multiple breakpoint rearrangements were
considered as punctuated events, leading to severe genome alterations at
once [14, 43, 19, 50, 51]. This dramatic change of genome provided distinctive
evidence to study formation mechanisms of rearrangement and to understand
cancer genome evolution [12, 45, 46, 19, 51, 52, 53, 54, 55].

However, due to the lack of effective CSV detection algorithms, most
CSV-related studies screen these events from the “sea” of simple SVs through
computational expensive contig assembly and realignment, incomplete break-
points clustering, or even targeted manual inspection [5, 11, 48]. In fact, many
CSVs have already been neglected or misclassified in this “sea” because of
the incompatibility between complicated mutational signals and existing SV
models. Although the importance and challenge for CSV detection have been
recognized, only a few dedicated algorithms were proposed for CSVs discovery,
and they followed two major approaches guided by the model-match strategy.
TARDIS and SVelter utilize the top-down approach, where they attempt
to model all the mutational signals of a CSV event instead of modeling
specific parts of signals. In particular, TARDIS [56] proposed sophisticated
abnormal alignment models to depict the mutational signals reflected by

20



2.1. INTRODUCTION

A Simple structural variants B Complex structural variants
- - . Deletion
REF - - REF - :—_ iy - Duplication
T ———— 73—t 3
a b a b
- - - > -
) D D B D
Deletion - - b b
. -> - . -»/ Deletion )
Inversion o e e, Inversion
— REF - - = -
D SR — D S D B
a' b a b
Duplication - -
[ —_ = - =
D D D D D D G
a a b b’

Figure 2.1: Explanation of simple and complex structure variants alignment
models derived from abnormal read-pairs. (A) Three common simple SVs and
their corresponding abnormal read-pair alignment on the reference genome,
representing by red, blue, and green arrows. (B) The alignment signature
of two CSVs, each of them, involves two types of signatures that can be
matched by a simple SV alignment model.

dispersed duplication and inverted duplication. The pre-defined models were
then used to fit observed signals from alignments for the detection of the
two specific CSV types. Indeed, this was complicated and greatly limited by
the diverse types of CSV. To solve this, SVelter [57] replaced the modeling
process for specific CSVs with a randomly created virtual rearrangement.
And CSVs were detected by minimizing the difference between the virtual
rearrangement and the observed signals. On the other hand, GRIDSS [5¥]
represents the assembly-based approach, which detects CSVs through extra
breakpoints discovered from contig-assembly and realignment. Though the
assembly-based approach is sensitive for breakpoint detection, it lacks cer-
tain regulations to constrain or classify these breakpoints and leave them
as independent events. As a result, these model-match-guided approaches
would substantially break up or misinterpret the CSVs because of partially
matched signals (Figure 2.1B). Moreover, the graph is another approach that
has been widely used for simple [27, 37] and complex [19, 59] SV detection.
Notably, ARC-SV [59] uses clustered discordant read-pairs to construct an
adjacency graph and adopts a maximum likelihood model to detect complex
SVs, showing the great potential of using the graph to detect complex SVs.
Accordingly, there is an urgent demand for a new strategy, enabling CSV
detection without pre-defined models as well as maintaining the completeness
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of a CSV event.

In this chapter, we propose a bottom-up guided model-free strategy,
implemented as Mako, to effectively discover CSVs all at once based on
short-read sequencing. Specifically, Mako uses a graph to build connections of
mutational signals derived from abnormal alignment, providing the potential
breakpoint connections of CSVs. Meanwhile, Mako replaces model fitting
with the detection of maximal subgraphs through a pattern growth approach.
Pattern growth is a bottom-up approach, which captures the natural features
of data without sophisticated model generation, allowing CSV detection
without pre-defined models. We benchmarked Mako against five widely used
tools on a series of simulated and real data. The results show that Mako is an
effective and efficient algorithm for CSV discovery, which will provide more
opportunities to study genome evolution and disease progression from large
cohorts. Remarkably, the analysis of subgraphs detected by Mako highlights
the unique strength of Mako, where Mako was able to effectively characterize
the CSV breakpoint connections, confirming the completeness of a CSV
event. Moreover, we systematically analyzed the CSVs detected by Mako on
three healthy samples, revealing a novel role of sequence homology in CSV
formation.

In Section 2.2, materials used in this chapter and related methods are
described in details. Then, results are discussed in Section 2.3 and conclusions
are drawn in Section 2.4.

2.2 Materials and methods

In this section, we introduce the workflow of Mako and its major compo-
nents for CSV detection. Moreover, related methods used for performance
evaluation and orthogonal validation are described in details.

2.2.1 Overview of Mako

Given that a CSV is a single event with multiple breakpoint connections,
breakpoints in the current CSV are not connected with false-positive break-
points or those from unrelated events. Thus, we formulate the discovery of
CSVs as maximal subgraph pattern detection in a signal graph. Accordingly,
Mako detects CSVs with NGS data in two major steps, e.g., signal graph
creation and subgraph detection (Figure 2.2). Firstly, Mako collects and clus-
ters abnormally aligned reads as signal nodes and defines two types of edges
to build the signal graph G = (V, E), with V' = {vy,ve,...,v,} and E =
E,c U E,e. Each signal node v € V' is represented as v = (type, pos, weight),
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Figure 2.2: Overview of Mako. Mako first builds a signal graph by collecting
abnormally aligned reads as nodes, and their edge connections are provided
by paired-end alignment and split alignment. Afterward, Mako utilizes the
pattern growth approach to find a maximal subgraph as a potential CSV site.
In the example output, the maximal subgraph G contains nodes A, B, C, and
D, whereas F is not able to be appended because of no existing edge (dashed
line). The CSV is derived from this subgraph with estimate breakpoints and
complexity score, where the discovered CSV subgraph contains four different
nodes, one A, edge and two E,. edges of type Del and Inv.
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where type, pos, and weight denote the abnormal alignment type, node po-
sition, and the number of supporting abnormal reads, respectively. For the
edge set, each edge in Ej,. and E, is represented as epe = (vj,v;, p U sr1)
and eqe = (v;, vy, dist), respectively, where v;,v; € V. Specifically, Ep. rep-
resents paired edges from a certain number of supporting read-pairs (rp)
or split-reads (sr). E,e indicates the adjacent edges induced from the refer-
ence genome, connecting two adjacent signal nodes at some distance (dist).
Secondly, Mako applies a pattern growth approach to detect the maximal
subgraphs as potential CSVs at the whole genome-scale. Meanwhile, the
attributes of the subgraph are used to measure the complexity, and CSV
types are determined by the edge connection types of the corresponding
subgraphs (Figure 2.2).

2.2.2 Building signal graph

To create the signal graph, Mako collects abnormally aligned reads that
satisfy one of the following criteria from the alignment file: 1) clipped portion
with minimum 10% size fraction of the overall read length; 2) split reads with
high mapping quality; 3) discordant read-pairs. As a result, one group of
signal nodes is created by clustering clipped-reads or split-reads at the same
position on the genome, which is filtered by weight and the ratio between
weight and the coverage at pos. Another group of signal nodes is derived
from clusters of discordant read-pairs, where the clustering distance is the
estimated average insert size minus two times read length. It should be
noted that a discordant alignment produces two nodes, and Mako separately
clusters discordant alignments with multiple abnormally aligned types, such
as abnormal insert size and incorrect mapping orientation. We adopt the
procedure introduced by Chen [39] to avoid using randomly occurring discor-
dant alignment. Additionally, edges are created alone with the signal nodes,
where multiple types of edges might co-exist between two nodes.

2.2.3 Detecting CSVs with pattern growth

Pattern growth has been widely used in many areas [60, 61, 62, 63, 64, 65],
such as Indel detection in DNA sequences [30, 54]. For CSV detection, the
subgraph pattern starts at a single node and grows by adding one node
each time until it cannot find a proper one (Algorithm I in Figure 2.3).
During graph mining, the subgraph is allowed to grow according to the
increasing order of pos value for each node, and backtracking is only allowed
for nodes involved in the current subgraph. In Algorithm I, we build the
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index-projection while graph mining, where the current graph G is used where
prefix a and their corresponding suffix graphs are used to build the index-
projection G|,. This index-projection contains nodes of coordinates bigger
than its suffix coordinates on the reference genome. Note that pattern growth
via adjacent edges is conditional on the distance constraint (minDist) because
these edges are derived from the reference genome instead of alternatives.
For example, Mako detects the maximal subgraph ACBD by visiting nodes
A, C, B, and D, while the edge between D and E is constrained because of
the larger distance (Figure 2.2).

Input: Signal graph G = (V, E), parameters minFreq, minDist
Output: A set of CSV subgraphs O = {g1,...,gn} with freq(g;) > minFreq

1:  procedure findMazimalSubgraph(G, minFreq, minDist)

2 Initialize freq_types to type frequency of nodes in V; i < 0
3 Build index-projection G|y of G

4 for « in freq_types do

5: Build index-projection G|,

6 if freq(a) > minFreq then

7 11+ 19 ¢ «

8 multiLocPatternGrowth(O, gi, G|, minFreq, minDist)
9: end if

10: end for

11: end procedure

Figure 2.3: Algorithm I: Detect maximal subgraphs.

Given that the signal graph contains millions of nodes at the whole genome
scale, we adopt the “seed-and-extension” [(6, (7] strategy to accelerate
subgraph detection. Moreover, the discovered subgraphs not only differ in
edge connections but also in node type of the subgraph. Therefore, we propose
an algorithm that starts at multiple signal nodes of the same type at the
whole genome scale, while extends locally for subgraph detection (Algorithm
IT in Figure 2.4). The parameter minFreq is used to measure the frequency of
detected subgraphs, and Mako uses minFreq = 1 to avoid missing subgraphs
of rare CSVs or incomplete ones. The detected CSV subgraph provides the
connections between multiple breakpoints of a CSV, and the attributes of
the subgraph are used to measure the complexity of CSVs. Accordingly,
Mako defines the boundary of CSVs using the leftmost and rightmost pos
value of the nodes and utilizes the number of identical node types multiplied
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by the number of E,. edges as a complexity measurement score, CXS. For
example, the discovered CSV subgraph ACBD has a CXS score of 8 due
to four different node types, e.g., A, C, B, and D, and two paired edges
(Figure 2.2, a toy example of executing the algorithm is shown in Figure 1.5).

1:  procedure multiLocPatternGrowth(O, g, G|, minFreq, minDist)
2: Initialize adj_list with adjacent node direct after g through F
3: for node in adj_list do

4: if nodeInRange(g, node) then

5: g <+ g+ node

6: O.append(g')

7 multiLocPatternGrowth(O, ¢', G|y, minFreq, minDist)
8: end if

9: end for

10: end procedure

11: procedure nodelnRange(g,v)

12: Put the nodes in g in increasing order of pos value: v, ..., U
13: v~ vy

14: if freq(v) > minFreq then

15: if dist(v',v) < minDist then

16: return True

17: else

18: for i +— m downto 0 do

19: if 3 epe between v and v; then

20: return True

21: end if

22: end for

23: end if

24: end if

25: return False

26: end procedure

Figure 2.4: Algorithm II: Multi-location subgraph growth.

2.2.4 Performance evaluation

Since CSVs contain multiple breakpoints, we propose two tiers of stringency
for their evaluation, e.g., unique-interval match and all-breakpoint match.
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For a unique-interval match, the correct predicted breakpoints shall be within
500bp distance to the leftmost and rightmost breakpoints of a benchmark
CSV. For the all-breakpoint match initially proposed by Sniffles, the bench-
mark CSV is divided into separate subcomponents, and each of them should
be correctly detected. For a CSV with inversion flanked by two deletions
containing three components, the correct prediction of all breakpoints for
the three components is considered as an all-breakpoint match. Meanwhile,
if only one prediction is close to the leftmost and rightmost breakpoints
of the CSV, this prediction is considered as a unique-interval match. For
simulated CSVs, true positive (TP) is defined as predictions satisfying either
match criterion, while predictions not in the benchmark are false positives
(FP). False negatives (FN) are events in the benchmark set that are not
matched by predictions. Whereas it is usually challenging to measure the
false positives for real data due to the lack of a curated CSV set, we only
consider the number of correct discoveries.

2.2.5 Preparing CSV benchmarks for performance evaluation

In this chapter, we use both simulated and real CSVs to benchmark the perfor-
mance of different callers. We follow the workflow introduced by Sniffles [15]
to create simulated CSVs. Firstly, VISOR [68] is used to create deletion (Del),
inversion (Inv), inverted tandem duplication (Invdup), tandem duplication
(Tandup), and dispersed duplication (Disdup). These events, termed as basic
operations, are implanted and marked on the reference genome GRCh38 to
generate an alternative genome. Secondly, CSVs are created by randomly
adding basic operations to those marked operations, leading to a new genome
harboring CSVs (CSV genome). Meanwhile, the purity parameter of VISOR
is used to produce homozygous and heterozygous CSVs. Afterward, VISOR
generates simulated paired-end reads based on the CSV genome with wgsim
(https://github.com/1h3/wgsim) and aligns them to the reference genome
with BWA-MEM [67]. According to the above-generalized simulation proce-
dures, we create reported CSV types published by previous studies [5, 12]
and randomized CSV types.
In terms of the real data, we are not aware of any public CSV benchmarks
due to the breakpoint complexity and underdeveloped methods [5, 11, 57,
, 70]. Fortunately, PacBio reads could span multiple breakpoints of CSVs,
providing direct evidence to validate CSVs through sequence Dotplot [71].
Thus, we curate the CSV benchmark from a simple SV callset by breakpoint
clustering and manual inspection. For SV clustering, each of them is consid-
ered as an interval, and hierarchical clustering with the average method is
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used to find interval clusters. We then use the threshold that could produce
the most clusters for merging clusters, which could potentially reduce the
number of missed CSVs. Given these simple SV clusters, we apply Gepard
to create Dotplots based on PacBio HiFi reads and manually investigate
each Dotplot. Since CSVs are rare and might appear at the minor allele, we
create Dotplot for each long read that spans the corresponding region.

2.2.6 Orthogonal validation of Mako detected CSVs

To fully characterize Mako’s performance on real data, we use experimental
and computational validation as well as manual inspections of CSVs from
HGO00733. The raw CSV calls from HG00733 are obtained by selecting events
with more than one link type observed in the subgraph. For the experimental
validation, Primer3 (https://github.com/primer3-org/primer3) is used
to design PCR primers, where primers are selected within the extended
distance but 200bp outside of the boundaries of the breakpoints defined by
Mako. BLAT (https://users.soe.ucsc.edu/~kent/) search is performed
at the same time to ensure all primer candidates have only one hit in the
human genome. Afterward, we select amplification products with the expected
product size and bright electrophoretic bands for Sanger sequencing. The
obtained Sanger sequences are aligned against the reference allele of the CSV
site and visualized with Gepard for breakpoint inspection.

As for the computational validation, two orthogonal data obtained from
the Human Genome Structural Variant Consortium (HGSVC) are used,
e.g., Oxford Nanopore sequencing (ONT) and HiFi contigs. We first apply
VaPoR [72] on the ONT reads to validate CSVs, referred to as ONT validation.
Additionally, we apply a k-mer based breakpoint examination based on
haplotype-aware HiFi contigs, from which we calculate the difference between
the k-mer breakpoints and predicted breakpoints.

Furthermore, we manually curate detected CSVs via Dotplots created by
Gepard, which is similar to the procedure of creating the benchmark CSV
for real data. For CSVs at highly repetitive regions, we further validate them
according to specific patterns.

2.2.7 Data availability

The high coverage Illumina data (i.e., short-read data) for NA19240, HG00733
and HG00514 can be obtained from http://ftp.1000genomes.ebi.ac.u
k/voll/ftp/datacollections/hgsvsv_discovery/data/, and the SVelter
callset for NA19240 is available at http://ftp.1000genomes.ebi.ac.u
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2.3. RESULTS

k/voll/ftp/datacollections/hgsvsvdiscovery/working/2016072
8SVelter_UMich/. The PacBio HiFi reads for NA19240, HG00733 and
HGO00514 were obtained from http://ftp.1000genomes.ebi.ac.uk/vo
11/ftp/data_collections/HGSVC2/working/, the HiFi assembly for
HGO00733 is from http://ftp.1000genomes.ebi.ac.uk/voll/ftp/dat
acollections/HGSVC2/working/20200628HHUassembly-resultsCCS_v
12/assemblies/phased/, and the ONT reads for HG00733 are available
at http://ftp.1000genomes.ebi.ac.uk/voll/ftp/datacollections/h
gsvsvdiscovery/working/201812100NT rebasecalled/. Moreover, the
short-read data, long-read data and SV callset for SK-BR-3 can be obtained
from http://labshare.cshl.edu/shares/schatzlab/www-data/skbr3/.

2.3 Results

In this section, we evaluate the performance of detecting CSVs using both
simulated and real data. Moreover, we apply Mako to three samples (i.e.,
HG00514, HG00733 and NA19240), aiming to detect novel CSVs and under-
stand CSV formation mechanisms. The original publication can be found at
https://www.sciencedirect.com/science/article/pii/S16720229210
01431, where related supplementary materials can be downloaded.

2.3.1 Mako effectively characterizes multiple breakpoints of
CSV

The most important feature for a CSV is the presence of multiple breakpoints
in a single event. Thus, we first examined the performance of multiple
breakpoints detection for Mako, Lumpy, Manta, SVelter, TARDIS, and
GRIDSS. The results were evaluated according to the all-breakpoint match
criteria on both reported and randomized CSV-type simulations. Overall, for
the heterozygous (HET) (Figure 2.5A) and homozygous (HOM) (Figure 2.5B)
simulation, Mako was comparable to GRIDSS, and those two methods
outperformed other algorithms. For example, GRIDSS, Mako and Lumpy
detected 50%, 51% and 46% for reported HET CSV breakpoints, while
they reported 53%, 54% and 44% for randomized ones. Because the graph
encoded both multiple breakpoints and their substantial connections for
each CSV, Mako achieved better performance on randomized events, which
included more subcomponents than the reported ones. Indeed, by comparing
reported and randomized simulation, the breakpoint detection sensitivity
(Figure 2.5A, Figure 2.5B) of Mako increased, while that of other algorithms
dropped except for GRIDSS. Although the assembly-based method, GRIDSS,
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is as effective as Mako for breakpoint detection, it lacks a proper procedure
to resolve the connections among breakpoints.
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Figure 2.5: Performance comparison on simulated CSVs with different match
criteria. All-breakpoint match (A and B) and unique-interval match (C-F)
evaluation of selected tools for detecting simulated CSVs. (A) The sensi-
tivity of detecting heterozygous CSVs breakpoints. (B) The sensitivity of
detecting homozygous CSVs breakpoints. The red and purple bar indicates
randomized and reported CSV types, respectively. (C) Evaluation of reported
heterozygous CSV simulation. (D) Evaluation of reported homozygous CSV
simulation. (E) Evaluation of randomized heterozygous CSV simulation. (F)
Evaluation of randomized homozygous CSV simulation. From (C) to (F), the
performance is evaluated by recall (vertical axis), precision (horizontal axis)
and F-score (dotted lines). The right top corner of the plot indicates better
performance. The ¢5-¢30 indicates coverage, e.g., ¢b indicates 5X coverage.
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2.3.2 Mako precisely discovers CSV unique-interval

CSV is considered as a single event consisted of connected breakpoints, and we
have demonstrated that Mako was able to detect CSV breakpoints effectively.
However, the breakpoint detection evaluation only assesses the discovery of
basic components for a CSV and lacks examination for CSV completeness.
We then investigated whether Mako could precisely capture the entire CSV
interval even with missing breakpoints. According to the unique-interval
match criteria, Mako consistently outperformed other algorithms for both
reported and randomly created CSVs, while SVelter and GRIDSS ranked
second and third, respectively.

For the reported CSVs at 30x coverage (Figure 2.5C, Figure 2.5D), the
recall of Mako was 94% and 92%, which was significantly higher than SVelter
(49% and 57%) for both reported HET and HOM CSVs, respectively. Due
to the randomized top-down approach, SVelter was able to discover some
complete CSV events, but it may not explore all possibilities. Remarkably,
we noted that Mako’s sensitivity was even better for randomized simulation
(Figure 2.5E, Figure 2.5F), which was consistent with our previous observation
(Figure 2.5A, Figure 2.5B). In particular, at 30X coverage, Mako detected
203% more HET CSVs than SVelter (Figure 2.5E), probably due to the
complementary graph edges for accurate CSV site discovery.

2.3.3 Performance on real data

We further compared Mako with SVelter, GRIDSS, and TARDIS on whole-
genome sequencing data of NA19240 and SKBR3. Firstly, we compared
the callsets of different callers, and we found that Mako shared most calls
with GRIDSS (Figure 2.6A, Figure 2.6B), which was consistent with our
observation in simulated data (Figure 2.5). Furthermore, we examined the
discovery completeness of 59 (NA19240) and 21 (SKBR3) benchmark CSVs
(Table 2.1). Because Manta and Lumpy contributed to the CSV benchmark
sets, they were excluded from the comparison. The results showed that Mako
performed the best for the two benchmarks with different CXS thresholds,
while TARDIS ranked second (Figure 2.6C). Given that inverted duplication
and dispersed duplication dominated the benchmark set and that TARDIS
has designed specific models for these two types, TARDIS detected more
events of these two duplication types than SVelter and GRIDSS. SVelter
only detected three benchmark CSVs for SKBR3 because the randomized
approach may not explore all combinations of CSVs. Based on the above
observation, we concluded that the graph-based model-free strategy of Mako
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performed better than that of either randomized model (SVelter) or specific
model (TARDIS) with few computational resources.

A Venn-diagram of NA19240 callsets B Venn-diagram of SKBR3 callsets C  Detecting CSV from real samples

100%

SVelter GRIDSS

Mako cumulative sensitivity thresholds
N CXS28 WM CXS24
BN CXS26 CXxs22

75%

SKBR3
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g

GRIDSS SVelter TARDIS
Method

TARDIS MergedSet

Figure 2.6: Overview of performance on NA19240 and SKBR3 for Mako,
GRIDSS, SVelter and TARDIS. (A) Venn diagram of NA19240 callsets.
(B) Venn diagram of SKBR3 callsets. The Venn diagrams are created
by 50% reciprocal overlap via a publicly available tool Intervene with
‘~-bedtools-options’ enabled. The MergedSet is obtained from the original
publication. (C) The percentage of completely and uniquely discovered CSVs
from the NA19240 and SKBR3, respectively. The results of Mako are shown
according to different CXS thresholds.

2.3.4 CSV subgraph illustrates breakpoints connections

Having demonstrated the performance of Mako on simulated and real data, we
surveyed the landscape of CSVs from three individual genomes. Specifically,
CSVs from autosomes were selected from Mako’s callset with more than one
edge connection type observed in the subgraph, leading to 403, 609, and 556
events for HG00514, HG00733, and NA19240, respectively (Figure 2.7A).
We systematically evaluated all CSV events in HG00733 via experimental
and computational validation as well as manual inspection. For experimental
validation, we successfully designed primers for 107 CSVs, where 15 out of 21
(71%, Table 2.2) were successfully amplified and validated by Sanger sequenc-
ing. The computational validation showed up to 87% accuracy, indicating a
combination of methods and external data is necessary for comprehensive
CSV validation. Further analysis showed that the medians of breakpoint
shift were 13bp and 26bp compare to breakpoints given by experimental and
computational evaluation. We observed that approximately 54% of CSVs
were found in either STR or VNTR regions, contributing to 75% of all events
inside the repetitive regions (Figure 2.7A). For the connection types, more
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Type NA19240 | SKBR3 | Description

disDup 15 12 Dispersed duplication

invDup 18 - Inverted duplication

delINV 7 ) Deletion associated with inversion

delDisDup 5 1 Deletion associated with dispersed
duplication

dellnvDup 1 - Deletion associated with inverted
duplication

disDupInvDup 2 2 Dispersed duplication with
inverted duplication

insINV 1 - Insertion associated with inversion

tanTrans 1 - Adjacent segments swap

delSapDel 8 1 Two deletions with inverted or
non-inverted spacer

tanDisDup 1 - Tandem dispersed duplications

Table 2.1: Summary of benchmark CSVs. The CSV type abbreviations and
their corresponding descriptions are also listed.

than half of the events contain Dup and Ins edges in the graph, indicating
duplication involved sequence insertion. Moreover, around 40% of the events
contain Del edges (Figure 2.7B), showing two distant segment connections
derived from either duplication or inversion events.

We further examined whether the CSV subgraph depicts the connections
for each CSV via discordant read-pairs. Interestingly, we observed two rep-
resentative events with four breakpoints at chr6:128,961,308-128,962,212
(Figure 2.7C) and chr5:151,511,018-151,516,780 (Figure 2.7D) from NA19240
and SKBR3, respectively. Both events were correctly detected by Mako, but
missed by SVelter and reported more than once by GRIDSS and TARDIS. In
particular, the CSV at chr6:128,961,308-128,962,212 that consists of two dele-
tions and an inverted spacer was reported twice and five times by GRIDSS
and TARDIS. The event at chromosome 5 that consists of deletion and
dispersed duplication was reported four and three times by GRDISS and
TARDIS. These redundant predictions complicate and mislead downstream
functional annotations. On the contrary, Mako was able to completely detect
the above two CSV events and also capable of revealing the breakpoint
connections of CSVs encoded in the subgraphs. The above observations
suggested that Mako’s subgraph representation is interpretable, so that we
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can characterize the breakpoint connections for a given CSV event.
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Figure 2.7: Two representative CSV subgraphs identified by Mako. The top
panel of (A) and (B) are IGV views of the two events, and the alignments
are grouped by read-pair orientation. The dark blue shows reverse-reverse
alignments, light blue represents forward-forward alignments, green represents
reverse-forward alignments, and red indicates the alignment of large insert
size. The bottom panels of (A) and (B) are subgraph structures discovered by
Mako. The colored circles and solid lines are nodes and edges in the subgraph.
(C) The alignment model of deletions with inverted spacer. (D) The alignment
model of deletion associated with dispersed duplication. In (C) and (D),
short arrows are paired-end reads that span breakpoint junctions, and their
alignments are shown on the reference genome with the corresponding ID
in the circle. Note that a single ID may have more than one corresponding
abnormal alignment type on the reference.
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Validation Strategy \ Total \ Valid \ Invalid \ Inconclusive
Experimental 21 15 (71%) | 6 (29%) -

(PCR succeeded)
ONT reads 256 (42%) | - 353 (58%)
HiFi contig 609 | 414 (68%) | 191 (32%) | -
ONT reads or 544 (87%) | 76 (13%) | -

HiFi contig
Manual HiFi reads | 609 | 440 (72%) | 169 (28%) | -

Table 2.2: Summary of experimental and computational validation as well as
manual inspection for CSVs.

2.3.5 Contribution of homology sequence in CSV formation

Given 1,568 detected CSVs from three genomes, we further investigated the
formation mechanisms of these CSVs. Ongoing studies have revealed that
inaccurate DNA repair and the 2-33bp long microhomology sequence at
breakpoint junctions play an important role in CSV formation [14, 73, 74,
, 76].

To further characterize CSVs’ internal structure and examine the impact
of homology sequence on CSV formation, we manually reconstructed 1,052
high-confident CSV calls given by Mako (252/403 from HG00514, 440/609
from HGO00733, and 360/556 from NA19240) via Dotplots created by PacBio
HiFi reads (Figure 2.8A). The percentage of successfully reconstructed events
was similar to the orthogonal validation rate, showing CSVs detected by
Mako were accurate, and the validation method was effective. The high-
confident CSV callset contains 816 InsDup events with both insertion and
duplication edge connections. Further investigation revealed that these events
contain irregular repeat sequence expansion, making them different from
simple insertion or duplications. Besides, we found two novel types, which
were named adjacent segments swap and tandem dispersed duplication
(Figure 2.8B). We inferred that homology sequence mediated inaccuracy
replication was the major cause for these two types.

Furthermore, we observed that 134 CSVs contain either inverted or dis-
persed duplications. These CSVs containing duplications were mainly caused
by microhomology mediated break-induced replication (MMBIR) according
to previous studies [14, 74, 77]. It was known that different homology patterns
cause distinct CSV types (Figure 2.8C, Figure 2.8D). Surprisingly, one partic-
ular pattern of homology sequence yielded multiple CSV types (Figure 2.8E).
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Figure 2.8: Overview of Mako’s CSV discoveries from three healthy samples
and proposed CSV formation mechanisms. (A) Summary of discovered CSV
types, these types are reconstructed by HiFi PacBio reads, where a type with
fewer than 10 events was summarized as RareType. (B) Diagrams of two
novel and rare CSV types discovered by Mako. In particular, Mako finds three
events of adjacent segments swap and only one tandem dispersed duplication.
(C-E) Different replication diagrams explain the impact of homology pattern
for MMBIR produced CSVs. In these diagrams, sequence abc has been
replicated before the replication fork collapse (flash symbol). The single-
strand DNA at the DNA double-strand break (DSB) starts searching for
homology sequence (purple and green triangle) to repair. The above procedure
is explicitly explained as a replication graph, from which nodes are homology
sequences, and edges keep track of the template switch (dotted arrow lines)
as well as the normal replication at different strands (red lines). If there are
two red lines between two nodes, the sequence between these two nodes will
be replicated twice, as shown in (D).
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In particular situations of the three different homology patterns, DNA double
strand break (DSB) occurred after replication of the ¢ fragment. According
to the MMBIR mechanism and template switch [53, 74, 75, 76], the pattern
I (Figure 2.8C) and pattern II (Figure 2.8D) yield one output, but pattern
IIT (Figure 2.8E) produces three different outcomes. The results provided
additional evidence for understanding the impact of sequence contents on
DNA DSB repair, leading to a better understanding of diversity variants
produced by CRISPR [78, 79].

2.4 Conclusion

Currently, short-read sequencing is significantly reduced in cost and has been
applied to clinical diagnostics and large cohort studies [18, 80, 81]. However,
CSVs from short-read data are not fully explored due to the methodology
limitations. Though long-read sequencing technologies bring us promising
opportunities to characterize CSVs [18, 45, 16], their application is currently
limited to small-scale projects, and the methods for CSV discovery are also
underdeveloped. As far as we know, ngmlr combined with Sniffles is the
only pipeline that utilizes the model-match strategy to discover two specific
forms of CSVs, namely deletion-inversion and inverted duplication. Therefore,
there is a strong demand in the genomic community to develop effective
and efficient algorithms to detect CSV using short-read data. It should
be noted that CSV breakpoints might come from either single haplotype
or different haplotypes, where two simple SVs from different haplotypes
lead to false positives. This may increase the false discovery rate due to a
lack of haplotype information. Therefore, the combination of short-read and
long-read sequencing might improve CSV discovery and characterization.

To sum up, we developed Mako, utilizing the graph-based pattern growth
approach, for CSV discovery with 70% accuracy and 20bp median breakpoint
shift. To the best of our knowledge, Mako is the first algorithm that utilizes
the bottom-up guided model-free strategy for SV discovery, avoiding the
complicated model and match procedures. Given the fact that CSVs are
largely unexplored, Mako presents opportunities to broaden our knowledge
of genome evolution and disease progression.
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Chapter 3

SVision: A deep learning
approach to resolve complex
structural variants

Abstract Complex structural variants (CSVs) encompass multiple breakpoints and
are often missed or misinterpreted by state-of-the-art long-read variant detection
algorithms. As an increasing number of CSVs have been revealed through intensive
breakpoint analysis and visual confirmation, there is an urgent demand of novel algo-
rithms for detecting and characterizing CSVs at scale for future clinical applications.
In this chapter, we develop SVision, a deep-learning based multi-object recognition
framework, to automatically detect and characterize both simple and complex SVs
from sequence image. SVision consists of three major modules: 1) an encoder that
codes the differences and similarities between variant feature sequence and reference
sequence as a denoised image; 2) a targeted multi-object recognition framework that
detects and characterizes CSVs via a convolutional neural network in the denoised
image; and 3) an illustrator that creates and unifies the detected CSV as a graph
representation. Comprehensive evaluations on both simulated and real datasets
reveal that SVision outperformed other algorithm and could accurately detect and
characterize CSVs. Moreover, SVision resolved 80 CSVs with 25 distinct structures
from an individual genome, from which we found CSVs disrupting important neural
development genes and CSVs revealing the ancestral state of the human genome.

The SVision program (v1.3.6) and trained model are available at GitHub (https:

//github.com/xjtu-omics/SVision).
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3.1 Introduction

Complex structural variants (CSVs) contain multiple breakpoints and may
delete, duplicate, and/or invert multiple segments of DNA, creating events
that are both larger and more likely to be deleterious than simple structural
variants [12, 82]. For instance, in 2015, by integrating short- and long-read
sequencing, the 1000 Genomes Project (IKGP) revealed that 6% of deletions
and 80% of inversions in NA12878 were complex events [5]. In 2020, the
Pan-Cancer Analysis of Whole Genomes Consortium uncovered 22 out of
31 histology groups containing 10 to 1,000 complex breakpoints per sample
through short-read sequencing of 2,658 cancer samples [0].

Previous short-read-based approaches to CSV detection require intensive
breakpoint analysis and subsequent manual inspections with complementary
data [ 1]. Even though long-reads have greatly facilitated phased structural
variation (SV) detection [10], three major issues have impeded their usage in
CSV detection. Firstly, the model-based inference approach, initially designed
for simple SV discovery from short-read [1], requires the construction of each
SV model for fitting aberrant alignment patterns and prohibits effective
discovery of largely unexplored CSV structures [3, 18]. Secondly, ambiguous
alignments at repetitive regions complicate SV discovery, leading to false
calls or missing events. Lastly, the current subjective definition of CSV
types based on predefined models lacks a unified and computer-interpretable
framework [12], hindering cross-study comparison of CSVs.

In Section 3.2, materials and related methods are described in details.
Moreover, results are discussed in Section 3.3 and conclusions are drawn in
Section 3.4.

3.2 Material and methods

This section introduces the workflow of SVision and provide detailed descrip-
tion of SVision’s three major components. Moreover, related methods, such
as performance evaluation, CSV analysis, etc., are described in details.

3.2.1 Overview of SVision

SVision begins by encoding pairs of sequences, a given read and its counterpart
in reference genome, as an image showing sequence similarity and difference
adapting variant detection to a multi-object recognition problem amenable
to an existing deep learning framework. SVision is composed of three core
components: an encoder that represents the differences and similarities
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between a variant supporting read and its corresponding segment in the
reference genome as a denoised image, a targeted multi-object recognition
(tMOR) framework that detects and characterizes CSVs via a convolutional
neural network (CNN) in the denoised image, and an illustrator that creates
and unifies each detected CSV as a graph representation from the denoised
image (Figure 3.1A).

To generate a denoised image, the encoder first collects aberrant long-read
alignments, the so-called variant feature sequence (VAR), and its aligned
segment on the reference genome, referred to as reference sequence (REF).
For a VAR, the encoder identifies matched and unmatched bases, from which
the matched and the locally realigned unmatched sequences are combined to
create VAR-to-REF and REF-to-REF images (Figure 3.1B). Since the repet-
itive sequences are present in both variant feature and reference sequences,
the variant signature can be isolated and accentuated when the reference
background is removed. Thus, a denoised image is created for each feature
sequence by subtracting the REF-to-REF image from its corresponding
VAR-to-REF image, which reduces false calls introduced by repeats.

In the tMOR step, since a denoised image might contain more than
one SV, SVision uses a two-step image segmentation process to first obtain
a one-variant image, containing the full structure of a SV. Then, SVision
defines each location surrounding a breakpoint in the one-variant image as a
Segment of Interest (SOI), and SOIs that are collected from a one-variant
image are recognized as a single CSV through a pre-trained CNN.

The third component of SVision, illustrator, adopts a graph-based ap-
proach to depict different CSV structures. A given CSV graph structure and
its topologically equivalent events are combined through detection of isomor-
phic graphs. Additionally, SVision reports the CSV graph in the Reference
Graphical Fragment Assembly (rGFA) format introduced by MiniGraph [29].
Finally, SVision clusters similar one-variant images that supports an event
and integrates CNN prediction probability of each one-variant image and
similarity across one-variant images in a cluster to measure confidence of an
event.

3.2.2 Three-channel coding of sequence

SVision takes the sequence alignment file in BAM format and reference file as
input. The encoder consists of two major steps, i.e., variant feature sequence
selection and sequence coding. Variant feature sequences are directly identified
from long-read aberrant alignments containing SV signatures, such as inter-
read and intra-read alignments. Intra-read alignments are derived from
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Figure 3.1: Overview of SVision. (A) Overview of the SVision workflow. (B)
Details of three major modules implemented in SVision.
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reads spanning the entire SV locus, while inter-read alignments are obtained
from reads that are aligned to larger SV event, resulting in supplementary
alignments. SVision identifies additional SV signatures by applying a k-mer
based realignment approach for unmapped segment in feature sequence,
such as ‘I’s from CIGAR string and gap sequence obtained from inter-read
alignments. Then, sequence differences and similarities derived from matched
and unmatched segments between variant feature sequence (VAR) and its
corresponding segment on the reference genome (referred to as REF) is coded
as an image.

The image contains three channels, including (0, 0, 255), (0, 255, 0),
and (255, 0, 0), to code the matched, the duplicated and the inverted
segments, respectively. Given the three-channel image, SVision first creates
the REF-to-REF image through k-mer realignment. As for VAR-to-REF
image, matched segments obtained from CIGAR string and supplementary
alignments, originating from the aligner’s outputs, are directly used for
image coding to reduce computational cost, and realignment results are
further added to complete image coding. The denoised image is obtained by
subtracting the REF-to-REF image from the VAR-to-REF image. Because
the background originates from reference sequence context, the encoder
subtracts the segments of two images based on the REF sequence coordinates.
Specifically, if segments from two images overlap on the reference dimension
and their difference is larger than 50bp (minimum SV report size), the
encoder keeps the non-overlapping part of the segment in the similarity
image, where its coordinates are determined by the VAR-to-REF image.
Finally, the denoised image of each variant feature sequence is created and
saved as matrix along with segment information tables for further processing.

3.2.3 Detecting CSVs from denoised images via tMOR

In principle, for each denoised image, the regions where VAR and REF
are identical must be a straight line while SVs introduce discontinuous
segments. These discontinuous segments indicating putative variants and
their breakpoints in the denoised image are surrounded by segment signatures,
which are considered as breakpoint object and further defined as Segment
of Interest (SOI). Since long reads are likely to span more than one variant
in the denoised image, the tMOR contains a two-step image segmentation
process for further SOI recognition. Specifically, the tMOR first obtains a
so-called one-variant image, from the denoised image based on the following
steps.:

1. Sorting and tagging. We sort all segments in the denoised image by
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their positions on read in ascending order. Then, the major segment
is defined according to the matched segments derived from CIGAR
operations, while the minor segment should meet one of the following
conditions:

e Condition 1: the segment is derived from the hash-table based
realignment.

e Condition 2: the segment is inverted compared to the reference
genome.

e Condition 3: the segment is totally covered by another one.

2. Creating one-variant image. SVision partitions the denoised image into
several one-variant images via sequential combination of the major
segments. Specifically, each major segment and its neighboring major
segment along with the minor segments (if they exist) between them
are used to create a one-variant image.

Afterwards, SVision clusters similar one-variant images by measuring the
distance of segment signatures between one-variant images. Thus, one-variant
images in a cluster supports the same variant, and the size of a cluster
is termed as the number of variant supporting image. Secondly, SVision
collects SOIs from each one-variant image. Unlike traditional multi-object
recognition that uses complex algorithms to select regions of interest, the
segment signatures in the one-variant image enable efficient SOI identification
by sequentially combining both major and minor segments. Then, SOIs are
used as input for CNN prediction, and the interpreted SV types are given by
the labels involved in the training set, including deletion (DEL), inversion
(INV), insertion (INS), duplication (DUP) and tandem duplication (tDUP).
The CNN assigns the probability score to assess the existence of variant
subcomponents in the one-variant image.

3.2.4 Creating CSV graphs from denoised images

SVision uses a graph to unify the definition of different CSV types and
provides a computational method to compare different CSV graph structures.
To create a CSV graph G = (V, E), SVision first collects the node set V =
Vs U Vi UVp of G. Specifically, Vs = {S1,S2,...,S.}, Vi={l1,1s,...,In}
and Vp = {D1, Dy, ..., Dy}, where n, m and k are the number of skeleton
nodes, insertion nodes and duplication nodes in the graph, respectively.
Skeleton nodes are derived from major segments in a one-variant image and
sequence between discontinuous major segments on REF (i.e., concordant
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segments between VAR and REF). Insertion nodes consist of minor segments
in the one-variant image, while insertion nodes with known origins are
defined as duplication nodes, representing duplicated segments in the one-
variant image. Moreover, each node v; € V is represented as a tuple v; =
(Seq, M athitPos, Strand), which represents a segment in the one-variant
image. Here Seq indicates the segment sequence, Pos is the position of the
segment on VAR and Strand represents the forward or reverse strand of the
segment. The edges in G are collected by E = FqqU Egy,. Here Eyq represents
a set of adjacency edges eid = (vj,vj41), connecting two adjacent nodes v;
and vj;1, and Eg, represents a set of duplication edges eg,, connecting the
duplicated node with its known origin.

Given a graph G, a CSV could be interpreted by visiting each node
through the F,q edges. Assume the CSV path is given as “S1+S3-S3-S4+",
where '+’ or -’ indicates the direction of visiting a specific node, i.e., node
Strand. Specifically, node S1 and S4 are visited in forward direction (+), while
S3 is visited in reverse direction (-), so that the path should be “S14S1+S3-
S3-S4+S4+". But for simplicity, only the intermediate nodes, such as S3, are
kept twice, whereas the start node (S1) and the end node (S4) are used once
in the path.

Determining the isomorphism of two graphs G; = (Vi, E1) and Gy =
(Va, E3) is a NP-hard problem, but the ordered nodes based on the reference
simplifies this problem. Therefore, SVision first compares the numbers of
edges and nodes between two graphs GG; and G2, which are considered as
different if either number is different. On the other hand, if graph G and G»
have topologically identical path in addition to the same numbers of nodes
and edges, they are isomorphic CSV graphs, i.e., G1 = G». If graph G; and
(G5 have the same number of nodes and edges but differ in paths, we further
examine whether G and G2 share symmetric topology, since a variant might
be identified on either forward or minus strand, i.e., from 5’ to 3’ or from
3’ to 5. In particular, we create a mirror graph G} of the original graph
G1, and obtain a new path from G}. Similarly we also create G from Gs.
Then, we cross compare whether the paths between G} and Go as well as
between G5, and G are topologically identical. We consider G; and G to
be isomorphic if both comparisons are equal.

SVision keeps isomorphic graphs and symmetric graphs in two separate
files, enabling search of CSV events of the same structure. For each variant
call, SVision keeps all its breakpoints in the “BKPS” column in the INFO
field and a type (“SVTYPE” column). Especially for CSVs, their breakpoints
are kept with both coordinates and associated graph structure in the “BKPS”
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and “GraphID” column, respectively. Note that the “GraphlD” is used to
search events of a specific graph structure in isomorphic and symmetric
graph output files. Moreover, SVision involves the graph breakpoints induced
from the CSV Reference Graphical Fragment Assembly (rGFA) file in the
“GraphBRPKS” column. Note that the “GraphID” and “GraphBRPKS”
columns are only reported when the parameter '~-graph’ and '--qname’ are
activated.

3.2.5 Quality score of discoveries

SVision uses a score function to measure the quality of each discovery based
on consistency and prediction reliability derived from one-variant image
clusters:

e One-variant image consistency. Intuitively, the non-linear segments in
a given one-variant image indicate potential differences between REF
and VAR. We thus first compute the non-linear score for all images that
support each event, i.e., one-variant images originating from a variant
feature sequence cluster. The non-linear score of a one-variant image is
calculated by its segments coordinates and lengths. Specifically, for a
one-variant image with segments:

ok |k.refmia — k.readpia| X k.length
RefSpan

nonlinear_score; —

where the summation is over all segments k in image i, k.ref;q and
k.readniq are the center of segment k on reference and read, respec-
tively, and k.length is the length of segment k. Then we normalize
the summation by dividing by RefSpan, which denotes the distance
between the leftmost and rightmost coordinates of the one-variant
image. Finally, for a SV of M supporting images, we calculate the
consistency score with the following equation:

Std({nonlinear_scorey, . .., nonlinear_score s })
M

Consistency =

Here Std denotes standard deviation. Accordingly, we expect a smaller
consistency value for high-quality SV predictions.

e Prediction reliability. This part evaluates the deep learning prediction
quality. The last layer in the CNN architecture is a SoftMax layer,
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which outputs the probability of the prediction results. Therefore, we
use the average probability of all SOIs as the CNN reliability:

> s s.softmax x 100
#S0Is

Reliability =

where the summation is over all SOIs in a one-variant image. The
reliability will range from 0 to 100 because the SoftMax probabilities

always range from 0 to 1. We expect higher reliability values for accurate
SVs.

Finally, we sum up the two features and normalize it to range from 0 to 100:

qual = Consistency + (1 — Reliability)

and
Normalized_score = <1 - sum(Scores) — ml.n(ScoreS)> x 100
max(Scores) — min(Scores)
where Scores = {qualy, ..., qualy;}, and M is again the total number of

images supporting this variant.

3.2.6 Training data and CNN model training

The CNN model in SVision is trained with both real and simulated simple
SVs of DEL, INV, INS, DUP and tDUP, to avoid usually unbalanced numbers
of SV types in real data. We obtained real SVs from NA19240 (4,282) and
HGO00514 (3,682) by selecting calls supported by both PacBio CLR reads
and Ilumina reads [9]. In this integrated real SV set, we labeled SVs with
the above-mentioned five rearrangement types. We further used VISOR to
simulate SV events with the parameters '-n 4000 -r 20:20:20:20:20 -1
1000 -s 500’, and simulated the PacBio CLR reads. For all training SVs,
their one-variant images and SOls are created as we described in the above
sections, leading to 75,000 SOIs (15,000 per type) in total, where 50% SOIs
are from real events. These SOIs are shuffled for further CNN model training.

SVision adopts AlexNet, a widely-used CNN model, to recognize sequence
differences in similarity images. The AlexNet architecture consists of five
convolutional layers and three fully-connected layers. Specifically, the first
convolution layer loads images of size 224 x 224 x 3, and it uses the 11 x 11 x 3
convolution kernel with stride 4. The last three layers are fully connected
and contains a five-class SoftMax layer with inputs from the five preceding
convolution layers. In the end, the input SOIs are detected as either INS,
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DEL, INV, DUP, tDUP or mixed types for CSVs. We apply the idea of
transfer learning to train CNN with 75,000 SOIs. First, the parameters of all
layers in the CNN are initialized to the best parameter set that was achieved
on the ImageNet competition. Afterwards, we fine-tune the parameters of
the last three fully-connected layers on our data using back propagation and
gradient descent optimization with a learning rate of 0.001. The loss function
is defined as the cross entropy between predicted probability and the true
class labels. Moreover, SVision’s CNN architecture is lightweight and has
far fewer layers than complex CNN models such as ResNet and Inception
V3, which results in a highly efficient fine-tuning process with large batch
size (default: 128) even on a single CPU machine. To evaluate the trained
CNN model, we apply ten-fold cross validation, and the trained model at
each round is applied to an independent test set of 7,500 SOIs derived from
simulated SVs. Finally, SVision selects the model with the best performance.

3.2.7 Evaluating simple structural variants detection with
real data

To benchmark the performance on HG002, we follow the procedure introduced
by Genome-In-A-Bottle (GIAB), which has also been used by CuteSV. Briefly,
the high confidence insertion and deletion calls and high confidence regions
published by the GIAB consortium are used as ground truth. The HiFi reads
are aligned to reference hgl9 by pbmm2 (https://github.com/Pacific
Biosciences/pbmm2, v1.4.0) with parameter '~-preset CCS’, while ONT
reads are aligned with pbmm?2 default settings. The 5X and 10X coverage of
HiFi and ONT data were further obtained with SAMtools [20] ’-s’ option.
Sniffles (v1.0.12), CuteSV (v1.0.10), pbsv (v2.2.2), SVision (v1.3.6) and SVIM
(v1.4.0) were applied to the pbmm?2 aligned file with default parameters.
The minimum supporting read was 2 and 3 for 5X and 10X data, while 10
was used for the original coverage. Moreover, the HiFi data of NA12878 was
aligned to reference GRCh38 with minimap2 default settings, of which all
callers were applied to detect SVs. To examine recall and precision, raw
SV calls supported by at least five reads were used to compare with PAV
calls. A correct detection (TP) should pass the 50% reciprocal overlap, while
others were considered as false detections (FN). Then, the recall, precision
and F-score are calculated as follows:

brocicion _ TP
recision = TP + P
TP
l= ————
Reca TP + TN
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2 x Precision x Recall
F-score =

Precision + Recall

Note that TP 4+ FP is the total number of SVs detected by each caller, and
TP + FN is the total number of SVs in the benchmark set.

3.2.8 Evaluating complex structural variant detection

First of all, the 10 simulated complex structural variant (CSV) types were
derived from types reported by the 1000 Genomes Project (1IKGP) [5] and a
cohort study of autism spectrum disorder (ASD) [12]. The 1IKGP reported
CSV types included 'Ins and Del’, 'Ins with Dup and Del’, ’Ins with MultiDup
and Del’, 'MultiDel with Inverted or non-inverted spacer’, ’Inv and Del” and
'Tnverted Dup’, were classified and combined to three basic CSV types (BCT).
Specifically, ’Inverted Dup’, labeled as BCT-ID1, was used to produce CSV
types ID1 and ID2. 'MultiDel with Inverted or non-inverted spacer’ and ’Inv
and Del’ (BCT-ID2) are simulated as ID4. Moreover, 'Ins and Del’, 'Ins with
Dup and Del’ and 'Ins with MultiDup and Del” were considered as one type
(BCT-ID3) but of different insertion sequence, which were used to produce
ID5, ID6, ID7 and IDS.

Secondly, we expanded the simulated CSV types by introducing the study
of ASD. In this research, we noticed that reported CSV types ’delINV’,
'INVdel” and ’delINVdel’ could be classified to BCT-ID2, and ’dupINV’,
'INVdup’, "dupINVdup’ and "IR’ were considered as BCT-ID1. BCT-ID3 was
found as 'INSdel’, ’cpdINSdel’, ’"dupINVdel’, ’delINVdup’ and ’dDUPdel’.
Specifically, 'delINVdup’ was simulated as ID5 and ID8, while ’"dDUPdel’
was simulated as ID6 and ID7. We also simulate ’7dDUP’, the dispersed
duplication, as ID3, which was not included in 1000GP. In addition, we
produced two novel types ID9 and ID10 by combining BCT-ID2 and BCT-
ID3, where direct and inverted repeats were added to the deletion associated
with inversion events.

In terms of simulation, a CSV was essentially the combination of break-
points from simple structural variants (SSV), which were also termed as
nested events. The simulation process contained four major steps. VISOR [23]
was first used to simulate five simple SV (SSV) types (deletion, inverted
dispersed duplication, inverted tandem duplication, tandem duplication and
dispersed duplication), which were randomly implanted on reference genome
GRCh38. Secondly, we followed the procedure introduced by Sniffles to sim-
ulate CSVs, where SSVs of the above five types were randomly added to the
flanking regions of the existing SSVs implanted by VISOR in the first step.
Accordingly, 3,000 SSV of five types were created by VISOR with parameters
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'-n 3000 -r 20:20:20:20:20 -1 500 -s 150’. Then, we added extra vari-
ants required in predefined CSV types to existing SSVs by following the type
order deletion, inverted dispersed duplication, inverted tandem duplication,
tandem duplication and dispsersed duplication. For instance, we first used
deletions as seeds to create all deletion involved CSV instances, and turned to
instances of the next type until deletions were all used. Finally, the variation
genome with CSVs was used as input for the VISOR LASoR module to
simulate 30X HiFi reads and further aligned with ngmlr [18] (v0.2.7) default
settings. Note that VISOR is only used to simulate variants at one haplotype
in this chapter.

To examine the correctness of detected CSVs, we used closeness and size
similarity to assess whether two events are identical according to Truvari (ht
tps://github.com/spiralgenetics/truvari/) introduced by GIAB. The
closeness bpDist and size similarity sim between prediction and benchmark
were 500bp and 0.7, respectively. Moreover, we only considered predictions
with at least 10 support reads for the CSV performance comparison. For
example, assume a particular benchmark CSV [b.start, b.end, b.size], and a
prediction [p.start, p.end, p.size]; then a correct region-match should satisfy
the following equations:

max(|b.start — p.start|, |b.end — p.end| < bpDist

and
b.size x sim < p.size < b.size x (2 — sim)

Comparably, the exact-match not only required region-match but also re-
quired the correct detection of all subcomponents of the CSV, including
the subcomponent breakpoint type. Therefore, for a deletion-inversion that
contained two subcomponents, e.g., INV and DEL, the exact-match becomes
a three-step evaluation:

1. Region-match between predicted CSV and benchmark deletion-inversion
event.

2. For each subcomponent, we examine the breakpoint closeness and event
size as well as the detected type.

3. The correct detection should pass condition 1) and 2). The subcom-
ponent match is considered as either deletion or inversion correctly
detected in 2).

In this study, we only considered INS, DEL, DUP and INV as subcomponent
types in the evaluation. Any benchmark CSVs without a matched prediction
were counted as false negatives.
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In addition, we used CSVs from NA12878 to assess the performance of
SVision. The CSV set of NA12878 was obtained from the 1000 Genomes
Project (1IKGP) publication [5], including events from the supplementary
tables 12 and 15 in the original publication, containing 62 and 251 CSV
sites in hgl9 coordinates, respectively. Based on the latest HiFi sequencing
of NA12878 released by Human Genome Structural Variants Consortium
(HGSVC) [10], we aligned HiFi reads with ngmlr (v0.2.7) default settings
and manually inspected the Dotplot of every read that overlaps with the
CSV site. Briefly, SAMtools and Gepard [34] were used to extract HiFi reads
and generate Dotplot, respectively. Afterwards, SVision was applied to the
ngmlr (v0.2.7) alignment for CSV discovery with default settings.

3.2.9 Analysis and validation of high-quality CSVs detected
from HG00733

SVision was run under the default setting except parameters '~s 5 --graph
—--gname’. The HiFi reads of HG00733 were aligned to reference GRCh38
by ngmlr (v0.2.7) with the default setting. Firstly, the events detected by
SVsion at low mapping quality regions, centromeres, genome gap regions,
etc., were excluded from analysis. These regions were obtained from https:
//github.com/mills-lab/svelter/tree/master/Support/GRCh38 and
the UCSC genome centromere for reference GRCh38. Then, we applied the
following steps to filter CSVs from the raw callset:

1. Filtering CSVs of length larger than 100kbp;

2. Filtering CSVs without complete graph representation, where the path
ends with other node types instead of 'S’ and

3. For multiple CSVs at one site, we only kept the one with the largest
number of supporting reads.

SVision revealed two special complex structures, i.e., a structure consisting
of nodes ’'S:2,1:2,D:1’ and path S1+I11+11+I12412+S2+" as well as another
structure consisting of nodes ’S:2,1:1,D:1” and path ’S1+I11+11+S2+’, which
were visually confirmed as local targeted site duplication and tandem du-
plication. Events of these two structures were also filtered because they
were considered as simple events from biological perspective. Afterwards, we
used RepeatMasker and tandem repeat finder (TRF) annotated files from
UCSC genome browser to annotate the CSVs passed the filters through BED-
tools [85] intersect option. The repeat type was assigned if the CSV region
overlaps with the repeat element, while the size or percentage of overlaps was
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not required. For CSVs with multiple repeat types, the one with the largest
overlapping region with the CSV was chosen. Meanwhile, CSV was annotated
as STR if the repeat unit length <7bp; otherwise, it was annotated as VNTR.
Finally, we termed all CSVs outside of VNTR/STR regions as high-quality
CSVs, which were further validated and used for further analysis. The PAV
and short-read data matched CSV loci were obtained through BEDtools
without requiring overlap size. For the short-read data, a matched CSV locus
was considered as completely reconstructed if both breakpoint positions and
types matched what SVision reported, otherwise as partially reconstructed
events if either breakpoints or types agreed with SVision’s prediction.

The PAV merged call set from 35 haplotype-resolved samples was used to
explore the frequency of CSV on CNTN5. In addition, the RNA-Seq data of
precuneus and primary visual cortex from both control and disease samples
were obtained from a recent study of Alzheimer’s disease [¢6] to understand
the potential functional impact of CSV on CNTN5. The paired-end RNA
data was aligned with hisat2 default setting, from which the duplicated exon
signature could be observed from discordant read-pairs alignment, i.e., read-
pair aligned in reverse and forward direction. The insertion-inversion-insertion
event at chr9:74,283,222-74,283,473 detected by SVision, it was reported as
insertion of variant id chr9-74283228-INS-1797 by a recent study conducted
by HGSVC]10]. The insertional sequence was extracted from HiFi assembly
and Blast against several primate genomes. Moreover, the assemblies of
chimpanzee and gorilla were mapped to GRCh38 with minimap2 and called
variant with PAV, from which the same insertion event was identified.

We validated 80 CSVs detected by SVision in HG00733 via 1) graph-
based alignment; 2) contig-based visual confirmation; and 3) PCR and Sanger
sequencing:

Graph-based alignment. For each CSV graph in rGFA format, we extracted
the CSV locus spanning reads with SAMtools and aligned these reads to
each CSV graph via GraphAligner (v1.0.12) with the default setting. A
CSV was successfully validated if a single ONT read could be aligned to the
corresponding variant path specified in the rGFA file. We then counted the
number of long reads covering the entire VAR path as the number of support
for this CSV event.

Contig-based visual confirmation. To examine the internal structure of CSVs,
the phased-assembly specified in the PAV (v1.1.2, TIG_REGION column) at
the reported variant region was used for further analysis. We first extracted
the contig sequence harboring variant based on the coordinates provided
in the 'PAV_TIG_REGION’. For example, a sequence containing variant
was extracted from the hl assembled genome for ’1|1’ and 1|0’ genotype,
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while from h2 assembled genome for '0|1’. In order to validate a CSV struc-
ture containing a complex insertion, we extended 5kbp both upstream and
downstream the CSV region to extract the reference genome via BEDtools
getfasta option, from which the origin of the inserted sequence could be
identified. Afterwards, Gepard was used to create the Dotplot of contig
sequence (vertical axis in the Dotplot) and reference sequence (horizontal
axis in the Dotplot) for each CSV locus. Based on each contig Dotplot, the
manual validation contained two tiers of metrics: 1) whether the reported
region contains a variant; and 2) whether the SVision reported structure is
identical to what was revealed by Dotplot. A CSV was considered completely
reconstructed if both 1) and 2) were satisfied, while others were considered
as inconclusive events.

PCR and Sanger sequencing. We first determined that about half of the 80
CSVs (39/80) were intractable for PCR due to their location within segmental
duplications, the size of the amplicon needed to validate the rearrangement,
or the simple repeat nature of the rearrangement. We then randomly selected
20 of the remaining rearrangements, and performed BLAT on the local region
from the HG0733 assembly data. We next attempted to PCR each of the 20
CSVs. Briefly, we designed primers flanking the CSV or flanking breakpoints
within the CSV for each of the 20 events. Next, we attempted to amplify
each region using Takara LA taq. We obtained the predicted band size for 12
of the 20 variant loci; the remaining 8 regions did not amplify in 3 separate
attempts with alterations of the PCR conditions and template amounts. All
PCR products were sent to Sanger sequencing and validated as on target,
and contained the correct amplicon with the breakpoint from the assembly
and SVision call.

3.2.10 Data availability

Both the HiFi and Oxford Nanopore sequencing data for HG002 are available
at the Genome in a Bottle (GIAB) FTP site (ftp://ftp.ncbi.nlm.nih.g
ov/giab/ftp/data/AshkenazimTrio/HG002_NA24385 _son/). The PacBio
HiFi sequencing data. For NA12878 is available at http://ftp.1000geno
mes.ebi.ac.uk/voll/ftp/data_collections/HGSVC2/release/v1.0/a
ssemblies/20200628 HHU assembly-results_CCS_v12/haploid reads/.
Primary raw PacBio HiFi sequencing data for HG00733 is from http://ftp.
1000genomes.ebi.ac.uk/voll/ftp/data_collections/HGSVC2/workin
g/20190925 PUR_PacBio HiFi/, and the high-quality phased assemblies is
available at http://ftp.1000genomes.ebi.ac.uk/voll/ftp/data_colle
ctions/HGSVC2/working/20200417 Marschall-Eichler NBT hap-assm/.

53


ftp://ftp.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/
ftp://ftp.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v1.0/assemblies/20200628_HHU_assembly-results_CCS_v12/haploid_reads/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v1.0/assemblies/20200628_HHU_assembly-results_CCS_v12/haploid_reads/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v1.0/assemblies/20200628_HHU_assembly-results_CCS_v12/haploid_reads/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/working/20190925_PUR_PacBio_HiFi/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/working/20190925_PUR_PacBio_HiFi/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/working/20190925_PUR_PacBio_HiFi/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/working/20200417_Marschall-Eichler_NBT_hap-assm/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/working/20200417_Marschall-Eichler_NBT_hap-assm/

CHAPTER 3. SVISION

The Oxford Nanopore sequencing data used for graph-based validation is
from http://ftp.1000genomes.ebi.ac.uk/voll/ftp/data_collections
/hgsv_sv_discovery/working/20181210_0NT_rebasecalled/. The latest
HGO00733 PAV (v1.1.2) call is from http://ftp.1000genomes.ebi.ac.uk/
voll/ftp/data collections/HGSVC2/working/20210806_PAV_VCF/, and
the latest release of PAV calls for 35 samples is from http://ftp.1000geno
mes.ebi.ac.uk/voll/ftp/data_collections/HGSVC2/release/v2.0/1
ntegrated_callset/. The RNA-Seq data of precuneus and primary visual
cortex could be accessed in SRA with PRIJNAT720779.

3.3 Results

In this section, we first evaluate the performance of detecting simple SVs using
benchmark sets of HG002 and NA12878. Then, the performance of detecting
CSVs is assessed on both simulated CSVs and real CSVs in NA12878. We
further apply SVision to HG00733 to detect novel CSV loci and types.

3.3.1 Evaluating simple SV detection with real data

To start with, we explored how well the sequence-to-image coding schema
and the CNN model perform across different long-read sequencing platforms
for canonical SV detection, where SVision, CuteSV, pbsv, SVIM and Sniffles
were applied to the HG002 genome (/27X PacBio HiFi and ~47X Oxford
Nanopore, ONT). The results showed that SVision outperforms other callers
at different coverages, where the F-score of SVision ranged from 0.83 to
0.90 for HiFi and from 0.76 to 0.92 for ONT (Figure 3.2A). In addition, we
examined the performance with NA12878 PAV calls released by HGSVC [10)],
consisting of deletions, insertions and inversions. The result was consis-
tent with the performance evaluated by HG002 benchmark, where SVision
achieved the highest F-score (Figure 3.2B). Moreover, SVision was more
sensitive than other callers across different SV size range with high precision,
especially for SVs ranged from 50 to 300bp, where SVision detected 10%
more PAV calls than others (Figure 3.2C, Figure 3.2D). Altogether, our
results suggested that SVision was able to detect canonical SVs accurately
compared with the model-based callers, and SVision was versatile across
sequencing platforms and varying sequencing depth.
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Figure 3.2: Performance of detecting simple structural variants from real
data. (A) F-score of detecting variants in HG002 evaluated with Truvari. (B)
Recall and precision of detecting NA12878 Phased Assembly Variant (PAV)
calls. (C) Recall of detecting NA12878 PAV calls at different size range. (D)
Precision of detecting NA12878 PAV calls at different size range.
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3.3.2 Performance of detecting complex structural variants

Furthermore, the performance was assessed on simulated CSVs of 10 types
extracted from the 1IKGP [5] and a cohort study of autism disorders [12].
The simulated genome harboring 3,000 CSVs (300 per each of 10 types)
was created on one haplotype and sequenced at 30X coverage in HiFi mode.
Motivated by Sniffles [18], we introduced region-match and exact-match for
performance evaluation. The region-match requires correct detection of the
CSV site, while exact-match requires correct detection of both the CSV site
and its subcomponents (i.e., the deletions and insertions that comprise a
CSV). For the region-match, the recall and precision of SVision were 91%
and 93%, while those of the second-best tool CuteSV were 62% and 36%,
respectively (Figure 3.3A). A significant proportion of CSV sites were missed
by CuteSV because the observed novel signatures were beyond the predefined
SV models, while the low precision could be largely attributed to partial CSV
detection (Figure 3.3B). By exact-match, SVision detected 89% of the CSVs,
more than double of Sniffles, while other callers were not able to characterize
any CSVs (Figure 3.3A).

To examine the performance of detecting CSV from real data, we first
manually curated 62 complex deletion and 251 complex inversion sites in
NA12878 reported by 1KGP [5]. As a result, 18 CSVs were verified (two
from the 62 deletion sites, 16 from the 251 inversion sites), while the rest of
the events were simple SVs (one duplication, two inversions and 57 deletions)
(Figure 3.4A). This suggested the manual curation through visualization was
one of the critical steps for CSV detection. Given the manually curated CSV
benchmark, SVision automatically and correctly characterized the internal
structure of all CSVs (Figure 3.4A), including two CSVs failed to interpret
with short-read data, i.e., a deletion replaced by an inverted segment and
a duplicated segment (Figure 3.4B) and a complex insertion consisting of
inverted duplication and dispersed duplications (Figure 3.4C). Moreover,
SVision was able to distinguish simple event from the complex ones at complex
genomic regions. For example, a simple deletion (chr9:71,895,338-71,896,537)
at a region flanked by duplicates (inverted and dispersed) was detected as
CSV based on short-read (Figure 3.4D), while SVision correctly detected it
as a simple deletion. Taken together, our results suggest that SVision can
detect both simple and complex structural variants from long-read data with
high sensitivity and accuracy.
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Figure 3.3: Performance of detecting simulated complex structural variants.
(A) Performance of detecting simulated complex structural variants (CSVs),
which was evaluated with recall (vertical axis), precision (horizontal axis) and
F-score (F, dashed line). (B) The recall of model-based callers for detecting
subcomponents (i.e., DUP-duplication, DEL-deletion, INV-inversion) of CSV
evaluated with region-match. Briefly, for a region matched discovery, we
evaluated the recall of the reported types by each caller.
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Figure 3.4: Performance of detecting complex structural variants in NA12878.
(A) Performance of SVision detecting CSVs from NA12878 evaluated by exact
match, where SVision detected all complex events. (B) A deleted sequence re-
placed with dispersed duplication and inverted duplication, which is correctly
characterized by SVision. (C) SVision characterized a complex insertion,
consisting of two dispersed duplications and one inverted duplication. Both
(B) and (C) are labeled as NA in the published calls. The top panels of (B)
and (C) are the discordant alignments derived from short-read sequencing
(i.e., one end unmapped and discordant alignment). The bottom panels of
(B) and (C) describe the abnormal alignment from long-read alignment. (D)
Diagram of misinterpreted complex event from short-read data, while SVision
correctly detected it as simple deletion.
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3.3.3 CSV mediated gene structure change and genome evo-
lution

To explore novel CSV loci and types, we further applied SVision to HG00733
(PacBio HiFi, ~30X), where the CSVs were not well characterized. SVision
detected 80 high-quality CSVs of 25 unique types, where 20 CSV graphs
were novel types, accounting for half of the high-quality CSVs, and another
five graphs matched reported CSV types. Moreover, 18 and 28 CSV loci
overlapped genes and regulatory elements, respectively. We then introduced
computational and experimental approaches to validate the structure and
breakpoint junctions of the high-quality CSVs.

Firstly, the GraphAligner [34] was used to assess the internal structure
and breakpoints of CSVs by aligning ONT reads [9] to SVision CSV graph.
The graph alignments showed that single reads cover the entire paths of 79
CSV graphs, while one CSV graph path was covered by two different reads.
Secondly, the haplotype contigs used by Phased Assembly Variant (PAV) [10)]
for SV discovery were used to examine the CSV internal structures. Among
the 73 PAV overlapping CSVs, 90% of them could be successfully recon-
structed via manual inspection, while others were challenging to characterize
visually but could be verified via GraphAligner (Figure 3.5A). In addition, 20
CSVs were randomly selected for experimental validation. Specifically, eight
CSVs failed PCR due to repetitive sequence or high GC content and the
other 12 events were successfully confirmed by PCR and Sanger. The above
validations indicated that SVision can detect and characterize CSV reliably
from long-read data. Compared with long-read calls, short-reads revealed 42%
of the CSV loci evaluated by region-match, where internal structures of 12%
CSV loci could be completely characterized via exact-match (Figure 3.5B).

Furthermore, we noticed that 18 CSV loci overlapped genes. For instance,
one CSV of novel type revealed by SVision (chr11:99,819,283-99,820,576),
consisting of tandem and inverted duplications, was missed by short-read [10]
and identified as a simple insertion by PAV [10] (Figure 3.5C). This CSV
modified the structure of an important nervous system development gene,
CNTNS5, of which we identified both CSV allele and insertion allele of different
frequency among populations (Figure 3.5D). We also observed the duplicated
exon signature in the RNAseq data of human primary visual cortex and
precuneus [306].

Additionally, SVision identified an insertion-inversion-insertion event
(chr9:74,283,222-74,283,473), which was detected as a 1,737bp insertion by
PAV but completely missed in previous long-read call sets [9, 87] (Figure 3.6A).
This event was also re-genotyped by PanGenie, and it found 80% allele
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frequency among 3,202 1KGP cohort [10]. The inserted sequence of this
CSV was also identified in primate genomes (Figure 3.6B), such as gorilla,
indicating the inserted state was ancestral and the reference was derived via

deletion and inversion.
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Figure 3.5: Application of SVision on HG00733 HiFi data. (A) SVision de-
tected complex structural variants (CSVs) overlapped with Phased Assembly
Variant (PAV) calls and reconstructed with HiFi haplotype contigs. The
rare type represented a graph type containing less than five complex events.
Graph type A, B, C, D and E corresponded to graph ID 12, 15, 23, 27 and 28,
respectively. (B) Comparing SVision detected CSVs with short-read based
discoveries, evaluating with region match and exact match, respectively. (C)
The diagram of a novel CSV type revealed by SVision, and three allele states
(i.e., REF allele, CSV allele and INS allele) were identified at this locus
among the population. (D) The allele frequency of the complex event locus
shown in (C).
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Figure 3.6: Complex structural variant revealed ancestral state. (A) The
structure and breakpoint junction sequence of the variant is derived from
HiFi assembly. (B) Blast results of mapping the inserted sequence to primate
genomes, where the top hits include pan troglodytes and gorilla.
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3.4 Conclusion

In recent years, long-read sequencing technologies have revolutionized SV
detection and revealed two times more variation than short-reads [10]. While
long-read SV detection tools have improved considerably in the past six
years, none of them is able to correctly characterize multi-breakpoint events
and thereby leaving CSVs either uncalled or misinterpreted as simple SVs.
SVision fills this gap by applying a multi-object recognition framework to the
denoised image to detect both simple and complex SVs, and autonomously
identifies their structures without relying on predefined models. Future work
will focus on tumor SV detection, especially complex events and subclonal
SVs. Taken together, SVision is a valuable tool to facilitate the study of
complicated and novel CSVs, paving the way for the analysis of healthy and
cancer genomes in the future.
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Chapter 4

SpotSV: An automated
approach for simple and
complex structural variants
validation

Abstract In the past several years, comparing with structural variants (SVs)
detection algorithms, there are a few approaches that have been developed to
evaluate the quality of detected SVs. As the decrease of long-read sequencing
price, accurate detection of SV breakpoints and type is critical to promote long-
read applications in both clinical and research settings. However, current manually
involved or experimental validation approaches is not applicable at scale in the big
data era.

In this chapter, we present SpotSV, an effective algorithm that automatically
validates SVs through denoised segments obtained from long-read sequencing data.
SpotSV evaluates each via two major modules: 1) selection of variant overlapping
reads; 2) collecting denoised segments and calculating validation score. We assessed
the performance of SpotSV with both simulated and real genomes across different
sequence depths. The evaluation results suggested that SpotSV is able to accurately
characterize the breakpoints and type of both simple and complex SVs with low read
depth. Moreover, by introducing denoised segments, SpotSV is able to assess SVs at
repetitive regions as accurate as those located at simple genomic regions. Recently,
long-read sequencing has been widely used in various genomic studies at scale, such
as different disease and species. SpotSV provides an option to automatically and
systematically assess the quality of detected SVs in high-throughput.
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4.1 Introduction

Structural variants (SVs) are among the major forms of genetic variations in
human genomes, affecting more than 50bp of the genomes compared with
single-nucleotide-variants (SNVs) and small insertions and deletions [1, &].
SVs comprise different subclasses, such as deletions, insertions and complex
structural variant (CSV), which play important roles in numerous diseases
including cancers and genetic diseases [3]. In the past decade, a large number
of SV detection algorithms have developed for short-read and long-read
data [11], promoting our understanding of SV functional impact as well as
its role in adaptive selection in population [5]. Though long-read algorithms
have been proved to outperform short-read callers in terms of sensitivity
and specificity [9], some complex variant types or SVs at repetitive regions
are usually misinterpreted by existing algorithms. Therefore, orthogonal or
downstream SV validation methods are required to curate callsets generated
by different callers, especially for clinical applications.

Currently, experimental validation through PCR and Sanger sequencing
is considered as gold standard to validating detected SVs. However, exper-
imental validation is usually time consuming, and most importantly, it is
difficult to validate challenging variant classes and SVs at repeat regions.
This promotes the development of a high-throughput orthogonal validation
approach for detected SVs, including the breakpoint position and variant type.
Nowadays, several visualization methods have been developed for researchers
to manually assess the quality of detected SVs by either short-read or long-
read callers. For example, Samplot [38] creates images that display the read
depth and discordant alignments to validate SVs detected by short-read via
a machine learning approach. In addition, given that an increasing number
of CSVs have been identified, visualization methods, such as Ribbon [39], are
developed to view and assess large scale complex events detected in tumor
samples [90]. Note that these two representative approaches are not able to
accurately characterize the breakpoint for focal complex events (i.e., event
length smaller than 100kbp), which is important to understand the internal
structure of complex events and their formation mechanism.

Another approach is inspired by the sequence Dotplot [34], which es-
sentially visualizes the recurrence k-mer matrix of two sequences. Most
importantly, Dotplot enables precise variant structure interpretation, includ-
ing breakpoints, compared with the above-mentioned approaches. In the
past decade, this approach has been widely used to investigate the genome
rearrangements between different species, while it requires long sequence
which is not applicable for short-read data. With the rapid development of
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long-read sequencing technologies, creating a sequence Dotplot becomes a
common approach to manually assess the predicted SVs, especially complex
events [0]. Briefly, the alternative sequence (i.e., long-read sequencing of
individual genome) is compared against the reference sequence through a
fixed size sliding window, called k-mer, and the matches are plotted for
visual confirmation purpose. However, this manual curation, coupled with
expert-level knowledge of SV structure, are time-consuming and inefficient
at large scale for high-throughput validation. VaPoR [72] is the first method
that investigates and scores each SV prediction by autonomously analyzing
the k-mers within a read against both an unmodified reference sequence at
that loci as well as rearranged referencing pertaining to the predicted SV
structure.

Moreover, it has been shown that tandem repeat regions, such as Variable
Number Repeat Region (VNTR), are hotspots for SVs [27], and long-read
sequencing greatly improves the detection compared with short-read sequenc-
ing, especially for insertions. Though long reads facilitate insertion detection,
it is difficult for detection algorithms to characterize the internal structure
of insertion that might consist of duplications. Furthermore, distinguishing
insertions from duplications is critical to understand how SVs affect gene
structure, thereby enabling precise analysis of functional impact. In addition,
an increasing number of detected CSVs and novel CSV types [0, 12] have
been reported from healthy and disease genomes, which introduces another
layer of difficulty for validating SVs. Altogether, there is an urgent demand
of developing novel method for validating SVs at complex genomic regions
and CSVs.

Here, we present an effective sequence-based validation tool, SpotSV,
that uses either long reads or assemblies to assess each predicted SV. In
general, SpotSV characterizes each predicted SV by examining the denoised
segments obtained from 1) SV modified sequence (PRED) against long read
sequence (READ) comparison and 2) reference sequence (REF) against
READ. Accordingly, a correct prediction would maximize the difference in
REF-to-READ comparison, while minimize the difference in PRED-to-READ
comparison. Notably, to overcome the difficulties of validating SVs at complex
genomic regions, the denoised segments could be isolated by removing REF-
to-REF from the PRED-to-READ and REF-to-READ because the reference
context is presented in both PRED-to-READ and REF-to-READ. Afterwards,
a validation score derived from denoised segments is used to assess the
correctness of the predicted SV. We then evaluate the performance of SpotSV
on a series of simulated and real datasets. The results suggest that our
approach could accurately distinguish positive and negative predictions of
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simple and complex SVs, especially SVs at repetitive regions, and it is also
able to assess and refine the breakpoint of predicted SVs.

In Section 4.2, materials and related methods are described in details.
Moreover, results are discussed in Section 4.3 and conclusions are drawn in
Section 4.4.

4.2 Material and methods

In this section, we introduce the workflow of SpotSV and its three major
components. Then, we use both simulated data and publicly available real
data to assess the performance of SpotSV.

4.2.1 Overview of SpotSV

SVs modify the reference sequence (REF) based on detected type and
breakpoint position, thus the modified sequence, referring to as predicted
sequence (PRED), is identical to long reads (READ). Accordingly, we define
SV validation as a problem of maximizing the differences of READ and REF
sequence, while minimizing the differences of READ and PRED. SpotSV is
developed to assess each SV with three major steps (Figure 4.1): (i) creating k-
mer recurrence matrices for REF against READ and PRED against READ;
(ii) collecting denoised segments from REF-to-READ k-mer matrix and
PRED-to-READ k-mer matrix separately; (iii) calculating SV validation
score and assessing breakpoints. Specifically, a k-mer recurrence matrix is
created by sliding a fixed-size substring (k-mer) with single steps through
each sequence to mark positions where two sequences are identical.

Given the k-mer recurrence matrix, SpotSV removes identical sequence
substrings that appeared in the same position on the reference sequence,
resulting in so-called REF-to-READ and PRED-to-READ k-mer recurrence
matrices. Then, SpotSV obtains denoised segments from REF-to-READ
and PRED-to-READ k-mer recurrence matrices for assessing the quality of
predicted SVs. The denoised segments enable accurate characterization of
SVs at repetitive regions as well as CSVs. Finally, SpotSV adds validation
score and refined breakpoints for each predicted SV in a Variant Call Format
(VCF) file. Moreover, SpotSV provides REF-to-READ Dotplots and denoised
REF-to-READ Dotplots based on the k-mer recurrence matrix for visual
confirmation.
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Figure 4.1: Overview of SpotSV. SpotSV consists of two major modules:
1) Read selection and 2) Denoise and evaluate. Module 1) is designed to
select variant overlapping reads, containing reads across entire events and
those only covering the breakpoint junctions. Module 2) consists of two steps.
Firstly, selected reads are realigned and denoised to obtain denoised segments.
Secondly, SpotSV uses denoised segments to assess the quality of detected
SVs.
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4.2.2 Modify reference sequence with predicted structural
variants

SpotSV uses predicted SV type and genomic position to modify the reference
sequence at the predicted locus, which is referred to as predicted sequence
(PRED). Specifically, given predicted SV breakpoints [¢,r] and size len,
SpotSV extracts the segment between [¢ — 1000,  + 1000] from the reference
genome to obtain the reference sequence (REF). Then, the segment between
[1000, 1000+len] from REF is modified to create PRED based on predicted SV
type and length. The above process is applied to SVs containing more than two
breakpoints on reference genome, including deletion, inversion, duplication
and other complex SV types. For example, if a deletion of size 1,000bp
is detected at [20000,21000], its corresponding REF is extracted between
[19000, 22000] from the reference genome and PREF sequence is obtained by
deleting the sequence from 1000 to 2000 in the REF. To modify the reference
genome containing duplications, especially dispersed duplications, SpotSV
uses left most position £ as source position, from which the sequence of
length [en is copied and inserted to the rightmost position 7, the destination
position. For insertion with a single breakpoint on the reference genome,
SpotSV extracts REF from p — 1000 to p + 1000 on reference genome and
obtains PRED by inserting the sequence of size len at position 1000 on REF.
The REF and PRED sequences are then used to create REF-to-READ and
PRED-to-READ k-mer recurrence matrices, respectively.

4.2.3 Generating denoised segments based on k-mers

SpotSV identifies cooccurrence of substrings (k-mers) in two sequences
and generates a raw REF-to-READ and PRED-to-READ k-mer recurrence
matrix, which is visualized as sequence Dotplot in SpotSV outputs. By
default, SpotSV uses k-mers of length 31bp and requires an exact match
between sequences by comparing consecutive k-mers. Once encountering an
unmatched k-mer, SpotSV generates a segment of length k£ + n consisting of
n matched k-mers, where k is the length of the k-mer. To resolve repetitive
regions, SpotSV introduces a novel process to isolate and boost the SV
signature by removing reference background. Firstly, SpotSV uses REF to
create a k-mer recurrence matrix representing reference context, from which
a set of repeated segments and their position on the reference genome is
obtained. Secondly, SpotSV traverses all segments obtained from raw REF-
to-READ according to the segment positions on the reference genome, and
remove segments that have been identified as repeated segments in reference
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sequence comparison. For two identical sequences, the k-mer recurrence
matrix only has values on main diagonal, while repeat sequences add values
to other cells in the matrix. Compared with repeat sequences, SVs break the
continuity of the values on the main diagonal at predicted breakpoint position,
and move values right after a breakpoint position to either horizontal axis
or vertical axis direction by SV length. For example, if vertical axis and
horizontal axis of a recurrence matrix indicate the reference sequence and
read sequence, respectively, a deletion manipulates the recurrence matrix by
shifting the values along the vertical axis by length L. It should be noted
that segments on the main diagonal at the 5’ breakpoint position flanking
regions and segments on the 3’ breakpoint shifted by SV length are retained
during repeats removal. This repeat elimination process is applied to each
read spanning predicted SV, from which denoised segments are obtained for
further assessment. Since DNA is double stranded, containing forward and
minus strand, the above process is also applied to the reverse complementary
sequence to find potential matches on the minus strand, enabling validation
of inversions. In addition, denoised segments in READ-to-REF are used to
determine breakpoints of a predicted SV. Finally, denoised segments are also
used to create a Dotplot in SpotSV outputs for visual confirmation.

4.2.4 Calculating structural variant validation score

Given a denoised segment set, the difference of two sequences could be
measured by calculating distance between segments and diagonal. In principle,
distance would approach zero when measuring two identical sequences, while
SVs alter the sequence and thus would produce large distance. Specifically,
assuming a predicted SV s is spanned by m reads, for a read ¢ containing n
denoised segments, the distance d of denoised segment j is defined as vertical
distance to diagonal, which is calculated as:

1
ds,z',j = g((xs,i,j,start_ys,i,j,sta'rt)

+(xs,i,j,mid - ys,i7j7mid) + (xs,i,j,end - ys,i,j,end))
Here @ j start and Ys i j start are the start position of segment j on z-axis and
y-axis, respectively, T ; j mia and ys; j miq are the middle position of segment
J on z-axis and y-axis, respectively, while xg; j cng and ys; j end are the end
position of segment j on z-axis and y-axis, respectively. Then, the average
distance of all segments belonging to a read is calculated as:

1 n
s iavg = — D dij
j=1

69



CHAPTER 4. SPOTSV

Since correct SV prediction maximizes difference of REF-to-READ and
minimizes difference of PRED-to-READ, the SV validation score is com-
prised of two parts. The average distance of REF-to-READ is calculated as
s i, avg,ref € [0, 4+00). Similar to ds i, avg,ref » We define the average distance of
PRED-to-READ as d; ; qug,predict € [0, 400). Then, SpotSV normalizes these
two scores to assess the predicted SV:

SCOT@SJ‘ _ { (1) ds7z,avg,predzct/ds,z,avg,ref gtgé;;;;;}ggef >0
Moreover, for Scores; < 0, it is set to Scores; = 0, thus Scores; € [0,1].
Read i is not supporting the predicted SV if Scores; = 0, while Scores; = 1
indicates read ¢ supports the predicted SV. Finally, for a predicted SV

spanned by m reads, SpotSV uses the highest score as final validation score
in the output:

Scoreg highest = max([Scoreg 1, ..., Scoreg;, ..., Scores m))

However, due to sequencing errors, we consider that read ¢ supports a
predicted SV if Scores; > Scoreinreshold, Where Scoreinreshold = 0.8, from
which SpotSV identifies the number of reads that support SV s and estimates
the gentype.

4.2.5 Data availability

Using the same simulation workflow as described in Chapter 2 and Chapter 3,
non-overlapping simple deletions, inversions, insertions and duplications
as well as five CSV types are independently incorporate into GRCh38 in
both heterozygous and homozygous states. Notably, four subtypes of du-
plications are simulated, including tandem duplication (tDUP), inverted
tandem duplication (itDUP), dispersed duplication (dDUP) and inverted
dispersed duplication (idDUP), where itDUP and idDUP are classified as
complex event according to previous studies. Moreover, we include another
three well-characterized types from previous studies, i.e., deletion associ-
ated with insertion (Del-Inv), deletion associated with dispersed duplication
(Del-dDUP) and deletion associated with inverted dispersed duplications
(Del-idDUP). In total, we simulate 20,000 SV events at whole genome scale,
and the number of events is equally distributed for the simulated SV types.
The number of SVs for each chromosome (from chromosome 1 to chromosome
X)) is selected based on the ratio of chromosome length. The 20,000 simulated
SVs are kept in BED format and used as positive cases for performance
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evaluation, while another 1,000 negative cases not overlapping with the
positive ones are added to the benchmark BED file, making a benchmark
that contains 20,000 positive and 1,000 negative cases. The types of negative
cases are randomly assigned based on simulated SV types. It should be noted
that the 1,000 negative cases are not implanted into the simulated genome
containing 20,000 positive cases, thus negative cases should be validated as
false prediction. The simulated genome is further sequenced to different HiFi
read depth, ranging from 5X to 30X, with default parameter specified in VI-
SOR [23]. The HiFi reads are aligned to the reference GRCh38 with pbmm2
(https://github.com/PacificBiosciences/pbmm2) default settings.

For the real dataset, both the HiFi and ONT data for HG002 are obtained
from ftp://ftp.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG
002_NA24385_son, which were initially sequenced by the Genome-In-A-Bottle
(GIAB) and the high-quality benchmark for HG002 used in this chapter is
obtained from ftp://ftptrace.ncbi.nlm.nih.gov/giab/ftp/data/Ashk
enazimTrio/analysis/NIST_SVs_Integration_v0.6/. We use both HiFi
and ONT data to compare SpotSV with VaPoR on validating SVs in the
benchmark. Since VaPoR is not able to run on chromosome 4 of real data
due to a coding error, we only examine the performance on other autosomes
as well as sex chromosomes.

4.3 Results

In this section, we first evaluate SpotSV on validating simulated data that
contains both simple and complex SVs. Then, using the high-quality bench-
mark set of HG002, we compare the performance of SpotSV and VaPoR by
assessing the number of correctly validated SVs.

4.3.1 Evaluating SpotSV with simulated data

We first examined the impact of aligners on SpotSV, where SpotSV was
applied to simulated reads aligned by pbmm2, minimap2 [17] and ngmlr [15],
respectively. The results showed that percentage of SpotSV validated SVs
was independent of aligners, such as 97.91%, 97.40%, 97.39% of SVs were
validated on pbmm?2, minimap2 and ngmlr aligned data at validation score
cutoff 0.9, respectively (Figure 4.2A). We then investigated the performance
of SpotSV on pbmm2 aligned simulation data. Since the simulated dataset
contained 20,000 positive events (Table 4.1), it was expected that the majority
of SpotSV validation scores ranged from 0.8 to 1 for both homozygous and
heterozygous events across different coverages (Figure 4.2B). Using a high

71


https://github.com/PacificBiosciences/pbmm2
ftp://ftp.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son
ftp://ftp.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son
ftp://ftptrace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/
ftp://ftptrace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/

CHAPTER 4. SPOTSV

validation score 0.9 as cutoff, SpotSV was able to successfully validate 85% of
SVs even with 5X low-coverage data, and 95% SVs could be validated with
a validation score cutoff 0.8 (Figure 4.2C). Additionally, we identified 336
simulated SVs at repetitive regions and examined the sensitivity of validation
for these SVs. By introducing denoised segments, the average sensitivity
difference of validating SVs inside and outside repeat regions was around 2%
across different coverages at a validation score cutoff of 0.8. For example,
applying SpotSV on 20X coverage data, 93% and 95% of SVs inside and
outside repeat regions were validated, respectively (Figure 4.2). Moreover,
SpotSV could validate heterozygous SVs located at repetitive regions as

sensitive as homozygous SVs.

DEL | INS | INV | tDUP | itDup | dDUP | idDUP | DEL+ | DEL+ | DEL+
INV dDUP | idDUP
chrl 164 164 | 164 | 164 164 164 164 164 164 163
chr2 160 160 | 160 | 160 160 160 160 160 160 159
chr3 | 131 131 | 131 | 131 131 131 131 131 131 130
chrd | 126 126 | 126 | 126 126 126 126 126 126 125
chrb 120 120 | 120 | 120 120 120 120 120 120 119
chr6é | 113 113 | 113 | 113 113 113 113 113 113 112
chr7 | 105 105 | 105 | 105 105 105 105 105 105 104
chr8 | 96 96 96 96 96 96 96 96 96 95
chr9 | 91 91 91 91 91 91 91 91 91 90
chrl0 | 88 88 88 88 88 88 88 88 88 87
chrll | 89 89 89 89 89 89 89 89 89 88
chrl2 | 88 88 88 88 88 88 88 88 88 87
chrl3 | 76 76 76 76 76 76 76 76 76 (6]
chrl4 | 71 71 71 71 71 71 71 71 71 70
chrld | 67 67 67 67 67 67 67 67 67 66
chrl6 | 60 60 60 60 60 60 60 60 60 99
chrl7 | 55 95 95 95 55 55 55 95 95 54
chrl8 | 53 93 93 93 93 593 93 93 93 52
chrl9 | 39 39 39 39 39 39 39 39 39 38
chr20 | 42 42 42 42 42 42 42 42 42 41
chr21 | 31 31 31 31 31 31 31 31 31 31
chr22 | 34 34 34 34 34 34 34 34 34 34
chrX | 103 103 | 103 | 103 103 103 103 103 103 103

Table 4.1: Number of simulated structural variants at different chromosomes.

We further assessed the true positive rate and false positive rate at
different validation score cutoffs for all simulated events. The results showed
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Figure 4.2: Performance of validating simulated structural variants across

different coverages. (A) Sensitivity of validating simulated structural variants
(SVs) at different validation score cutoffs using long reads mapped with
different aligners. (B) The distribution of validation score of homozygous
and heterozygous SVs at different sequence coverages. (C) The sensitivity of
validation simulated SVs at different validation score cutoffs across different
coverages. (D) The true positive rate and false positive rate of validating
simulated SVs at different validation score cutoffs. (E) The sensitivity of
validating SVs inside and outside of repetitive regions.
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that the AUC (Area Under Curve) was 0.92 for homozygous SVs while
using 5X low-coverage data, and it increased to 0.94 for 20X coverage data
(Figure 4.2D), which was evaluated as optimal coverage for efficient and
effective SV detection [91].
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Figure 4.3: Receiver operating characteristic curve of validating five simple
structural variant types. (A) The true positive rate and false positive rate
of validating deletion (DEL), insertion (INS) and inversion (INV) across
different coverages. (B) The true positive rate and false positive rate of
validating dispersed duplication (dDUP) and tandem duplication (tDUP)
across different coverages.

We then examined the performance of validating SVs of different types.
For homozygous SV of different types, even using 5X coverage data, AUC
of SpotSV could reach 0.98, 0.98 and 0.93 for validating deletion, insertion
and inversion, respectively (Figure 4.3A). Duplication was a special form of
insertion, where the inserted sequence either originated from the segment
adjacent to the insertional breakpoint or from a remote position, forming
so-called tandem duplication and dispersed duplication. It was usually chal-
lenging to distinguish insertions from duplications as well as to identify
tandem and dispersed duplications for existing callers. SpotSV was able to
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correctly validate tandem duplications and dispersed duplications in high
AUC, i.e., 0.80 and 0.96, respectively, making it a valuable method to curate
duplications (Figure 4.3B, Figure 4.3C). In terms of homozygous complex
SVs of five types, the average AUC was 0.91 while applied to 30X coverage
data, and the highest AUC of five types was 0.99 for validating deletion
associated inversions (Figure 4.4). We also observed that there were no
significant changes of AUC for validating heterozygous simple and complex
SVs at 30X coverage data.

Altogether, the above results indicate that SpotSV could accurately
validate both simple and complex SV types even with 5X coverage data.
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Figure 4.4: Receiver operating characteristic curve of validating five complex
structural variant types. idDUP: inverted dispersed duplication, itDUP:
inverted tandem duplication, Del-idDup: deletion associated with inverted
dispersed duplication, Del-Inv: deletion associated with inversion, Del-dDup:
deletion associated with dispersed duplication.
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4.3.2 Validating structural variants in a well-characterized
genome

We next compared the sensitivity of SpotSV and VaPoR using high-confident
SVs in HG002 released by the Genome in a Bottle (GIAB) Consortium [92].
The HGO02 callset contains 14,588 deletions and 15,432 insertions, and
each deletion or inversion is assigned to a different 'RETYPE’ according
to sequence features at variant loci (Table 4.2). For example, a deletion
(DEL) is defined as 'SIMPLEDEL’ if this variant deleted an unique sequence,
otherwise it is defined as '"CONTRACT’, indicating deletion of a sequence
entirely similar to the remaining sequence. We evaluate the sensitivity of
validating all 30,020 SVs using HiFi and ONT data at different sequence
coverages. As a result, SpotSV was able to examine 96% and 98% of SVs
when applied to 5X HiFi and ONT data, respectively, and other SVs were not
able to be assessed due to lack of variant spanning reads (Figure 4.5A). While
using high-coverage HiFi and ONT data, 99% of SVs could be examined
by SpotSV. Comparably, VaPoR was able to assess around 40% SVs and
others were labeled as ‘NA’ while using ONT data and low coverage HiFi
data (Figure 4.5A). For SVs that could be assessed by SpotSV and VaPoR,
we investigated the sensitivity under various validation score cutoffs. Though
sensitivity was negatively correlated with validation score cutoff, SpotSV
consistently outperformed VaPoR across different coverages and validation
score cutoffs (Figure 4.5B). The performance was especially prominent for
ONT data, where SpotSV correctly validated 40% more SVs that VaPoR
(Figure 4.5B).

SVIYPE REPTYPE
SIMPLE- | SIMPLE- | SUBS- | SUBS- | DUP | CON- SUM
DEL INS DEL INS TRACT
DEL 8334 0 976 2 4 5171 14588
INS 209 7008 69 1243 6849 | 53 15432

Table 4.2: Number of structural variants in the HG002 benchmark set.

Moreover, we noticed a significant sensitivity decrease of VaPoR and
SpotSV at a validation score around 0.1, while the sensitivity of VaPoR
also decreased significantly at a validation score around 0.5 across different
coverages and platforms (Figure 4.5B). We then examined the performance of
validating 927 DEL and 921 INS events that are located at highly repetitive
regions from HGO002 benchmark. The results show that SpotSV was able
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Figure 4.5: Performance of validating structural variants in HG002. (A)
The distribution of validation score assessed by SpotSV and VaPoR for all
structural variants (SVs) in the HG002 benchmark. NA indicates SVs that
coule not be assessed. (B) The sensitivity of validating all SVs in HG002
using different validation score cutoffs. (C) The sensitivity of validating SVs
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to validate SVs at highly repetitive regions as sensitive as those outside
of repeats, while the average sensitivity decrease for VaPoR was around
10% when applied to SVs located at repetitive regions (Figure 4.5C). For
example, a deletion at a highly repetitive region of validation score 1.0 was
correctly validated by SpotSV because SpotSV used the denoised segment
for validation (Figure 4.6A), while VaPoR assigned a validation score of 0.3
(Figure 4.6B).

Furthermore, we found VaPoR was not able to assess two adjacent SVs,
while SpotSV not only validate this event but also identifies an extra SV
breakpoint (Figure 4.6C). Our results demonstrated that SpotSV was able to
effectively validate SVs at genomic regions of different complexity, especially
for tandem repeat regions.

4.3.3 Structural variant breakpoint validation and accuracy

One of the challenges of SV discovery is the precise determination of break-
point positions at single nucleotide resolution. Some of the previous short-read
algorithms, such as Pindel [36] and Manta [12], could detect single nucleotide
resolution breakpoints, but their SV detection capability was limited by the
read length and repetitive elements. Moreover, a recent study conducted
by the 1000 Genomes Project (1KGP) reported that the median confidence
interval of breakpoints identified by short-read callers was +85bp across
all events [5]. We therefore assessed whether SpotSV was able to identity
accurate breakpoints by using simulated SVs and SVs from the HG002
benchmark set. Briefly, breakpoints of HG002 SVs were used as ground truth
breakpoints, which were only compared to SpotSV identified breakpoints
because validated breakpoints were not included in VaPoR outputs.

The results showed that most of SpotSV identified breakpoints were
+200bp apart from breakpoints of ground truth calls, with a small portion of
breakpoint offset ranging from 200bp to 500bp (Figure 4.7A). Though distri-
bution of breakpoints identified from 5X ONT data was flattened compared
with 5X HiFi data, high coverage ONT data facilitated accurate breakpoint
detection of SpotSV, leading to similar results compared to 27X HiFi data
(Figure 4.7A). In addition, we assessed the breakpoint accuracy of SVs at
genomic regions of different complexity. Specifically, 'DEL-SIMPLEDEL’
and 'INS-SIMPLEINS’ were SVs identified at simple genomic regions, while
DEL and INS classified as other 'REPTYPE’ were considered at complex
regions, referred to as 'DEL-Complex’ and 'INS-Complex’. By comparing
breakpoint offsets of these two groups of calls, we found that SpotSV was
able to identify breakpoints of SVs at complex genomic regions as accurate
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deletion at a tandem repeat region of validation score 1.0, while VaPoR (B)
calculates a validation score of 0.3 for this event. (C) SpotSV identifies a

variant locus containing two insertions, but this event was labeled as 'NA’
by VaPoR.
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as those at simple genomic regions (Figure 4.7B).
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Figure 4.7: Breakpoint accuracy of SpotSV on HG002 calls. (A) Overall
breakpoint offsets evaluated on HiFi and ONT data. (B) The distance of
benchmark breakpoints to breakpoint identified by SpotSV from 27X HiFi
data. The breakpoint comparison is grouped by the complexity of variant
loci. Specifically, 'INS-SIMPLEINS’ and 'DEL-SIMPLEDEL’ are considered
as variant occurred at simple genomic region, while 'INS-Complex’ and
'DEL-Complex’ are labeled as other 'REPTYPE’ instead of 'SIMPLEDEL’
or 'SIMPLEINS’.
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4.4 Conclusion

In this chapter, we presented an automated simple and complex SV assess-
ment approach based on denoised segments, named SpotSV, for validating
predicted SVs using long-read sequencing data. SpotSV obtains denoised
segments by subtracting reference context from predicted sequences modified
with the profile of SVs, thereby reducing the impact of repeat sequences on
SV validation that are usually inaccessible by existing methods. Moreover,
SpotSV implements the functions to discriminate several subclasses of dupli-
cations from insertions, such as tandem and dispersed duplications, which
are particular challenging to validate and important for functional analysis.
The performance assessed on simulated and real data suggests that SpotSV
can accurately validate SVs inside and outside of repetitive regions, with
the capability of discriminating genomic loci containing incorrect discoveries
or correct detection with inaccurate SV profiles (i.e., type and breakpoints).
Future work will focus on optimizing local sequence realignment, especially
for detected SV loci containing multiple breakpoints.

Recently, genome assembly based on long-reads has become a popular
approach for genomic study, and SV validation from reads is an important
orthogonal approach to assess SVs detected from assemblies of different
species. Moreover, as the long-read sequencing price decreases, there is an
urgent need of assessing SVs from clinical perspectives. Therefore, SpotSV is
a valuable method that enables efficient SV assessment for different genomic
studies.
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Chapter 5

Assessing reproducibility of
long-read structural variant
detection algorithms

Abstract Recent advances in long-read sequencing and haplotype-aware assemble
have enabled phased structural variants (SV) detection and improved SV detection
at complex genomic regions. The assembly-based approach for tumor SV detection
is further complicated due to heterogeneous cell populations and polyploid tumor
genomes. Though a number of alignment-based methods that are more robust to
complex tumor genomes have been developed, they lacked systematic evaluation of
reproducibility, especially at complex genomic regions, which is critical for promoting
long-read application in clinical practices. In this study, we benchmark six alignment-
based methods on four real datasets produced by PacBio and Oxford Nanopore
sequencers for recall, precision, SV breakpoints and type consistency as well as
capability of detecting SVs at repetitive regions. Our results first highlight the
important role of aligners in determining SV breakpoint concordance of detection
algorithms. Secondly, our analysis based on phased assembly reveals that tandem
repeat regions are hotspots for discordant calls of each algorithm detected from
different aligners and platforms combinations. In addition, the analysis of tumor-
normal paired samples suggest that the number of different SV types varies from
tumor unique calls identified from each caller, and integration of tumor unique
calls from each caller would substantially improve somatic SV detection. As the
importance of SVs are increasingly recognized in disease genomes, our analysis
provides important guidelines for selecting dataset, aligner and algorithms for
efficient SV detection, and reveals valuable hints for future algorithm development,
thereby shedding light on cutting-edge genomic studies and clinical applications.
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5.1 Introduction

Structural variants (SVs) comprise different subclasses that consist of unbal-
anced copy number variants, including deletion, duplication and insertion, as
well as balanced rearrangements, such as inversion and translocation [3]. SVs
could also have complex internal structures, consisting of multiple combina-
tions of the above-mentioned simple forms of SVs, and this complex form
of SV is referred to as complex SV (CSV) [11, 12, 57]. In the past decade,
researchers have made great progress in discovering and genotyping SVs in
diverse populations and generated phased reference panels of SVs with short-
read data. Moreover, researchers found that SVs are enriched for expression
quantitative trait loci (eQTLs) up to 50-fold compared with single nucleotide
variations, indicating the important role of SVs in regulating gene expression.
Remarkably, the widespread application of single-molecule sequencing (SMS)
technologies, including Pacific Bioscience (PacBio) and Oxford Nanopore
Technology (ONT), greatly improves the sensitivity and precision of detect-
ing SVs comparing with short-read [9, 11]. A study revealed that PacBio
long-reads were approximately three times more sensitive than a short-read
ensemble achieved, and a large set of SVs, ranging from 50 to 2000bp were
unresolvable without long reads [3]. Recently, the haplotype-aware phased
assembly facilitated the direct detection of phased SVs [9, 10], enabling
systematic analysis of functional impact of SVs as well as SV candidates for
adaptive selection within the human population.

Moreover, long-read sequencing also facilitates the analysis and manual
curation of CSVs that are usually inaccessible via short-read data. For
instance, in 2015, the 1000 Genomes Project (1IKGP) published the first
previously unexplored CSV classes by integrating both short- and long-
read sequencing. Additionally, long-read sequencing revealed SVs in genetic
diseases [93, 94, 95] and cancers [15, 90, 96, 97, 98, 99, ] that are usually
undetectable via short-read data. For instance, the ONT data reveals 10,000bp
Alzheimer’s disease associated ABCA7 Variable Number Tandem Repeats
(VNTR) expansion [101] and the PacBio long-read data reveals 10 times
more SVs than that of short-read in breast cancer. Additionally, the somatic
SVs in tumor are a valuable genetic source to understand tumorigenesis,
such as a study showed that long reads could detect two times more somatic
SVs than previous short-read study [32].

Detecting SVs from SMS data usually consists of two steps. Firstly, the
variant signatures are identified and gathered from two types of aberrant
alignments: intra-read and inter-read. Intra-read alignments are derived
from reads spanning the entire SV locus, resulting in deletion and insertion
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signatures. Inter-read alignments are usually obtained from the supplementary
alignments and SV signatures that could be identified from inconsistencies
in orientation, location and size during mapping, analogous to read-pair
signatures, from which translocation as well as large deletion, duplication
and inversion signatures are identified. Secondly, callers typically cluster and
merge similar signatures from multiple aberrant alignments, and delineate
proximal signatures that support putative SV. Nearly all alignment-based
algorithms developed in the past five years, such as Sniffles [18], pbsv,
CuteSV [102], SVIM [103], NanoVar [104], NanoSV [105] and Picky [96],
detect SVs through combinations of signatures obtained from inter-read
and intra-read alignments but differ in their signature clustering heuristics.
For example, Sniffles evaluates the signature similarities by examining the
signature position and size, and additionally clusters SV supported by the
same set of alignments to detect nested SVs. Some methods, such as Phased
Assembly Variant (PAV) and SVIM-ASM [103] use the alignment of whole
genome assembled contigs as input, referred to as assembly-based approaches,
from which aberrant inter-contig and intra-contig alignments are used for
SV detection.

Moreover, somatic SVs are driver events for tumorigenesis and they are
usually detected by identifying SVs present in tumor but absent from its
matched normal sample. For instance, CAMPHOR [32], a computational
pipeline, detects somatic SVs by removing SVs present in a ‘normal panel’.
A similar process can also be completed by SURVIVOR, which identifies
putatively somatic SVs that are only present in tumor [90]. However, affected
by repetitive sequences and human reference genome defects [27], intensive
breakpoint filtering and an external normal reference SV set are required to
obtain high-quality somatic SVs [106, .

Previous studies have estimated that at least 30% of cancers have a known
pathogenic SVs used in diagnosis or treatment [108], and germline variants
in cancer predisposition genes underline 5-10% of all cancers [109, , ].
However, the prevalence of SVs in cancer is likely underestimated due to
low sensitivity and specificity for short-read based SV discovery at regions
of repetitive elements, low sequence complexity and strong GC bias. Re-
cently, long-read assembly approach significantly increased the sensitivity of
detecting SVs at complex genomic regions compared to that of short-read
data [9, 10], but precise detection of germline SVs and distinguishing tumor
unique SVs from germline is further complicated due to tumor heterogeneity
and polyploidy. Compared with assembly approaches, alignment-based detec-
tion methods are more robust to amplificated tumor genomes that originate
from mixed cell populations, while inconsistencies in breakpoints and variant
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types confound tumor SV detection, especially somatic SV. Therefore, it is
critical to assess the detection consistency of alignment-based algorithms,
especially at complex genomic regions, thereby enabling accurate and com-
prehensive germline and somatic SV detection. In this study, using multiple
datasets of two platforms (i.e., HiFi and ONT) mapped by two aligners (i.e.,
minimap2 and ngmlr), we evaluated the recall, precision, variant breakpoints
and type consistency of five alignment-based SV detection algorithms and
assess the alignment-based algorithms for tumor SV detection.

In Section 5.2, materials and related methods are described in details.
Moreover, results are discussed in Section 5.3 and conclusions are drawn in
Section 5.4.

5.2 Materials and methods

In this section, we introduce the datasets and methods used in the evaluation.

5.2.1 Read mapping and SV detection

In this chapter, HiFi and ONT data are obtained for HG002, NA19240,
HGO00733 and HG00514, while ONT data was used for tumor-normal paired
sample COLO829. Then, minimap2 [17] (v2.20) and ngmlr [18] (v0.2.7) were
used to map the long-read data of HG002 and COLO829 to hgl9 due to
the reference version of the benchmark set. The long-read data of NA19240,
HGO00733 and HG00514 were mapped to reference version GRCh38. For min-
imap2, parameters '-a -H -k 19 -0 5,56 -E 4,1 -A 2 -B 5 -z 400,50
-r 2000 -g 5000’ were applied to align HiF'i reads, while '-a -z 600,200
-x map-ont’ were used for ONT reads. For ngmlr, parameters '-x pacbio’
and ’-x ont’ were used to align HiFi and ONT reads, respectively. For
the detection algorithms, SVision (v1.3.6), CuteSV (v1.0.10), pbsv (v2.2.2),
SVIM (v1.4.0), Sniffles (v1.0.12) and NanoVar (v1.4.1) were applied to the
minimap2 and ngmlr aligned data, respectively. We used default settings for
all callers, while at least five supporting reads were required for SV detection
in NA19240, HG00733, HG00514 as well as normal-tumor paired COLO829
samples.

5.2.2 Evaluating recall and precision of each algorithm

We first used the evaluation method Truvari (https://github.com/spira
lgenetics/truvari) developed by Genome-In-A-Bottle (GIAB) to examine
the performance of each algorithm on HG002. The specific steps of SV
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calling and processing for SVIM, Sniffles, CuteSV and pbsv were given by
CuteSV (https://github.com/tjiangHIT/sv-benchmark). Furthermore,
for SVision, SV with "Covered’ filter was considered as passed calls in the
algorithm, and we replaced the ’Covered’ with "PASS’ for the usage of option
'--passonly’ in Truvari. The raw calls of NanoVar were directly used as
input for Truvari evaluation.

Moreover, the PAV call sets of NA19240, HG00733 and HG00514 were
used to evaluate each algorithm. Note that the breakends, such as transloca-
tions, were first excluded from the raw detections and SVs ranging from 50bp
to 100kbp were included in the analysis. BEDtools [85] (v2.30.0) was used to
find the correct detections via the 50% reciprocal overlap test, while those
failing the overlap test were considered as false detections. Specifically, we
used command 'bedtools intersect -c -a pav.bed -b algorithm.bed
-f 0.5 -r’ to count the unique number of matched ground truth calls. Given
the number of ground truth calls (N), number of detections (D) and number
of correct detections (D), the Recall, Precision and F-score were calculated
as follows:

Precision = C/D
Recall = C/N

2 x Precision x Recall
F-score =

Precision + Recall

5.2.3 Identification and classification of PAV calls missed by
each algorithm

Using command 'bedtools intersect -c -a pav.bed -b algorithm.bed
-f 0.5 -r’, the missed PAV calls of each algorithm were labeled as zero
matches in the last column of the output. Then, the simple repeats and
Repeat Masker files obtained from UCSC Genome Browser were used to label
the repeat element and calculate the percentage of repeat overlap. For simple
repeats, the VNTR was assigned if the repeat unit length was longer than
7bp, otherwise, it was considered as STR. In this study, we only used repeat
element LINE, SINE, LTR, VNTR and STR, while other repeat elements
were classified as Others.

Additionally, we developed a pipeline to classify missed PAV calls ac-
cording to the read mapping signatures. Firstly, the missed PAV calls were
classified to three types of regions according to the average read mapping
quality (avg,,4,,), including i) no read mapping region (No_reads), ii) low
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mapping quality regions (Low mapq, avg,,,,, < 20) and high confident
mapping regions (High-mapq, avg,,,,, > 20). The average mapping quality
threshold was set according to the default minimum read quality used for SV
detection algorithms. Secondly, we extracted the potential SV signature reads
that span the PAV calls in the high confident mapping quality regions. In
general, the 'I” and D’ tags in the CIGAR string, and the primary reads and
their supplementary alignments were collected and used to identify deletion
(DEL), insertion (INS), inversion (INV) and duplication (DUP) signatures.
The total number of SV signature reads spanning PAV calls was referred
to as signature count. Afterwards, we applied the same implementation as
Truvari to match PAV calls and detected SV signature reads. Specifically,
for a given SV signature read with start and end position, we calculated the
minimum distance between this signature and PAV call as well as their size
similarity. If the minimum distance and the size similarity of a signature read
was smaller than 500bp and larger than 0.5, respectively, it was considered
as the nearest signature.

5.2.4 Evaluating breakpoint accuracy

To evaluate the breakpoint accuracy of each caller, the correct detection,
compared with the benchmarks (i.e., PAV calls and short-read calls) was
considered as the nearest one with similar size, where the distance and size
similarity threshold were 500bp and 0.5, respectively. Note that for short-read
benchmark calls, we used Manta with default settings to detected SVs from
Illumina reads and evaluate the minimum breakpoint shift of overlapped
detections as described above. We calculated the minimum breakpoint shift
of the concordant detections to evaluate the breakpoint accuracy of each
caller. For the breakpoint assessment of recurrent SVs, SURVIVOR [112] was
used to identify the recurrent SVs among three samples for each caller with
command ’SURVIVOR 500 3 0 0 0 50’, while translocations were excluded
in breakpoint accuracy assessment. For other SV types, the breakpoint
accuracy was evaluated by calculating the standard deviation of variant start
and end position in the merged VCF file. If the standard deviation of both
start and end position was smaller than 50bp, the corresponding recurrent
SV was considered as accurate detection.
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5.2.5 Examine call set overlaps between platforms and align-
ers

For each caller, the overlapped and unique calls of different platforms and
aligners were identified with SURVIVOR, running command ’SURVIVOR 500
1 0 0 0 50’. In particular, we only examined whether an SV was detected
at a specific region of different aligners or platforms, while the SV type was
not considered. For example, the ngmlr and minimap2 unique and overlapped
calls detected by SVision on HiFi reads was obtained from the ‘SUPP_VEC’
value of SURVIVOR merged output. Specifically, ’SUPP_VEC=11" indicates
overlapped calls, while 'SUPP_VEC=10’ or 'SUPP_VEC=01’ represents aligner
unique detections. This comparison between aligners of identical platform
was termed as fixed-platform, and the same process was applied to compare
the detections between different platforms mapped with identical aligner,
referring as fixed-aligner. Afterwards, the same repeat annotation procedure
was applied to annotate the unique calls from fixed-platform and fixed-aligner.
This process was also applied to identify tumor unique calls, which were
obtained from variant of 'SUPP_VEC=10’.

5.2.6 Data availability

Both the HiFi and ONT data for HG002 are obtained from ftp://ftp.ncbi
.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385 _son, and
the benchmark [92] for HG002 used in this chapter is from ftp://ftp-trace.
ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_S
Vs_Integration v0.6/. The HiFi data for NA19240, HG00733 and HG00514
are obtained from http://ftp.1000genomes.ebi.ac.uk/voll/ftp/dat
a_collections/HGSVC2/working/, and the ONT data [9] for these samples
are available at http://ftp.1000genomes.ebi.ac.uk/voll/ftp/data_c
ollections/hgsv_sv_discovery/working/20181210_0ONT_rebasecalled/.
The Phased Assembly Variant (PAV, v1.1.2) [10] for NA19240, HG00733
and HG00514 are downloaded from http://ftp.1000genomes.ebi.ac.uk/
voll/ftp/data_collections/HGSVC2/working/20210806_PAV_VCF/. The
normal ONT data for COLO829 is obtained from Sequence Read Archive
(SRA) with ERR2752451, and the tumor ONT data is downloaded with
ERR2752452. The somatic SV truth set of COLOS829 is obtained from
https://github.com/UMCUGenetics/COL0829 _somaticSV .
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5.3 Results

In this section, we first assess the impact of aligners and platforms on SV
detection consistency of each alignment-based detection methods. Then, we
examine the recall and precision of each method affecting by aligners and plat-
forms. Moreover, we systematically compare SVs detected by alignment-based
approach and assembly approach, especially their breakpoint consistency.
Finally, using tumor-normal paired sample, we assess the impact of aligners
on detecting germline and somatic SVs.

5.3.1 Evaluating the impact of aligners and platforms on
detection algorithms

Platform and aligner independency is one of the important features for
detection algorithm in clinical usage. The detection consistency was thus
assessed with three well-characterized samples (i.e., NA19240, HG00733 and
HG00514) sequenced by HiFi and ONT technologies. As a result, more SVs
were detected from minimap2 aligned data than that of ngmlr, and such
difference was even significant for ONT data (Figure 5.1A). Though the
percentage of detected deletions and insertions per genome varied across
platform and aligner combinations, 20% more insertions and deletions were
detected from minimap2 alignments than that of ngmlr. Notably, approxi-
mately 98% of SVIM discoveries were insertions or deletions from minimap2
aligned HiFi data, which was 15% and 38% more than pbsv and NanoVar
detected, respectively (Figure 5.2).

Further analysis showed that a large number of duplications (around
~7,000 without aligner or platform bias) detected by NanoVar was the major
factor leading to a lower proportion of detected insertions and deletions
(Figure 5.1C). We also noticed that the large number of duplications detected
from ngmlr aligned data contributed to 20% difference of detected insertions
and deletions between aligners for each caller (Figure 5.1C). Though pbsv,
CuteSV, Sniffles and NanoVar could distinguish duplications from insertions,
SVIM was the first algorithm that was capable of detecting tandem du-
plications (DUP:TANDEM) and dispersed duplications (DUP:INT), where
around 10 dispersed duplications and 100 tandem duplications per genome
were identified. Note that SVision and Sniffles were capable of identifying
CSVs, where SVision reported ~100 CSVs per sample and Sniffles identified
three types of CSV (i.e., DEL/INV, DUP/INS and INVDUP) (Figure 5.1C).

We then examined the impacts of aligners on SV detection from different
platforms, termed fixed-platform evaluation. The overlapping calls between
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Figure 5.1: Overview of structural variants detected by six callers from
three samples. (A) Number of structural variants of three samples detected
from data generated by different aligners and platforms. (B) Percentage of
deletions and insertions detected by each caller. (C) Number of detected
structural variants of different types, excluding insertions and deletions.
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two aligners were around 80% for both ONT and HiFi reads (Figure 5.2A),
and breakpoint difference of most aligner concordant calls was less than 20bp
(Figure 5.2B). Notably, breakpoint difference of pbsv calls was closer to Obp
on both platforms compared with other callers, indicating SV breakpoints
reported by pbsv were less affected by aligners. Further analysis of aligner
discordant calls revealed that all callers identified more duplications from
ngmlr aligned HiFi and ONT data (Figure 5.2C), which was consistent with
our previous observation on overall discoveries (Figure 5.1C), suggesting SV
types reported by callers were depend on aligners. We reasoned that this
limitation was largely due to the model-based SV detection approach, so that
more duplications were detected from duplication like abnormal alignments
observed in ngmlr aligned data.

In addition, we evaluated the platform influences, referred to as fixed-
aligner evaluation, where the percentage of platform concordant calls ranged
from 70% to 90% for different callers (Figure 5.2D). Though the platform
concordant call took 90% of SVIM HiFi discoveries, three times more ONT
unique calls were observed than HiFi unique calls (Figure 5.2D). Moreover,
consistent with fixed-platform evaluation, pbsv produced concordant SV
breakpoints of platform concordant calls (Figure 5.2E), suggesting pbsv was
able to report consistent SV breakpoints that are less affected by aligners or
platforms. Altogether, our results suggested that aligners played an important
role in producing consistent SV breakpoints and types across platforms for
each caller.

5.3.2 Evaluation recall and precision of detection algorithms
using different benchmarks

Furthermore, it was critical to understand the sensitivity and specificity of
detection algorithms for clinical applications. Therefore, we first benchmarked
SVision, pbsv, CuteSV, Sniffles;, NanoVar and SVIM with ground truth SVs
of sample HG002. The ground truth set was an integration of multiple
platforms and released by Genome-In-A-Bottle (GIAB), containing high-
confident deletion and insertion calls, which had been widely used to evaluate
the performance of SV detection algorithms [92]. The callers were applied
to 30X HiFi data and 47X ONT data aligned with minimap2 and ngmlr,
respectively. The results showed that SVision, pbsv, SVIM, CuteSV and
Sniffles outperformed NanoVar across platforms and aligners. In addition, we
noticed that all callers achieved the best performance on minimap2 aligned
HiFi and ONT reads, and CuteSV achieved the highest F-score, followed
by SVision, Sniffles and pbsv (Figure 5.3A). Though callers produced fewer
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Figure 5.2: Effects of aligners and platforms on structural variants detection.
(A-C) Fixed-platform evaluation of each caller. (A) Percentage of aligner
concordant calls among all discoveries detected from ngmlr (vertical axis)
and minimap2 (horizontal axis) alignments. (B) Breakpoint difference of
aligner concordant calls. (C) Percentage of structural variant (SV) types
among aligner discordant calls, i.e., minimap2 (horizontal axis) and ngmlr
(vertical axis). (D-E) Fixed-aligner evaluation of each caller. (D) Percentage
of platform concordant calls detected among all SVs detected from ONT
(vertical axis) or HiFi (horizontal axis) reads. (E) Breakpoint difference of
platform concordant calls.
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correct detections on ngmlr aligned data, the precision of the six callers was
comparable to minimap2 or even higher on ONT reads. For example, the
precision of SVision detections on the minimap2 aligned ONT data was 80.5%,
which increased to 89.9% on the ngmlr aligned ONT data (Figure 5.3A).
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Figure 5.3: Evaluating recall and precision of six callers using different
benchmarks. (A) Performance evaluated on sample HG002 HiFi and ONT
data. (B) Average recall and precision evaluated on HG00514, HG00733 and
NA19240.

In addition, PAV callsets of HG00514, HG00733 and NA19240 were used
as ground truth to assess recall and precision of each caller. The PAV calls
were detected from the highly contiguous haplotype assemblies released by
HGSVC [10], which significantly improved the SV discoveries at repetitive
regions compared with the HG002 truth set. Thus, the PAV callset was able
to evaluate SV detection algorithms at both simple and complex genomic
regions. Briefly, the SVs detected from mapped reads (i.e., HiFi and ONT
aligned with minimap2 and ngmlr) of each caller were compared with the
PAV calls by examining the reciprocal overlaps. Since translocation (BND)
was not included in PAV calls, the BNDs from the raw calls from each caller
were excluded and SVs ranging from 50bp to 100kbp were used for the
performance assessment. As a result, all algorithms achieved their own best
performance on minimap?2 aligned HiFi reads, where SVision and pbsv ranked
first on minimap2 and ngmlr aligned HiFi reads across samples, respectively
(Figure 5.4B). We reasoned that this biased performance was largely due
to the method of detecting PAV calls, i.e., detecting from the minimap2
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aligned HiFi assemblies with extra alignment trimming. Though SV detection
performance on ONT reads was not comparable with HiFi reads, the F-score
of each caller based on different aligners were approximately equal, indicating
less impact from aligners. Altogether, our results indicated that aligners
affect more than platforms on recall and precision, where Sniffles, SVision,
pbsv and CuteSV showed similar performance and consistently outperformed
NanoVar across different platforms and aligners.

5.3.3 Features of PAV calls missed by detection algorithms

We then examined PAV calls missed by each caller on three samples (i.e.,
NA19240, HG00733 and HG00514), aiming to understand limitations of
alignment-based SV detection algorithms. The missed PAV calls were con-
sidered those without matched detections via the reciprocal overlap test,
and the best recall of detecting PAV calls was around 70% (Figure 5.3B).
Among missed PAV calls, 70% and 28% of missed PAV calls were insertions
and deletions, respectively (Figure 5.4A). Moreover, 80%, 70% and 60%
of NanoVar, pbsv and CuteSV uniquely missed PAV calls were insertion,
respectively, whereas more than 60% of SVIM and Sniffles missed PAV calls
were deletions (Figure 5.4B). Further repeat annotation revealed that a large
majority (=70%) of missed SVs overlapped with VNTR regions, followed
by STR regions (~10%) (Figure 5.4C). These results suggested that an
assembly-based approach significantly increased the sensitivity of detecting
insertions and SVs in tandem repeat regions (i.e., VNTR and STR) compared
with alignment-based detection. The above results were consistent with the
conclusion drawn by HGSVC, where the predominant increase of PAV was
among small SVs (<250bp) localized to simple repeat sequences.

Though the assembly-approach achieved remarkable results on SV detec-
tion, it was difficult to generalize for tumor genomes because of heterogeneity
and aneuploidy. Therefore, we investigated whether the missed PAVs were
detectable from alignment-based approaches. Firstly, we noticed that 80% of
missed PAVs were located at high mapping quality regions (Figure 5.4D), pro-
viding confident alignments for SV signature reads identification. Afterwards,
for missed PAV calls at high mapping quality regions, variant spanning reads
were extracted and analyzed to find SV signatures. The results showed that
the percentage of missed PAV calls with SV signature reads was independent
of aligners for both HiFi and ONT reads, where NanoVar failed to report SVs
from 88% and 77% of the genomic regions with SV signatures (Figure 5.4E).

Furthermore, we examined the nearest SV signatures, providing the direct
evidence of detecting missed PAV calls. In principle, missed PAVs were not
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able to be discovered from read mapping if we cannot identify the nearest SV
signatures. On average, approximately 55% of missed PAVs contained nearest
signatures for HiFi reads aligned with both aligners, whereas ONT reads
were likely to produce more nearest signatures when aligned with minimap2
(Figure 5.4E). This indicated that half of missed PAV calls in high mapping
quality regions could be recovered, while they were missed by routine SV
callers due to the inaccurate breakpoints in repeat regions. Specifically, the
nearest signatures could be identified from 90% of the missed PAV regions
contained signatures, and the highest average PAV recall rate (=70%) was
achieved by minimap2 aligned HiFi reads, and we thus reasoned 17% more
PAVs in high mapping quality regions could be detected based on signatures.
Our analysis indicated that most of the PAV missed calls at simple repeat
regions contain SV signature reads, and these PAV calls could be detected
with proper breakpoint fine mapping.

5.3.4 Examining the effects of platforms and aligners on
breakpoint accuracy

In addition, accurate breakpoints are critical to the downstream SV func-
tional annotation such as gene annotation and known pathogenetic vari-
ant annotation, and we thus investigated the breakpoint accuracy of each
caller by comparing with two independent call sets generated via orthogo-
nal approaches, i.e., phased assembly and short-read. For phased assembly
evaluation, using PAV calls, the breakpoint difference of ~80% concordant
calls were smaller than 50bp for minimap2 and ngmlr across different callers
(Figure 5.5A). Moreover, consistent with the fixed-platform (Figure 5.2B)
and fixed-aligner (Figure 5.2E) evaluation, pbsv achieved the most accurate
breakpoints (breakpoint difference smaller than 10bp) without aligner and
platform bias (Figure 5.5A). We next divided the concordant calls into two
groups: 1) accurate detections (breakpoint difference smaller than 50bp, Fig-
ure 5.5B) and ii) inaccurate detections (breakpoint difference larger than
50bp), and found that a significant number of inaccurate detections were
located at VNTR regions (78%) (Figure 5.5C). This suggested that the
breakpoints of SVs detected from read and assembly were largely different at
simple repeat regions, especially in VNTR. Due to the aligner bias of PAV
calls, breakpoint accuracy was further evaluated with short-read data, of
which pbsv also showed the most accurate breakpoints and it was independent
of aligners and platforms (Figure 5.6A).

On the contrary, the breakpoint accuracy of other callers was dependent
on aligners, where we found the percentage of breakpoint shift smaller than
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Figure 5.4: Features of missed Phased Assembly Variant by six callers. (A)
Distribution of missed Phased Assembly Variants (PAVs) detected from
different aligners and platforms. (B) Types of caller uniquely missed PAV
calls. (C) Repeat annotation of missed PAVs. (D) Mapping quality of the
missed PAV loci, including no read mapping (No_reads), low mapping quality
(Low_mapq) and high mapping quality (High_mapq). (E) Missed PAV loci

that had signatures and nearest signature identified from long reads aligned
with minimap2 and ngmlr.
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10bp increased 30% on minimap2 aligned reads (Figure 5.6A). Both PAV
and short-read data revealed that HiFi data paired with minimap2 would
produce the most accurate breakpoints for all callers. To avoid potential
aligner bias of the benchmarks, we assessed the breakpoint accuracy of dif-
ferent callers by comparing the breakpoints of recurrent SVs among different
samples. As a result, SVs detected by callers except SVision were likely to
have consistent breakpoints on minimap2 aligned HiFi or ONT data, where
Sniffles outperformed other callers among different platforms and aligners
(Figure 5.6B). Our results suggested that the selection of aligner was critical
to get consistent breakpoints for routine SV detection algorithms, while tan-
dem repeat regions (i.e., VNTR) required extra breakpoint refinement if the
caller was applied to repeat expansion related diseases, such as Huntington
disease.

5.3.5 Effects of aligners on tumor SV detection

The above results suggested that aligners play an important role for consistent
SV detection. We then evaluated the impact of aligner for tumor genome
analysis, especially the performance of detecting somatic SVs from tumor
unique calls. Briefly, each routine SV caller was used to detect SVs from
tumor (ONT, ~60X coverage) and normal (ONT, ~40X coverage) data
of COLO8&29 separately, and the filtering-based approach was applied to
identify tumor unique calls, which are also called putatively somatic SVs.
As a result, the total number of SVs detected by NanoVar from tumor
and normal tissues was independent of aligners, whereas Sniffles, CuteSV
and SVIM detected more SVs from minimap2 alignments comparing to
ngmlr, thereby leading to 5% more minimap2 unique detections than that of
ngmlr (Figure 5.7A). Furthermore, we investigated the impact of aligners on
identifying tumor unique calls, which is one of the critical steps to obtain
somatic SVs. The results showed that the percentage of tumor unique calls
obtained from NanoVar and Sniffles was less affected by aligners (Figure 5.7B),
and NanoVar had the largest number of tumor unique calls, i.e., 7,626 and
7,676 from minimap2 and ngmlr alignments, respectively.

On average, 50% of the tumor unique calls were inside the repetitive re-
gions, of which the majority of them were annotated as SINE or LINE. As for
the SV types of tumor unique calls, ~4,500 putatively somatic deletions were
identified from SVIM calls detected based on minimap?2 alignments, which
was four times more than detected insertions (/1,000 events) (Figure 5.7C).
Comparably, approximately 3,300 of the tumor unique calls identified from
NanoVar was translocations, attributing to 44% of the tumor unique calls,
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Figure 5.5: Evaluating the breakpoint accuracy of structural variants detected
by six callers with Phased Assembly Variant. (A) The breakpoint difference
(BpDiff) of concordant calls between callers’ detections and Phased Assembly
Variants (PAVs). (B) The repeat annotation of accurate calls (BpDiff <
50bp). (C) The repeat annotation of inaccurate calls (BpDiff > 50bp).
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Figure 5.6: Evaluating the breakpoint accuracy with short-read data and
assessing breakpoints of recurrent structural variants. (A) The breakpoint
difference (BpDiff) of structural variants (SVs) detected by six callers and
those detected by short-read data. (B) The breakpoint accuracy of recurrent
SVs among three samples (i.e., NA19240, HG00733 and HG00514).
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and it was independent of aligners (Figure 5.7C). Furthermore, 1,500 pu-
tatively somatic translocations were identified from pbsv calls using ngmlr
alignments, which was 15 times more than translocations identified from
minimap2 alignments. In addition, we assessed the putative somatic SVs
with the COLO829 somatic benchmark, containing 78 (i.e., 38 deletions, 13
translocations, 7 duplications, 7 inversions and 3 insertions) high-quality
SVs released by a multi-platform study. As a result, though 57 ground truth
somatic SVs were missed by one of the five callers, all somatic insertions were
correctly detected. In addition, 35 out of 57 ground truth SVs, consisting of
six translocations, 21 deletions, five inversions and three duplications, could
not be detected by any combination of callers and aligners. We thus rea-
soned that integration of discoveries from different callers might substantially
increase the detection sensitivity.

5.4 Conclusion

SVs are important types of genomic alterations to form population diver-
sity [5] and to drive disease progression, such as tumorigenesis [0], but are
more difficult to detect than small variants from short-read data due to the
limited read length. In the past five years, the long-read sequencing tech-
nologies and the newly developed algorithms greatly facilitate the detection
of SVs from both healthy [113] and tumor genomes [!14], improving our
understanding of the functional impact of SVs. Remarkably, the SV detection
based on haplotype-resolved assembly enables the haplotype-aware germline
SV detection, and significantly improves the detection at complex genomic
regions, such as segmental duplication and variable number tandem repeat
(VNTR) [9, 10]. Though studies have attempted to evaluate the performance
of routine SV detection algorithms, we explored the major factors affecting
the ability of different algorithms in detecting SVs in complex genomic re-
gions and somatic SVs. Overall, using public HiFi and ONT data from four
healthy genomes and ONT data from a normal-tumor paired sample, we
evaluated multiple aligners and SV callers to assess the routine SV detection
algorithms by comparing with PAV calls and high-quality somatic truth set.

In this chapter, we examined the performance of each SV caller with two
aligners (i.e., minimap2 and ngmlr). The alignment time and memory usage
had been systematically evaluated in other studies [115], which was out of
the scope of this study. For both HiFi and ONT platforms, all callers tend to
detect more SVs on minimap2 aligned data than that of ngmlr, while SVIM
produced more ONT unique calls on both aligners. Since the same parameters
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Figure 5.7: Evaluating the filtering-based somatic structural variants detection
of the six callers. (A) Comparison of structural variants (SVs) detected from
both tumor and normal tissues (left panel) and percentage of aligner unique
calls detected by each caller (right panel). (B) Percentage of tissue unique
calls detected by each caller (top panel) and repeat annotation of caller
unique calls (bottom panel). (C) SV types of tumor unique calls identified
from each caller.
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were used for each caller on different platforms and aligners, SVIM might
need specific parameter tuning for ONT data. Moreover, we found that
aligner was the major factor affecting the number of detected SVs and their
breakpoint accuracy, whereas the breakpoint of pbsv were less affected by
aligners and platforms. Therefore, we recommend using pbsv with either
minimap?2 or ngmlr for the initial SV for a new sample. In terms of the recall
and precision of callers, both the GIAB and PAV benchmarking suggested
the bias of minimap2 paired with HiFi data. Though these two benchmarks
showed limitations for evaluation, they suggested that SVision, Sniffles, pbsv,
CuteSV and SVIM showed similar performance and outperformed NanoVar.
In addition, Sniffles and CuteSV showed the highest precision for all of the
HiFi and ONT data tested, while SVision call sets generally had a higher
recall rate. Therefore, Sniffles and CuteSV should be used when high precision
was the priority, pbsv was recommended when accurate breakpoint were
required, and SVision should be considered if high sensitivity was desired.

Additionally, and uniquely to this study, we investigated the features
of PAV calls missed by read-based detection to assess whether read-based
calling was capable of generating comprehensive call set. It was expected
that most of the missed PAV calls were found at VNTR regions and insertion
was the major SV type missed by read-based detection. While our results
suggested that the majority of the missed PAV loci contained SV signature
reads, and most importantly, this was not depending on aligners, indicating
the read-based detection would recover most of the PAV calls.

Moreover, since we also observed high SV breakpoint concordance on
different platforms using identical aligner, the selection of sequencing platform
would have less impact on SV detection for a new sample. However, it should
be noted that the majority of the inaccurate and inconsistent calls were
found at tandem repeat regions, so that disease associated with repeat
expansion requires extra downstream analysis or specific algorithms, such
as Straglr [116] and NanoSatellite [101]. Another critical step in studying
tumor genomes was to characterize the somatic SVs, which were considered
closely related to the tumorigenesis. Due to lack of long-read based somatic
SV detection algorithms, we only evaluated the recall of detecting somatic
SVs in tumor unique calls. However, this approach identified ground truth
somatic SVs in low precision, suggesting an urgent demand of standalone
somatic SV detection algorithms in the community.

Altogether, our analysis suggested that alignment-based callers would
uncover a near comprehensive and high-quality call set of a genome, while the
filtering-based approach for somatic SV discovery was suboptimal, leading to
high false positive rate. Thus, as the detection of SVs from long-reads becomes
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routine and gradually applied to investigate tumor genomes, it is imperative to
start to consider and work towards developing robust pipelines or algorithms
for SV detection in tumors. Moreover, we expect resources from ONT and
PacBio to accumulate as the technology improves and the sequencing price
decreases, which leaves great opportunities for better somatic benchmark
generation and future algorithm development for clinical applications.
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Chapter 6

Conclusions and perspectives

In this chapter, we present our conclusions and provide perspectives for
future research.

6.1 Conclusions

It is a fact that the research discipline of computational genomics largely
emerged from sequence analysis. Indeed, deciphering the language of life
from DNA, RNA or protein sequences has been greatly facilitated by the
advanced sequencing technologies. From short-read DNA sequencing to
single-molecule-sequencing (SMS) DNA sequencing, methods for sequence
alignment, genome structural variants detection, etc., are actively developed
by numerous researchers in the past decade. This thesis focuses on developing
novel algorithms for several pivotal parts in applying sequencing technology
to SV detection in clinical settings, including detection, characterization and
validation. Moreover, this thesis provides a systematic evaluation of factors
affecting clinical applications.

With the rapid development of high-throughput sequencing (HTS) tech-
nology, genomic rearrangements or structural variants (SVs) have been
recognized to affect more than SNPs or Indels in genome evolution and
disease progression. Recently, an increasing number of simple SVs are found
to be complex events, which not only misleads downstream analysis but also
introduces another layer of difficulty for SV detection. So far, most of the
methods detect SVs by following a model and match approach, i.e., a sequenc-
ing data specific alignment model is first created for different SV types and
further matched with the observations from sequence alignment for discovery.
Though mode-based approach is well-performed for detecting simple SVs
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(i.e., deletions, inversions, duplications, insertions and translocations), it is
neither effective nor efficient to resolve complex events due to the compli-
cated internal structure for modeling. On the other hand, complex events are
largely unexplored, which also limits the detection through a model-based
approach. Therefore, novel algorithms that can detect complex events or
curate existing discoveries are in great demand, especially for sequencing
oriented clinical diagnosis.

In this thesis, we first design two novel algorithms, graph based and
deep learning based, to detect complex structural variants (CSVs) without
predefined models. Secondly, we systematically assess the reproducibility
of current SV detection methods among different datasets, helping users
select proper methods and datasets for their applications. In this way, we
address our main research questions, dealing with detection and assessment
of structural variants.

Since short-read sequencing has been widely used in large cohort studies,
a graph based approach was first developed, aiming to profile complex events
at a large scale. Specifically, the graph was used to represent alternative
connections derived from an individual genome, from which CSVs were
detected as frequent local maximal subgraphs. However, due to the limited
read length, the graph-based approach based on short-read data was not
able to resolve the accurate internal structure.

As the price of long-read sequencing decreases, its usage for both research
and clinical settings is expected to increase dramatically in the next few years.
Therefore, we further developed SVision, a deep-learning based multi-object
recognition framework, to automatically detect and characterize both simple
and complex SVs from sequence image. In addition, since vast amounts of
sequence data and SV callsets have become available, a high-throughput
orthogonal validation approach is also in demand. We thus developed a novel
algorithm, SpotSV, to assess the quality of predicted SVs, including their
breakpoints and type. SpotSV uses the denoised segment to examine the
breakpoints of predicted SVs, improving the assessment of complex events
and SVs at repetitive regions. Our results suggest that the novel detection
algorithms and the validation algorithm outperformed the state-of-the-art
methods.

Furthermore, it is expected that HT'S based SV detection will become
a routine clinical diagnosis approach, especially for complex diseases, such
as cancer. We then systematically evaluated the robustness of detection
algorithms by using different sequence alignment algorithms and sequencing
platforms, of which the sensitivity, specificity and breakpoint accuracy were
examined.
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6.2 Perspectives

This section contains directions for future research.

Flexible connection graph data structure for SV detection

In Chapter 2, a graph, representing alternative connections, has been success-
fully used to detect simple and complex events from an individual genome.
Recently, long-read sequencing has revolutionized the detection and study of
SVs, and it would add extra connections to the graph built on short-read.
Moreover, long-reads are able to accurately resolve the CSV internal structure
as we show in Chapter 3. Thus, a flexible data structure that could integrate
both the advantage of short-read and long-read sequencing is expected to
improve the detection, such as finding the accurate breakpoints induced by
short-reads and internal structure characterized by long-reads.

Frequent subgraph mining among population genome graph
Since a large amount of sequencing data is available for both healthy and
disease genomes, one of the biggest issues is how to detect SVs at a large
scale, which is critical to understand evolution and disease progression. In
principle, each individual genome mapping to the reference genome could be
converted to a connection graph, thereby leading to a population-scale genome
connection graph. Afterwards, frequent subgraphs representing certain types
of SV or CSV could be detected based on the subgraph topology. Most
importantly, a population-scale genome connection graph would enable rare
SV detection in personal genome because the rare SV of an individual genome
might be frequent among population. This feature makes it a valuable data
structure to compare SVs within population or between populations, and it
could also facilitate the analysis of undiagnosed disease.

Compare and merge SVs at population-scale

In Chapter 4, we develop a novel algorithm to assess the quality of predicted
SVs, especially for complex ones and SVs at repetitive regions. Similar to SV
quality evaluation of an individual genome, comparison and merging SVs
at population-scale is another challenging computational problem, affecting
downstream analysis, such as SV formation and Mendelian disease. In general,
SV comparison is difficult because they vary across individuals and are
discovered through different data and methods. Therefore, an approach that
could detect and merge SVs simultaneously at population-scale is able to
avoid the issue of detecting from different data and methods. We would also
adopt the idea of a population-scale connection graph, integrating both short-
read and long-read data, for SV comparison and merging at population-scale.
Specifically, if one SV is common in population, it is expected to detect
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a local subgraph of dense alternative connections derived from different
individuals, and these connections are approximately equal based on specific
edge attributes. Finally, a merged SV call set of multiple samples could be
derived from detected subgraphs in the connection graph.

SV graph for somatic SV detection

In Chapter 3, a graph is used to represent the CSV internal structure, which
also enables the graph based validation via graph alignment. So far, a number
of studies have shown the strength of using long-reads to analyze tumor
genomes compared with short-read data, whereas algorithms for somatic SV
detection based on long-reads are underdeveloped. The graph implemented
in Chapter 3 provides an important hint to isolate somatic SVs from the
genetic background of a patient. Briefly, the germline SVs (i.e., genetic
background) represented as mini graph are first embedded into the linear
reference genome, resulting in a germline graph. Secondly, the sequencing
data from matched tumor tissue could be aligned to the germline graph, from
which the newly formed subgraph or path is identified to be a somatic SV
and the augmentation graph could be built. Since tumor tissue might contain
cells originated from different clones, detecting SVs from different clones
is important to help understand the tumorigenesis. The above step could
be done recursively to detect subclonal SVs, and this recursive process is
terminated when new path could not be identified from the graph alignments.
This is a complicated computational approach, which requires optimized
graph augmentation and alignment algorithm for effective SV detection.

A structural variants analysis system for clinical settings

In Chapter 5, we have evaluated the factors that might affect SV detection
from the clinical perspectives. On the other hand, the downstream analysis,
such as SV quality assessment (Chapter 4) and SV merging, is also critical
for clinical diagnosis. Therefore, a SV analysis system from detection to
result interpretation would fill the gap between research output and clinical
application, which becomes even important as the number of undiagnosed
cases increases and the price of sequencing decrease. Moreover, a user-friendly
interface for doctors or non-computing experts is preferred and valuable to
expand the usage of sequencing technology assisted diagnosis. Therefore,
as an algorithm designer and implementer, future research will continue to
develop algorithms for challenging biological or clinical problems. In addition,
we aim to carefully implement the algorithms and provide user-friendly
graphic interfaces, enabling the application of HTS technology in clinical
settings.
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English summary

Structural variants (SVs) are the hidden architecture of the human genome,
and are critical for us to understand diseases, evolution, and so on. The
development of both sequencing technologies and computational tools greatly
facilitates the detection of SVs, while misinterpreting or even missing complex
ones. Detecting and characterizing complex events is a typical field requiring
multiple disciplines, i.e., domain knowledge and computer science algorithms.

In this thesis, we introduce novel algorithms to detect and validate com-
plex events, and assess the reproducibility of current SV detection pipelines
for clinical and research settings.

Chapter 1 begins with the introduction of DNA, various types of SVs and
sequencing technologies. Then fundamental techniques and algorithms from
computer science related to the thesis are briefly described. Pattern mining,
graphs and deep learning are applied to detect and characterize different
types of complex SVs (CSVs). CSVs usually contain multiple breakpoints
and are often missed or misinterpreted by traditional detection strategies
developed for simple SV detection. Most importantly, CSVs are largely
underexplored, making them even challenging to detect based on existing
knowledge. Considering the sequencing cost and detection accuracy for
different application scenarios, we first develop algorithms for both short-
read and long-read sequencing technologies without pattern matching against
a database of know structures of SVs. Currently, short-read sequencing is
significantly reduced in cost and has been widely applied to clinical diagnostics
and cohort studies. To detect CSVs from short-read sequencing, we consider
that SVs change the connections of adjacent segments with alternative
connection derived from abnormally aligned paired-end reads.

Accordingly, in Chapter 2, we propose a frequent maximal subgraph min-
ing approach (Mako) to detect both SVs and CSVs from a graph built from
abnormal alignments. This graph is called signal graph, where nodes represent
positions of connected genomic segments and edges indicate alternative and
reference connections between genomic segments. We then apply a linearized
database with prefix index schema to efficiently detect frequent maximal
subgraphs from the signal graph, from which SVs and CSVs are derived from
detected subgraphs. Compared to other approaches, a graph is able to depict
complex genomic segment connections originating from CSVs. Moreover,
detected CSV subgraphs are interpretable, making it possible to understand
and compare different types of CSVs. However, limited by the read length of
short-read sequencing, two simple SVs from different haplotypes might be
detected as a single CSV event. On the other hand, short read length would
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also be problematic for read mapping at regions with potential CSVs, where
breakpoints belonging to a CSV could be potentially missed by callers. With
the advances of long-read sequencing, a single read is more likely to span an
entire CSV event compared to short-read sequencing. This greatly simplifies
the confirmation of CSVs by investigating the difference and similarity of
reads and its counterpart sequence from the reference genome. As a result, an
increasing number of CSV have been revealed through intensive breakpoint
analysis and visual confirmation. However, this is only applicable to small
amounts of samples, which would not satisfy the ever-increasing demand of
studying CSVs at population scale.

In Chapter 3, we leverage the human intelligence of identifying CSVs from
visualization, and develop a multi-object recognition framework (SVision) to
detect both SVs and CSVs without previous knowledge of SV structures. We
first propose a sequence-to-image coding schema, which not only describes
the differences and similarities of two sequences but also removes the back-
ground sequence context. This coding strategy enables us to efficiently and
effectively detect CSVs even at complex genomic regions. In addition, CSV
representation or interpretation is another challenging problem that hinders
the definition and cross study of CSVs. Inspired by the graph structure used
in Chapter 2, we also use a graph to represent and compare CSVs detected
from long-read data, from which we are able to classify different types of
CSVs by measuring graph isomorphisms. But different from nodes in the
signal graph proposed in Chapter 2, a node of the CSV graph in Chapter 3
represents a matched sequence between two sequences. This feature makes it
possible to genotype CSVs based on graph alignment. Moreover, this provides
a novel idea of detecting SVs from a SV graph instead of detecting from a
biased linear reference. We expected this graph-based SV detection approach
will help to detect somatic SVs and SVs from tumor subclones.

Having developed two SV detection algorithms for trending sequencing
technologies, we next aim to further explore the possibilities of applying long-
read sequencing in various applications. In general, we observe that the high-
confident SVs detected from reproducible analysis pipelines are critical for
long-read applications in either clinical or research settings. Therefore, we first
develop a high-throughput SV validation approach (SpotSV) to identify high-
confident SVs in Chapter 4. Different from SV detection, SV validation focuses
on exclude false negatives and corrects inaccurate SV characterizations, such
as type and breakpoints. The idea of this validation approach is also inspired
by the way in which human experts visually characterize SVs. We first
apply a light-weighted local realignment method to locate different segments
between two sequences. Then, we adopt a simple two-dimensional geometry
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calculation to measure the confidence of a detected SV.

Additionally, in Chapter 5, we assess the reproducibility of existing
pipelines on detecting germline and somatic SVs. This chapter systematically
investigates the difference of assembly-based and alignment-based SV detec-
tion, highlighting major factors for discordant discoveries. We expect that
this evaluation will help non-experts to understand the difference between
methods and thus will help them to select proper analysis pipelines in their
own applications.

Finally, in Chapter 6, we mention future research directions regarding the
accurate detection of SVs for both research and clinical settings. Notably, we
are confident that the combination of BioTech and InfoTech, often referred
to as BT-IT, will revolutionize future health care.
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Nederlandse samenvatting

Structurele varianten (SV’s) vormen eigenlijk de verborgen architectuur
van het menselijk genoom, en zijn van cruciaal belang voor ons om ziektes
en evolutie te begrijpen. De ontwikkeling van sequencing-technologie en
algoritmen maakt de detectie van SV’s mogelijk, maar complexe SV’s worden
soms verkeerd geinterpreteerd of zelfs over het hoofd gezien. Het ontdekken en
karakteriseren van complexe events is een vakgebied dat meerdere disciplines
omvat, waaronder domeinkennis en gespecialiseerde algoritmen.

In dit proefschrift introduceren we nieuwe algoritmen om complexe events
te detecteren en te valideren, en om de reproduceerbaarheid van huidige
SV-detectie pipelines voor klinische toepassingen en onderzoek te beoordelen.

Hoofdstuk 1 begint met de introductie van DNA, verschillende soorten
SV’s en sequencing-technologie. Vervolgens worden fundamentele technieken
en algoritmen uit de informatica die verband houden met het proefschrift
kort beschreven. Pattern mining, grafen en deep learning worden toegepast
om verschillende soorten complexe SV’s (CSV’s) te detecteren en te karak-
teriseren. CSV’s bevatten meestal meerdere breakpoints en worden vaak over
het hoofd gezien of verkeerd geinterpreteerd door traditionele strategieén die
zijn ontwikkeld voor eenvoudige SV-detectie. Het belangrijkste is dat CSV’s
grotendeels onderbelicht zijn, waardoor ze zelfs moeilijk te detecteren zijn op
basis van bestaande kennis. Rekening houdend met de sequencing-kosten en
detectienauwkeurigheid voor verschillende scenario’s, hebben we eerst algo-
ritmen ontwikkeld voor zowel short-read als long-read sequencing-technologie
zonder patroonovereenkomst ten opzicht van een database met bekende
SV-structuren. Momenteel is short-read sequencing aanzienlijk goedkoper en
wordt het op grote schaal toegepast in klinische diagnostiek en cohortstudies.
Om CSV’s via short-read sequencing te detecteren, zijn we van mening dat
SV’s de verbindingen van aangrenzende segmenten veranderen door middel
van een alternatieve verbinding, afgeleid van abnormaal uitgelijnde reads
met gepaarde uiteinden.

Daarom stellen we in Hoofdstuk 2 een aanpak (Mako) voor die gebruik
maakt van een frequente maximale subgraaf, gebaseerd op abnormale align-
ments, om zowel SV’s als CSV’s te detecteren. Deze graaf wordt signal-graaf
genoemd, waarbij knopen posities van verbonden genoom-segmenten verte-
genwoordigen en takken alternatieve en referentieverbindingen tussen genoom-
segmenten aangeven. Vervolgens hebben we een gelineariseerde database
met prefix-indexschema toegepast om efficiént frequente maximale subgrafen
in de signal-graaf op te sporen, waaruit SV’s en CSV’s werden afgeleid uit
gedetecteerde subgrafen. In vergelijking met andere benaderingen is een
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graaf in staat om complexe genoom-segmentverbindingen weer te geven
die afkomstig zijn van CSV’s. Bovendien zijn gedetecteerde CSV-subgrafen
interpreteerbaar, waardoor het mogelijk wordt om verschillende soorten
CSV’s beter te begrijpen en te vergelijken. Echter, beperkt door de leeslengte
van short-read sequencing, kunnen twee eenvoudige SV’s van verschillende
haplotypes worden gedetecteerd als een enkele CSV-gebeurtenis. Aan de
andere kant zou een korte leeslengte (read length) ook problematisch zijn
voor toewijzing in gebieden met potenti€le CSV’s, waar breakpoints die bij
een CSV horen, mogelijk door “callers” zouden kunnen worden gemist. Met
de vooruitgang in long-read sequencing, is de kans groter dat een enkele read
een hele CSV-gebeurtenis omvat in vergelijking met short-read sequencing.
Dit vereenvoudigt de bevestiging van CSV’s aanzienlijk door het verschil en
de gelijkenis van de read en de corresponderende sequentie op het referen-
tiegenoom te onderzoeken. Als gevolg hiervan is een toenemend aantal CSV’s
ontdekt door middel van intensieve breakpoint-analyse en visuele bevestiging.
Dit is echter alleen van toepassing op kleine hoeveelheden steekproeven, die
niet voldoen aan de steeds toenemende vraag naar het bestuderen van CSV’s
op populatieschaal.

In Hoofdstuk 3 hebben we gebruik gemaakt van menselijke intelligentie
voor het identificeren van CSV’s op basis van visualisatie, en hebben we
een raamwerk voor herkenning van meerdere objecten (SVision) ontwikkeld
om zowel SV’s als CSV’s te detecteren zonder voorafgaande kennis van
SV-structuren. We stellen eerst een sequentie-naar-beeld coderingsschema
voor, dat niet alleen de verschillen en overeenkomsten van twee sequenties
beschrijft, maar ook de context van de achtergrondsequentie verwijdert. Deze
coderingsstrategie stelt ons in staat om CSV’s efficiént en effectief te de-
tecteren, zelfs in complexe genoom-gebieden. Verder is de CSV-representatie
of -interpretatie een ander uitdagend probleem dat de definitie en studie van
CSV'’s belemmert. Geinspireerd door de graafstructuur die in Hoofdstuk 2
wordt gebruikt, hebben we ook een graaf gebruikt om CSV’s die zijn gede-
tecteerd uit long-read gegevens weer te geven en te vergelijken, van waaruit
we verschillende typen CSV’s kunnen classificeren door graafisomorfismen
te benutten. Maar anders dan een knoop in de signal-graaf voorgesteld in
Hoofdstuk 2, vertegenwoordigt een knoop van de CSV-graaf in Hoofdstuk
3 een gematchte deelsequentie tussen twee sequenties. Deze functie maakt
het mogelijk om CSV’s te genotyperen op basis van alignment van de graaf.
Bovendien biedt dit een nieuw idee voor het detecteren van SV’s uit een
SV-graaf in plaats van het detecteren van vertekening in de referentie. We
verwachten dat deze op grafen gebaseerde SV-detectiebenadering zal helpen
om somatische SV’s en SV’s van tumorsubklonen te detecteren.
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DUTCH SUMMARY

Nadat we twee SV-detectiealgoritmen voor trending sequencing-techno-
logie hebben ontwikkeld, willen we vervolgens de mogelijkheden van het
gebruik van long-read sequencing in verschillende toepassingen verder on-
derzoeken. Over het algemeen zijn we van mening dat de meest betrouw-
bare SV’s die zijn gedetecteerd via reproduceerbare analyse-pipelines van
cruciaal belang zijn voor long-read toepassingen in klinische of onderzoek-
somgevingen. Daarom hebben we in Hoofdstuk 4 eerst een high-throughput
SV-validatieaanpak (SpotSV) ontwikkeld om de meest betrouwbare SV’s te
identificeren. Anders dan SV-detectie, richt SV-validatie zich op het uitsluiten
van false negatives en corrigeert onnauwkeurige SV-karakteriseringen, zoals
type en breakpoints. Het idee van deze validatieaanpak is ook geinspireerd op
de manier waarop menselijke experts SV’s visueel karakteriseren. We hebben
eerst een eenvoudige lokale herschikkingsmethode toegepast om verschillende
segmenten tussen twee sequenties te lokaliseren. Vervolgens hebben we een
eenvoudige tweedimensionale berekening gebruikt om de betrouwbaarheid
van een gedetecteerde SV te meten.

Daarnaast hebben we in Hoofdstuk 5 de reproduceerbaarheid van be-
staande pipelines voor het detecteren van kiembaan SV’s en somatische SV’s
beoordeeld. Dit hoofdstuk onderzoekt systematisch het verschil tussen op
assembly gebaseerde en op alignment gebaseerde SV-detectie, waarbij de
belangrijkste factoren voor tegenstrijdige ontdekkingen werden benadrukt.
We verwachten dat deze evaluatie niet-experts zal helpen om het verschil in
methoden te begrijpen en hen zo in staat zal stellen om de juiste analyse-
pipelines in hun eigen toepassingen te selecteren.

Tot slot, in Hoofdstuk 6, beschrijven we toekomstige onderzoeksrichtingen
met betrekking tot de nauwkeurige detectie van SV’s voor zowel onderzoeks-
als klinische instellingen. We zijn er met name van overtuigd dat de combinatie
van BioTech en InfoTech, ook wel BT-IT genoemd, een revolutie teweeg zal
brengen in de toekomstige gezondheidszorg.
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