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Abstract
When a recurrent event process is ended by death, thismay imply dependent cen-
soring if the two processes are associated. Such dependent censoring would have
to be modeled to obtain a valid inference. Moreover, the dependence between
the recurrence process and the terminal event may be the primary topic of inter-
est. Joint frailty models for recurrent events and death, which include a sepa-
rate dependence parameter, have been proposed for exactly observed recurrence
times. However, in many situations, only the number of events experienced dur-
ing consecutive time intervals are available. We propose a method for estimating
a joint frailtymodel based on such interval counts and observed or independently
censored terminal events. The baseline rates of the two processes are modeled by
piecewise constant functions, and Gaussian quadrature is used to approximate
the marginal likelihood. Covariates can be included in a proportional rates set-
ting. The observation intervals for the recurrent event counts can differ between
individuals. Furthermore,we adapt a score test for the association between recur-
rent events and death to the setting in which only individual interval counts are
observed. We study the performance of both approaches via simulation studies,
and exemplify the methodology in a biodemographic study of the dependence
between budding rates and mortality in the species Eleutheria dichotoma.
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1 INTRODUCTION

Studies of recurrent events, in which an individual can experience the same type of event repeatedly over time, are com-
mon in various fields of applications (Cook & Lawless, 2007). Examples range from medical studies of the recurrence of
adverse symptoms, such as epileptic seizures, asthma attacks, or tumor relapse; to investigations of repeated insurance
claims; to biodemographic studies of fertility (recurrent reproductive events) in particular animal species.
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In some cases, the exact occurrence times can be observed, but often only the numbers of events that were experienced
in specific time intervals are available. Such interval counts of recurrent events may result if, for example, patients only
report the number of adverse events that they experience between two hospital visits, or the number of offspring produced
by an animal is collected on a monthly basis only. In the latter example, the observation intervals would be the same for
all individuals, while in the former example, we would expect the intervals between the two visits to vary from patient
to patient.
The recurrent event process is often terminated by another event—most commonly by death—which usually cannot

be assumed to be independent of the recurrent event process. Consequently, the terminal event introduces dependent
censoring of the recurrence process, and this has to be taken into account to render a valid inference. Therefore, the two
processes, the recurrent event process and the terminal event, have to be modeled jointly.
In many medical applications, the dependence of the two processes will be positive; that is, a higher recurrence rate

of the (adverse) symptoms will be accompanied by a higher hazard of death. In other contexts, however, the direction of
the association between the recurrence process and the terminal event is not clear at the outset, and will be a matter of
interest in itself.
Our motivating example examines fertility and mortality in Eleutheria dichotoma, a marine hydrozoan for which

the association between fertility and mortality has not previously been studied in detail. Reproduction and survival in
E. dichotoma were investigated in a laboratory experiment for several months (Dańko, Schaible, & Dańko, 2020). Indi-
vidual survival times and the number of offspring that were produced by each individual within successive intervals of
several days were recorded. The intervals resulted from the laboratory procedures and varied across individuals. These
data were used to estimate the patterns of fertility and mortality over age, but the dependence between the two processes
is also of biological interest.
It has been suggested that in some species, there is a trade-off between reproduction and survival. This idea is based on

the assumption that individuals who produce a higher number of offspring are able to devote fewer resources to main-
tenance, and will, therefore, tend to die earlier. The claim that there is a cost of reproduction effect is in contrast to the
hypothesis that individuals who are stronger will be able to both produce more offspring and survive longer. Therefore,
in addition to modeling the shape of age-specific fertility and mortality, the aim of the analysis is to find out which of the
two explanations the data on E. dichotoma support. Thus, we will model fertility and mortality jointly to assess how the
two processes are related in this species.
Several approaches to jointlymodeling recurrent events and death have been proposed.We focus here on the joint frailty

model introduced by Liu et al. (2004) because it allows for positive and negative associations between the recurrences and
death. The dependence between the two processes is modeled by a shared individual random effect that acts on both
the rate of recurrence and the hazard of death, possibly in different directions. In other frailty models, frailty has the
same effect on the recurrence rate and the hazard of death. Thus, these models are restricted to a positive association (see
Huang &Wang, 2004, in the setting with exact recurrence times, or Lancaster & Intrator, 1998, in the setting with interval
counts). Asmarginalmodels for recurrent events in the presence of death leave the dependence between the two processes
unspecified, they are not suitable for our purposes (see Cook & Lawless, 1997; Ghosh & Lin, 2003, in the setting with exact
recurrence times, or Zhao, Li, & Sun, 2013, in the setting with interval counts). Sinha and Maiti (2004) proposed a model
similar to that of Liu et al. (2004), which is based on interval counts, but assumes that observation intervals are the same
for all individuals, and that the termination time is discrete.
Estimation of the joint frailty model introduced by Liu et al. (2004) has so far only been based on observed recur-

rence times. For this setting, several methods of estimation have been developed: Liu et al. (2004) used a Monte Carlo
expectation-maximization (EM) algorithm, whereas Liu and Huang (2008) and Rondeau, Mathoulin-Pelissier, Jacqmin-
Gadda, Brouste, and Soubeyran (2007) applied Gaussian quadrature to the marginal likelihood. Moreover, a test for the
association between recurrent events and a terminal event in the joint frailty model was derived by Balan, Boonk, Ver-
meer, and Putter (2016), which was also based on observed recurrence times. It builds on concepts that are similar to the
test proposed by Huang, Wolfe, and Hu (2004) for the association between two event processes in clustered survival data.
In this paper, we propose methods for making inferences in the joint frailty model when only individual interval counts

of the recurrent events are observed, and these observation intervals can vary between individuals. We will adapt the
method of Liu and Huang (2008) for the estimation of the joint frailty model, and we will adjust the score test developed
by Balan et al. (2016) to the setting in which only interval counts are available.
The paper is structured as follows. In Section 2, we describe the joint frailty model for recurrent events and death, as

well as the setting of individual interval counts. In Section 3, we present our approach of using Gaussian quadrature to
estimate the joint frailty model based on interval counts, and adapt the score test for association in the joint frailty model.
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In Section 4, we assess the performance of the estimationmethod and the test in simulation studies. In Section 5, we apply
the proposed methods to the data on E. dichotoma, followed by a discussion in Section 6.

2 JOINT FRAILTYMODEL AND INTERVAL COUNTS

Before presenting the estimation and test procedure in the next section, we will introduce in the following the joint frailty
model, which allows us to model the dependence of the recurrent event process and the terminal event. We then derive
the likelihood function for data that only contain interval counts of the recurrent events.
We consider a sample of 𝑚 independent individuals denoted by 𝑖, 𝑖 = 1, … ,𝑚. Each individual 𝑖 is observed from

time 𝑡0 = 0 until the end of its follow-up 𝑋𝑖 . The time 𝑋𝑖 is either a censoring time 𝐶𝑖 , which is independent of the recur-
rent event process and the terminal event, such as end of study; or it is the time 𝐷𝑖 of the terminal event, whichever
comes first: 𝑋𝑖 = min (𝐶𝑖, 𝐷𝑖). For simplicity, we assume that the terminal event is death, and denote by 𝛿𝑖 = 𝟙{𝐷𝑖 ≤ 𝐶𝑖}

the death indicator, where 𝟙{⋅} is the indicator function.𝑌𝑖(𝑡) = 𝟙{𝑡 ≤ 𝑋𝑖}, 𝑡 ≥ 0, is the at-risk indicator at time 𝑡. We define
two additional counting processes𝑁𝐷∗

𝑖
(𝑡) = 𝟙{𝐷𝑖 ≤ 𝑡} and𝑁𝐷

𝑖
(𝑡) = 𝟙{𝑋𝑖 ≤ 𝑡, 𝛿𝑖 = 1}, where𝑁𝐷∗

𝑖
(𝑡) refers to the actual (but

potentially unobserved) terminal event, whereas𝑁𝐷
𝑖
(𝑡) is the counting process of an observed terminal event, respectively.

For the recurrent event process, we denote with 𝑁𝑅∗
𝑖
(𝑡) the number of events of individual 𝑖 in the interval [0, 𝑡]. How-

ever, we only observe 𝑁𝑅
𝑖
(𝑡) = 𝑁𝑅∗

𝑖
(min (𝑡, 𝑋𝑖)). The increments of the recurrence process over small intervals [𝑡, 𝑡 + d𝑡)

are d𝑁𝑅∗
𝑖
(𝑡) = 𝑁𝑅∗

𝑖
((𝑡 + d𝑡)−) − 𝑁𝑅∗

𝑖
(𝑡−). Here, 𝑡− denotes the left-hand limit.

Additional observed characteristics of individual 𝑖 are collected in the covariate vector 𝒛𝑖 , whereas unobserved charac-
teristics are summarized in a frailty value 𝑢𝑖 . The 𝑢𝑖 are realizations of a positive random variable 𝑈, independent across
individuals. The observed data on individual 𝑖 up to time 𝑡 are collected in 𝑂𝑖(𝑡) = {𝑌𝑖(𝑠), 𝑁

𝑅
𝑖
(𝑠), 𝑁𝐷

𝑖
(𝑠), 0 ≤ 𝑠 ≤ 𝑡; 𝒛𝑖}.

As in Liu et al. (2004), the recurrence process is characterized by the intensity 𝑌𝑖(𝑡)𝜆𝑖(𝑡), for which we assume

P(d𝑁𝑅
𝑖
(𝑡) = 1 ∣ 𝑡− , 𝐷 ≥ 𝑡) = 𝑌𝑖(𝑡)𝜆𝑖(𝑡)d𝑡 with

𝜆𝑖(𝑡)d𝑡 = dΛ𝑖(𝑡) = P(d𝑁𝑅∗
𝑖
(𝑡) = 1 ∣ 𝒛𝑖, 𝑢𝑖, 𝐷𝑖 ≥ 𝑡),

(1)

where 𝑡 = 𝜎{𝑂𝑖(𝑠), 0 ≤ 𝑠 ≤ 𝑡, 𝑢𝑖; 𝑖 = 1, … ,𝑚}.
Analogously, for the terminal event

P(d𝑁𝐷
𝑖
(𝑡) = 1 ∣ 𝑡−) = 𝑌𝑖(𝑡)ℎ𝑖(𝑡)d𝑡 with

ℎ𝑖(𝑡)d𝑡 = d𝐻𝑖(𝑡) = P(d𝑁𝐷∗
𝑖

(𝑡) = 1 ∣ 𝒛𝑖, 𝑢𝑖, 𝐷𝑖 ≥ 𝑡).

The joint frailty model for recurrent events and death, as proposed by Liu et al. (2004), is then specified as

𝜆𝑖(𝑡) = 𝑢𝑖 𝑒
𝜷′𝒛𝑖 𝜆0(𝑡),

ℎ𝑖(𝑡) = 𝑢
𝛾
𝑖
𝑒𝜶

′𝒛𝑖ℎ0(𝑡),
(2)

with baseline rates 𝜆0(𝑡) and ℎ0(𝑡) that are common to all individuals.
The shared frailty 𝑢 enters both the recurrent event rate and the hazard rate of the terminal event, thereby introducing

both dependence between the recurrences within one individual, as well as the association between the recurrences and
the terminal event. The parameter 𝛾 determines the direction and the strength of the association between the two pro-
cesses. If 𝛾 > 0, a higher rate of recurrence implies a higher mortality risk; if 𝛾 < 0, a higher rate of recurrence implies a
lower mortality risk. If 𝛾 = 0, the rate of recurrence does not affect the mortality risk.
The frailties 𝑢𝑖 are often assumed to follow a gamma distribution with mean one and variance 𝜃. In the following, we

will more generally assume that the 𝑢𝑖 stem from a distribution with density 𝑔𝜃(𝑢) with parameter 𝜃.
The covariates 𝒛𝑖 enter in (2) in a proportional rates or a proportional hazards formulation, but can have different effects

𝜶 and 𝜷 on the terminal event and the recurrence process, respectively.
In the simplest setting, the exact times of event occurrence are observed. In many cases, however, only the number

of events that occurred in a sequence of consecutive time intervals is available. More precisely, we observe individual
interval counts 𝑛𝑖𝑗 as realizations of𝑁𝑖𝑗 = 𝑁𝑅

𝑖
(𝑡𝑖𝑗) − 𝑁𝑅

𝑖
(𝑡𝑖𝑗−1).𝑁𝑖𝑗 shows the number of recurrent events experienced by
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individual 𝑖 in the interval 𝐼𝑖𝑗 = (𝑡𝑖𝑗−1, 𝑡𝑖𝑗], 𝑗 = 1,… , 𝐽𝑖 . 𝑡𝑖𝑗 correspond to the observation times of individual 𝑖, for instance,
times of hospital visits in medical studies or, as in our example, generated by the lab logistics. Thus, both the positions of
the 𝐼𝑖𝑗 and the total number of intervals 𝐽𝑖 can vary across individuals. The follow-up times 𝑋𝑖 are still exactly observed so
that 𝑡𝑖𝐽𝑖 = 𝑋𝑖 .
As the frailties 𝑢𝑖 are unobservable, the inference is based on the marginal likelihood that is obtained by integrating

the conditional likelihood given the frailties 𝑢𝑖 over the frailty distribution 𝑔𝜃(𝑢). The conditional likelihood of the joint
frailty model (2) based on exactly observed recurrence times was developed in Liu et al. (2004). For the current setting,
the likelihood factor for the recurrence times (formula (7) in Liu et al., 2004) has to be replaced by the contribution of the
interval counts of the recurrent events. From (1) and (2), it follows that (𝑁𝑖𝑗 ∣ 𝒛𝑖, 𝑢𝑖, 𝐷𝑖 ≥ 𝑡𝑖𝑗) has a Poisson distribution
with mean 𝑢𝑖𝜇𝑖𝑗 , where 𝜇𝑖𝑗 = ∫

𝐼𝑖𝑗
𝑒𝜷

′𝒛𝑖 𝜆0(𝑠)d𝑠. Therefore, the likelihood contribution 𝐿
(𝑐)
𝑖
(𝑢𝑖) of individual 𝑖 conditional

on its frailty value 𝑢𝑖 is given by

𝐿
(𝑐)
𝑖
(𝑢𝑖) =

𝐽𝑖∏
𝑗=1

1

𝑛𝑖𝑗!
exp (−𝑢𝑖𝜇𝑖𝑗)(𝑢𝑖𝜇𝑖𝑗)

𝑛𝑖𝑗 [𝑢
𝛾
𝑖
𝑒𝜶

′𝒛𝑖ℎ0(𝑥𝑖)]
𝛿𝑖 exp

{
−∫

𝑥𝑖

0

𝑢
𝛾
𝑖
𝑒𝜶

′𝒛𝑖ℎ0(𝑠)d𝑠

}
.

This leads to the marginal likelihood contributions

𝐿𝑖 = ∫
∞

0

𝐿
(𝑐)
𝑖
(𝑢) 𝑔𝜃(𝑢) d𝑢 . (3)

In general, this integral does not have a closed-form expression.

3 METHODS

In the first part of this section, we elaborate the estimation procedure of the joint frailty model based on interval counts
with different individual observation intervals. Then, in Section 3.2, we demonstrate how the score test for dependence
between the two processes can be adapted to the case of interval-count data.

3.1 Estimation of the joint frailty model based on interval counts

For observed recurrence times, Liu and Huang (2008) suggested using Gaussian quadrature to approximate the marginal
likelihood of the joint frailty model. The approximated likelihood can then be maximized directly because the integral is
replaced by a weighted sum of function values. More specifically, Liu and Huang (2008) applied Gauss–Hermite quadra-
ture, which for a function 𝑓(𝑥) uses the approximation

∫
∞

−∞

𝑓(𝑥) 𝑒−𝑥
2
d𝑥 ≈

𝑄∑
𝑞=1

𝑤𝑞 𝑓(𝑥𝑞) .

The quadrature points 𝑥𝑞 are the roots of the 𝑄th-order Hermite polynomial, and 𝑤𝑞 are the corresponding weights. This
approach is applicable to marginal likelihoods that are integrated over normal random effects, for which

∫
∞

−∞

𝐿(𝑐)(𝑣) 𝜙(𝑣) d𝑣 ≈

𝑄∑
𝑞=1

�̃�𝑞 𝐿
(𝑐)(�̃�𝑞) 𝜙(�̃�𝑞), (4)

with the standard normal density 𝜙(⋅), and modified quadrature points �̃�𝑞 =
√
2𝑥𝑞 together with weights �̃�𝑞 =

√
2𝑤𝑞𝑒

𝑥2𝑞 .
For nonnormal random effects, Liu and Huang (2008) used the probability integral transformation proposed by Nelson
et al. (2006). If the random effect density is 𝑔𝜃(𝑢) with corresponding distribution function 𝐺𝜃(𝑢), then the integral over
the density 𝑔𝜃(𝑢) is transformed into an integral over standard normal random effects. This is achieved by noting that



BÖHNSTEDT et al. 327

𝑎 = Φ−1(𝐺𝜃(𝑢)) follows a standard normal distribution if the 𝐺𝜃(𝑢), which follow a standard uniform, are transformed by
the inverse of the standard normal distribution function Φ(⋅).
We apply this quadrature approach to the marginal likelihood of the joint frailty model based on interval counts of

recurrent events; see Equation (3). Substituting 𝑢 = 𝐺−1
𝜃
(Φ(𝑎)) in the marginal likelihood contributions, we obtain

𝐿𝑖 = ∫
∞

0

𝐿
(𝑐)
𝑖
(𝑢) 𝑔𝜃(𝑢) d𝑢 = ∫

∞

−∞

𝐿
(𝑐)
𝑖
(𝐺−1

𝜃
(Φ(𝑎))) 𝜙(𝑎) d𝑎 .

These 𝐿𝑖 can directly be approximated using Gauss–Hermite quadrature as

𝐿𝑖 ≈

𝑄∑
𝑞=1

𝐿
(𝑐)
𝑖
(𝐺−1

𝜃
(Φ(�̃�𝑞))) 𝜙(�̃�𝑞) �̃�𝑞,

with �̃�𝑞 and �̃�𝑞 as defined in (4). The approximate marginal likelihood of the joint frailty model is then given by

𝑚∏
𝑖=1

𝑄∑
𝑞=1

𝐿
(𝑐)
𝑖
(𝐺−1

𝜃
(Φ(�̃�𝑞))) 𝜙(�̃�𝑞) �̃�𝑞. (5)

To actually maximize the approximate likelihood (5), we have to specify the baseline rates 𝜆0(𝑡) and ℎ0(𝑡), as well as the
frailty distribution 𝑔𝜃(𝑢). Similar to Liu and Huang (2008), we model the baseline rates as piecewise constant functions

𝜆0(𝑡) =

𝐾𝑅∑
𝑘=1

𝜆0𝑘𝟙{𝑡 ∈ 𝐼𝑅
𝑘
} and ℎ0(𝑡) =

𝐾𝐷∑
𝑘=1

ℎ0𝑘𝟙{𝑡 ∈ 𝐼𝐷
𝑘
} . (6)

This choice is particularly suitable if no prior knowledge of the shapes of the two rates 𝜆0(𝑡) and ℎ0(𝑡) is available. The
specifications of the intervals 𝐼𝑅

𝑘
= (𝑡𝑅

𝑘−1
, 𝑡𝑅
𝑘
], 𝑘 = 1,… , 𝐾𝑅, and 𝐼𝐷

𝑘
= (𝑡𝐷

𝑘−1
, 𝑡𝐷
𝑘
], 𝑘 = 1,… , 𝐾𝐷 , can differ between the recur-

rent event process and the death process in terms of both their lengths Δ𝑅
𝑘
= 𝑡𝑅

𝑘
− 𝑡𝑅

𝑘−1
and Δ𝐷

𝑘
= 𝑡𝐷

𝑘
− 𝑡𝐷

𝑘−1
and their total

numbers 𝐾𝑅 and 𝐾𝐷 . (The intervals for the piecewise constant baseline rates should not, however, be confused with the
intervals in which the numbers of recurrent events 𝑛𝑖𝑗 are observed; see Section 2.)
The baseline rate 𝜆0(𝑡) of the recurrence process enters the likelihood (5) through the conditional means 𝑢𝑖𝜇𝑖𝑗 of the

interval counts 𝑁𝑖𝑗 given the frailty value 𝑢𝑖 . Under the piecewise constant rate model, 𝜇𝑖𝑗 is computed as

𝜇𝑖𝑗 = ∫
𝐼𝑖𝑗

𝑒𝜷
′𝒛𝑖 𝜆0(𝑠)d𝑠 = 𝑒𝜷

′𝒛𝑖

𝐾𝑅∑
𝑘=1

𝜆0𝑘 max{0,min(𝑡𝑅
𝑘
, 𝑡𝑖𝑗) − max(𝑡𝑅

𝑘−1
, 𝑡𝑖𝑗−1)}.

Piecewise constant baseline rates offer more flexibility than parametric models, such as the Weibull model, while at the
same time remaining more tractable than purely nonparametric models. Previous studies have suggested that a moderate
number of intervals, that is, between 8 and 10 intervals, yields satisfactory estimation results (Lawless & Zhan, 1998; Liu
& Huang, 2008).
The performance of the piecewise constant model is usually improved when the interval cut-points 𝑡𝑘 are based on

quantiles of the recurrence and the survival times, respectively. In the current setting in which only interval counts of
recurrent events are observed, the exact recurrence times are unknown. If, however, the individual observation intervals 𝐼𝑖𝑗
are relatively short comparedwith the total follow-up, we can approximate quantiles by creating a set from the observation
times 𝑡𝑖𝑗 , with each repeated 𝑛𝑖𝑗 times, 𝑗 = 1,… , 𝐽𝑖 , 𝑖 = 1, … ,𝑚; and then determining the cut-points 𝑡𝑅

𝑘
as quantiles of this

set of times.
Parameter estimation in the joint frailty model is then done by maximizing the approximate marginal log-likelihood;

that is, the logarithm of (5). The standard errors for the parameter estimates can be obtained from the inverse of
the negative Hessian of the approximate marginal log-likelihood. Further computational details can be found in
Section A.1.
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3.2 Score test for the association between recurrences and death

The joint frailtymodel for recurrent events and death is rather complex, with estimation procedures that aremore involved
than those needed for the fitting of two separate models, one for the recurrent event process and one for the survival pro-
cess. Investigating whether the two processes are associated—and, consequently, whether jointmodeling is required—is a
useful first step. Moreover, the question of whether there is an association—and, if so, whether it is positive or negative—
can be a stand-alone issue, not necessarily followed by fitting a joint model.
Balan et al. (2016) proposed a correlation score test for the association between recurrences and terminal events in the

joint frailty model for settings with observed recurrence times. Their test can be performed by fitting separate models for
the recurrence times and the survival data, and, thus, without fitting the joint frailty model. In addition, the sign of the
test statistic is an indicator of the direction of the association. In the following, we show that this score test can be adapted
to the setting with interval counts of recurrent events, provided the survival times are exactly observed.
A test for association in the joint frailty model (2) corresponds to a test of 𝐻0∶ 𝛾 = 0 against 𝐻1∶ 𝛾 ≠ 0. All other

parameters, including those for the baseline rate models, are treated as nuisance parameters, and denoted by 𝜼. The score
test of Balan et al. (2016) is based on the score function for 𝛾 under the null hypothesis; that is,

𝑈𝛾(0, 𝜼) =
𝜕

𝜕𝛾
𝓁(𝛾, 𝜼) ∣𝛾=0,

where 𝓁 is the marginal log-likelihood of the joint frailty model. The authors showed that the score, evaluated at the
maximum likelihood estimate under 𝐻0, that is, (0, �̂�0), is proportional to the covariance of the estimated martingale
residuals of the terminal event and the “posterior” estimates of the log-frailties for the recurrent events given the observed
data. More formally, defining

𝐾𝑖(𝑢, 𝑡) = 𝑢𝑁
𝑅
𝑖
(𝑡−)+𝛾𝑁𝐷

𝑖
(𝑡−) exp

{
−𝑢𝑒𝜷

′𝒛𝑖Λ0(𝑡) − 𝑢𝛾𝑒𝜶
′𝒛𝑖𝐻0(𝑡)

}
, (7)

with the cumulative baseline rates Λ0(𝑡) = ∫ 𝑡

0
𝜆0(𝑠) d𝑠 and𝐻0(𝑡) = ∫ 𝑡

0
ℎ0(𝑠) d𝑠, Balan et al. (2016) derived that

𝑈𝛾(0, �̂�0) =

𝑚∑
𝑖=1

[
𝑁𝐷
𝑖
(𝑥𝑖) − 𝑒�̂�

′𝒛𝑖 �̂�0(𝑥𝑖)
]∫ ∞

0
log (𝑢) 𝐾𝑖(𝑢, 𝑥𝑖) 𝑔𝜃(𝑢) d𝑢

∫ ∞

0
𝐾𝑖(𝑢, 𝑥𝑖) 𝑔𝜃(𝑢) d𝑢

=

𝑚∑
𝑖=1

𝑀𝐷
𝑖
⋅ ˆlog (𝑢𝑖) .

(8)

The 𝑀𝐷
𝑖
are estimates of the martingale residuals of the terminal event model 𝑀𝐷

𝑖
= 𝑁𝐷

𝑖
(𝑥𝑖) − ∫ 𝑥𝑖

0
𝑒𝜶

′𝒛𝑖 ℎ0(𝑠)d𝑠. The
ˆlog (𝑢𝑖) are the posterior estimates of the log-frailty values given the observed data from the recurrent event process:
ˆlog (𝑢𝑖) = E[log𝑈𝑖 ∣ 𝑂𝑖(𝑥𝑖)]. For gamma distributed frailties 𝑢𝑖 with mean one and variance 𝜃, one obtains

l̂og(𝑢𝑖) = 𝜓

(
1

�̂�
+ 𝑁𝑅

𝑖
(𝑥𝑖)

)
− log

(
1

�̂�
+ 𝑒𝜷

′𝒛𝑖 Λ̂0(𝑥𝑖)

)
, (9)

where 𝜓(⋅) is the digamma function.
Because of the zero-mean constraint of the 𝑀𝐷

𝑖
, the second line of (8) is proportional to the correlation 𝑟 =

cor(𝑴𝑫, l̂og(𝒖)) between the martingale residuals and the estimated log-frailties. Consequently, Balan et al. (2016) based
the correlation score test on the test statistic

𝑡 = 𝑟

√
𝑚 − 2

1 − 𝑟2
, (10)

which, under the null hypothesis, asymptotically follows a 𝑡-distribution with𝑚 − 2 degrees of freedom.
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It turns out that in the setting in which only interval counts of the recurrent events are available, but exact survival
times (or censoring times) are observed, Equation (8) still holds. We show this result in Section A.2. Therefore, the test
statistic 𝑡 in (10) is still valid. Furthermore, for gamma distributed frailties, the estimates ˆlog (𝑢𝑖) can still be determined
using formula (9). The latter formula involves estimates �̂� of the frailty variance, the covariate effect 𝜷 on the recurrence
rate, and the cumulative baseline rate Λ̂0; all determined under 𝐻0. These can be obtained by fitting a mixed Poisson
model to the interval counts of the recurrent events (see, for instance, Lawless & Zhan, 1998, who assume a piecewise
constant baseline rate function 𝜆0). We generally recommend to estimate the shared frailty model for the interval counts
using a flexible specification such as (6) for the baseline rate. A simple parametric model like, for example, the Weibull
model, although appealing due to its parsimony, always bears the risk of misspecification and consequently misleading
test results. The estimates of the martingale residuals𝑀𝐷

𝑖
can be derived from a Cox proportional hazards model fitted to

the survival data {𝑋𝑖, 𝛿𝑖, 𝒛𝑖; 𝑖 = 1, … ,𝑚}.

4 SIMULATION STUDY

4.1 Performance of the estimation method

To evaluate the performance of the proposed method for estimating the parameters of the joint frailty model based on
interval counts of recurrent events and survival times, we conducted a simulation study.
Several different aspects will affect the estimation results, both on the part of the model specification but also on the

part of the observable data. The latter include the number and lengths of the intervals for the recurrent event counts and
whether they are the same for all individuals in the sample or not. The amount of independent censoring will also have an
impact. Among the former aspects, the size of the frailty variance and the sign of the dependence parameter are expected
to influence the estimation, but also the number of intervals used in the piecewise constant specification of the baseline
rates (and consequently the total number of parameters to be estimated) will matter.
We generated data for 𝑚 = 200 individuals from the joint frailty model (2). For the baseline rates 𝜆0(𝑡) and ℎ0(𝑡), we

chose the form of Weibull hazards, (𝑎∕𝑏) (𝑡∕𝑏)𝑎−1, with shape parameter 𝑎 equal to 1.5 or 3 and scale parameter 𝑏 equal
to 1∕3 and 1.35, respectively. A single binary covariate that takes values 0 or 1 with probability 0.5 was included, and had
the same effect on the hazard of death and the rate of recurrence (𝛼 = 𝛽 = 1). Frailties were simulated from a gamma
distribution with mean one and different variances 𝜃 ∈ {0.25, 0.5, 0.75}. We considered both cases of positive (𝛾 = 1) and
negative association (𝛾 = −1) between the recurrence process and the terminal event. Additionally, we looked at one
setting with a relatively small value for the frailty variance, 𝜃 = 0.05, that was inspired by the results of the data set on
E. dichotoma, see Section 5. In this setting two values for the dependence parameter |𝛾| = 1 or |𝛾| = 5 were studied.
Independent censoringwas considered in two versions: either an end-of-study censoring at time 𝑡 = 2 for all individuals

still alive then or individual censoring times, which occurred uniformly over the total follow-up window [0,2].
Regarding the observation times 𝑡𝑖𝑗 , which determine the intervals during which the recurrent events are counted,

we examined two scenarios. In Scenario I the observation times were the same for all individuals. We set 𝑡𝑖𝑗 = 0.2𝑗, 𝑗 =
0,… , 10, such that we observed individual interval counts in up to 10 intervals of equal length 0.2. We also studied one
scenario with 𝑡𝑖𝑗 = 0.1𝑗, 𝑗 = 0,… , 20, leading to up to 20 individual interval counts. In Scenario II the observation times 𝑡𝑖𝑗
varied across individuals. This scenario mimicked a study in which participants have scheduled visit times, but actually
could be early or late for their visits. This was implemented as follows: the scheduled times were 𝑡0

𝑗
= 0.2𝑗, 𝑗 = 0,… , 10,

but the actual observation times for each individual were obtained by adding a random noise 𝜀𝑖𝑗 to the scheduled times
so that 𝑡𝑖𝑗 = 𝑡0

𝑗
+ 𝜀𝑖𝑗 . The 𝜀𝑖𝑗 were drawn from a uniform distribution on [−0.1, 0.1] (except for 𝜀𝑖0 = 0 and 𝜀𝑖10 as uniform

on [−0.1, 0]) and hence the 𝑡𝑖𝑗 varied across individuals.
For the estimation of the joint frailtymodel, we assumed that the frailties were gamma distributed, and that the baseline

rates were specified as piecewise constant functions on 10 intervals of equal length, 𝑡𝑅
𝑘
= 𝑡𝐷

𝑘
= 0.2𝑘. Thus, under Scenario I

and 𝑡𝑖𝑗 = 0.2𝑗 the intervals for the rate pieces coincided with the observation intervals for the counts. We also studied the
impact of an increase of the number of intervals to 20. Approximation of the likelihood was based on 𝑄 = 30 quadrature
points. All computations were run in R (R Core Team, 2019), see Section A.1 for further details. In all settings we ran
200 replications.
The results of the simulation study under Scenario I with frailty variance 𝜃 = 0.5 are shown in Figures 1 and 2, both
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F IGURE 1 Box plots of the parameter estimates (top) and estimated standard errors (bottom) in the joint frailty model for positive (𝛾 = 1)
and negative dependence (𝛾 = −1) under two schemes of independent censoring (CensA: at end of study 𝐶 = 2, CensB: uniform on [0,2]). Left
to right: covariate effect onmortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and frailty variance (𝜃), based on 200 samples of size
𝑚 = 200. Red, dashed line marks true parameter value (top) or empirical standard deviation (bottom); gray, dotted lines mark 10% deviations
from respective value

for positive and negative dependence |𝛾| = 1 and for both independent censoring schemes (A: end-of-study censoring at
𝑡 = 2, and B: uniform censoring times in [0,2]).
From the box plots of the estimates of the covariate effects 𝛼 and 𝛽, the dependence parameter 𝛾, and the frailty variance

𝜃 in Figure 1, we can see that the method performs satisfactorily. Censoring scheme A is considerably milder than scheme
B (for an illustration, see Table S2), and the corresponding loss in information is reflected in a moderately increased
variability in the estimates and, as could be expected, also in the estimated standard errors (Figure 1, bottom). For the
frailty variance 𝜃, variability in estimates and estimated standard errors is higher for negative dependence (𝛾 = −1) than
for positive dependence. This is also true for the dependence parameter 𝛾 itself. The estimated standard errors for the
covariate effects 𝛼 and 𝛽, the dependence parameter 𝛾, and the frailty variance 𝜃 are comparedwith the empirical standard
deviations of the respective estimates across the replications in the bottom panels of Figure 1. The general magnitude of
the standard errors is well captured.
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F IGURE 2 Estimates (gray, solid) of the cumulative rate of recurrence (left) and of death (right) based on samples of size𝑚 = 200, which
were generated from a joint frailty model with positive dependence for two schemes of independent censoring. Top: end-of-study censoring at
𝑡 = 2 (CensA), bottom: uniform censoring on [0,2] (CensB). Red, solid line gives the true cumulative baseline rate; black, dashed line is the
mean of the 200 estimates

Figure 2 displays the estimates of the cumulative baseline rates for positive dependence for both censoring schemes
A and B. The averages of the estimates are very close to the true underlying rates. The stronger loss of observations in
scheme B leads to markedly increased variability of the estimates toward the end of the follow-up window, which is an
obvious consequence of the decreasing number of individuals under study over time. This low number of observations
results in part from individuals experiencing a terminal event. Additionally, even fewer individuals (in this setting, less
than 5%) are observed in the interval [1.8,2), which corresponds to the last piece of the baseline rates, due to independent
censoring under scheme B. In contrast, censoring scheme A is benign.
For the other settings of the simulation study we restricted our attention to the independent censoring scheme B. With

its uniformly distributed censoring times it produces a relatively challenging loss of observations. So the results we report
here are conservative in the sense that they hold despite this appreciable amount of censoring. The Supporting Information
illustrates the results of the other simulation settings analogous to Figures 1 and 2. Here we summarize the main results
of the various scenarios.
If we change the frailty variance to 𝜃 = 0.25 or 𝜃 = 0.75, we note that also in these settings the biases of the parameter

estimates, if present at all, are small. In general, varying the true underlying frailty variance mainly affects the variability
of the estimates. The estimates of the covariate effects and the frailty variance show increased variability for larger frailty
variance. In contrast, the estimates of the dependence parameter show less variability for larger frailty variance because the
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increased heterogeneity among the individual patterns makes it easier to assess the dependence between the recurrence
process and survival.
If the true frailty variance is close to zero (𝜃 = 0.05) the estimates of the dependence parameter are still only modestly

biased but the variability of the �̂� increases strongly. This had to be expected because the identification of the dependence
hinges on the variation in the individual frailty. If the true value of |𝛾| = 1, then the estimated values may turn out with
the wrong sign of the dependence parameter, particularly if the true dependence is negative. Thus, weak dependence is
difficult to identify in case of low variability in frailty. However, if the dependence is strong, |𝛾| = 5, then, despite the
variability of the estimates, the sign of the dependence is correctly estimated.
If wemodify the width of the observation intervals from 0.2 to 0.1 we first note the following: if we keep the specification

of the baseline rate of recurrence as piecewise constant on the 10 intervals with 𝑡𝑅
𝑘
= 0.2𝑘 as before, then the additional

information provided by the finer observation intervals would not be used by the estimation method (see Section A.3 for a
proof). Therefore, we also specify the baseline rates as piecewise constant functions on 20 intervals, that is, 𝑡𝑅

𝑘
= 𝑡𝐷

𝑘
= 0.1𝑘.

Apart from increased variability in the rate estimates near the end of the follow-up window, there is little change to the
estimation results with width 0.2.
If we allow the observation intervals to vary across individuals (Scenario II), then we find that the method performs

equally well as for fixed observation intervals, with the exception of the estimates for the last baseline rate pieces. In this
simulation, we used fixed intervals for the baseline rates though, to unify the presentation of results. In applications we
would recommend to choose the cut-points 𝑡𝑅

𝑘
and 𝑡𝐷

𝑘
based on (approximate) quantiles of the event times, as described

earlier, to increase precision of the baseline rate estimates.
If we replace the baseline rates by a parametric Weibull specification (which here is correct), then there is only very

modest change in the other parameter estimates of the model as well as their standard errors, so the main advantage is in
the less variable estimation of the two baseline rates. This is, however, counterbalanced by the risk of model misspecifi-
cation so we advise the use of piecewise constant rates unless one has a good understanding of the underlying processes
that justifies a parametric choice.
Overall, the proposed method for estimating the joint frailty model based on interval counts yielded reliable results in

this simulation study and different scenarios behaved in the way we had anticipated beforehand.

4.2 Performance of the score test

In a second set of simulations, we investigated the performance of the score test in the setting with interval counts of
recurrent events.
For this purpose, we again generated data for𝑚 = 200 individuals from the joint frailty model (2). The covariate effects,

values for the variance of the gamma frailties, and baseline rates were the same as in Section 4.1. Here, however, we
considered not only different directions but also different strengths of the association between the recurrence process
and the terminal event; namely, 𝛾 ∈ {−1,−0.5, 0, 0.5, 1}. Counts were again observed in 10 intervals of equal length 0.2
(Scenario I) or of varying length (Scenario II).We studied two schemes of independent censoring, schemeAwith censoring
time 𝐶 = 2, and scheme B with uniformly distributed censoring times on [0,2]. We ran 1000 replications for each setting
to determine the size or power of the test.
The score test involves fitting separate models to the recurrence data and the survival data. First, we fitted a shared

gamma frailtymodel to the individual interval counts of the recurrent events, assuming that (𝑁𝑖𝑗 ∣ 𝑢𝑖) follows aPoisson dis-
tribution with mean 𝑢𝑖�̃�𝑖𝑗 , where �̃�𝑖𝑗 = ∫

𝐼𝑖𝑗
𝑒𝛽

′𝑧𝑖 �̃�0(𝑠) d𝑠. The baseline recurrence rate �̃�0(⋅)was modeled as piecewise con-

stant, as in (6), with pieces defined by the cut-points 𝑡𝑅
𝑘
= 0.2𝑘, 𝑘 = 0,… , 10. The estimates ˆlog (𝑢𝑖)were then determined

according to formula (9). Second, we estimated a Cox proportional hazards model from the survival data {𝑋𝑖, 𝛿𝑖, 𝑧𝑖; 𝑖 =

1, … ,𝑚} using function coxph() from package survival (Therneau & Grambsch, 2000) to obtain the martingale resid-
uals𝑀𝐷

𝑖
of the terminal event. Finally, we calculated the test statistic based on the correlation between the𝑀𝐷

𝑖
and the

ˆlog (𝑢𝑖).
Table 1 reports the size and the power of the score test, performed at a level of 5%, depending on the true underlying

dependence parameter 𝛾 and frailty variance 𝜃. The proportion of a type I error, that is, falsely rejecting the hypothesis of
no dependence (𝛾 = 0), was affected most strongly by the censoring scheme. If 𝐶 = 2, which implies a modest proportion
of independently censored cases (see Table S4), then the level of the test is met or exceeded only slightly. For strong
independent censoring (scheme B), which implies that roughly half of the observations are censored and quite some of
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TABLE 1 Power and size of the score test, performed at the 5% level, in the joint frailty model with varying dependence
parameter 𝛾 ∈ {−1,−0.5, 0, 0.5, 1}, frailty variance 𝜃 ∈ {0.25, 0.5, 0.75}, and independent censoring 𝐶 ∼  [0, 2] or 𝐶 = 2, across 1,000
replications each

𝑪 ∼  [𝟎, 𝟐] 𝑪 = 𝟐

Dependence 𝜸 Dependence 𝜸
𝜽 −𝟏 −𝟎.𝟓 0 0.5 1 −𝟏 −𝟎.𝟓 0 0.5 1
0.25 0.960 0.586 0.066 0.514 0.932 0.999 0.788 0.057 0.799 1.000
0.5 1.000 0.905 0.062 0.872 1.000 1.000 0.990 0.039 0.992 1.000
0.75 1.000 0.984 0.091 0.974 1.000 1.000 1.000 0.040 1.000 1.000

them early during the follow-up, then this loss of information increases the proportion of a type I error, particularly for
the frailty variance 𝜃 = 0.75. This is a noteworthy result, and hence the test should be regarded with caution, if there is
strong (and early) censoring in the data.
Regarding the power of the score test, as expected, we found that the power increased with the strength of the depen-

dence, that is, |𝛾|, and with the magnitude of the frailty variance. In the settings with the larger frailty variances 𝜃 = 0.5

and 𝜃 = 0.75 and stronger dependence |𝛾| = 1, the score test detected the association in all cases. We note that for the
samples for which the association was detected by the score test, the direction of the dependence was always identified
correctly. An extension of the simulation settings suggested that the score test can detect associations even for small values
of the frailty variance as long as the association is sufficiently strong, that is, |𝛾| is sufficiently large (see Table S5).
Furthermore, we assessed the performance of the score test for Scenario II in which the observation intervals vary

across individuals. Results for the setting with 10 scheduled visit times and 10 pieces for the baseline rate are displayed in
Table S8. The proportion of false rejections of the hypothesis of no dependence are again a bit higher than the nominal
level due to the high percentage of censoring. The power of the test is comparable to the values obtained in Scenario I,
although the power in the settings with negative dependence is a bit lower here.
Additional results on the performance of the score test for modifications of Scenario I and II are given in the Support-

ing Information.
In conclusion, the results of the simulation study provide further evidence that the score test is a powerful method for

assessing the association between recurrent events and the terminal event, also in a setting in which only interval counts
of the recurrent events are observed.

5 FERTILITY ANDMORTALITY IN ELEUTHERIA DICHOTOMA

To illustrate the proposedmethods, we use data from a biodemographic study on the fertility andmortality ofE. dichotoma
(Dańko et al., 2020), which was briefly introduced in Section 1. Eleutheria dichotoma is a marine organism that passes
through several life-cycle stages: that is, planula larva, polyp, andmedusa stages. The colonial polyps (hydroids) asexually
produce medusae. The medusae can then reproduce both sexually (by producing larvae) and asexually (by producing
medusa buds).
In this study, asexually budded medusae were collected directly from the hydroid colony and reared for three

generations—each of which was, in turn, obtained through the asexual budding of medusae. In our analysis, we focus
on the age trajectory of the budding rate (asexual reproduction) and the mortality of one of the medusa generations, as
well as on the association between the two processes.
Age 𝑡0 = 0 of a medusa corresponds to the point in time when it detaches from its hydroid colony or from its ancestor

medusa. Themedusae were followed individually, and were observed until death or censoring. This occurred when either
the study ended, a laboratory accident (e.g., water evaporation) led to the loss of the medusa, or the medusa was absorbed
by a large bud of the same individual. The animals were checked for newly released larvae and buds roughly three times
per week. The resulting observation times differed across individuals, with interval lengths between 1 and 11 days.
Salinity is an important factor that affects the physiological responses of species likeE. dichotoma, both at the level of the

hydroid colony that produced the medusae under study, and at the level of the medusae themselves. Four combinations
of salinity levels were studied here (low(hydroid)–low(medusa), medium–medium, low–medium, and medium–low); for
more details, see Dańko et al. (2020).
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F IGURE 3 Interval counts of budding and survival (dead: cross, censored: circle) for 14 medusae E. dichotoma

TABLE 2 Parameter estimates (with standard errors) for different models fitted to the E. dichotoma data set

Separate models
Joint frailty model Shared frailty model Cox PHmodel

Mortality
Polyp (low salinity) −0.493 (0.299) – −0.376 (0.201)
Medusa (low salinity) 2.201 (0.432) – 1.392 (0.218)

Budding
Polyp (low salinity) 0.052 (0.069) 0.057 (0.066) –
Medusa (low salinity) 0.574 (0.071) 0.600 (0.068) –

Association
Dependence 𝛾 −4.941 (1.557) – –
Frailty variance 𝜃 0.051 (0.018) 0.036 (0.017) –

The data set contains𝑚 = 141 individuals, with the following group sizes in the four experimental conditions: 36 low–
low, 40 medium–medium, 32 low–medium, and 33 medium–low. The individuals produced between 0 and 27 buds over
their life course, with a mean of 8.99. Follow-up times varied between 9 and 217 days, with a median of 98 days; and 34
individuals (24%) were censored. Figure 3 exemplarily shows the data for 14 individuals.
To assess whether the recurrent budding process and survival are associated in E. dichotoma, we first conducted the

score test that was presented in Section 3.2. For fitting the shared frailty model to the individual bud counts, we assumed
that the frailty variable was gamma distributed. Moreover, for the piecewise constant baseline budding rate, we defined
cut-points 𝑡𝑅

𝑘
at 0, 16, 22, 27, 32, 40, 47, 63, 85, 111, and 220 days. These cut-points were obtained as (approximative) deciles

of the recurrent event times, as described at the end of Section 3.1. We included two binary covariates for the salinity levels
at the polyp stage and the medusa stage, respectively.
The martingale residuals of the terminal event were obtained from a Cox proportional hazards model fitted to the

survival data, including the two covariates on the salinity levels.
The parameter estimates of the two separately fitted models, the Cox model for the survival data, and the shared frailty

model for the budding rate based on interval counts, are shown in Table 2.
The correlation between the martingale residuals from the Cox regression and the estimated log-frailties from the bud-

ding model is 𝑟 = −0.434, yielding a test statistic of 𝑡 = −5.676with a 𝑝-value of 7.729 ⋅ 10−8. Thus, the result of the score
test clearly suggests that reproduction and mortality are negatively associated, that is, that a higher budding rate is asso-
ciated with lower mortality, which implies that a joint model should be used to analyze these data on E. dichotoma.
Therefore, we estimated a joint frailty model for reproduction andmortality for these data, including the two covariates

on salinity. Frailties were again assumed to stem from a gamma distribution. For the baseline budding rate, the same
specification was used as in the separatemodel (see above). For the baseline hazard of death, we used a piecewise constant
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F IGURE 4 Estimated baseline rates of budding (left) and death (right) for the E. dichotoma data set

function with cut-points 𝑡𝐷
𝑘
at 0, 60, 67, 72, 85, 98, 103, 114, 132, 153, and 220 days; again, the cut-points were taken from

approximate deciles of the survival times. For the Gaussian quadrature in the marginal likelihood (see Equation (5)),
𝑄 = 30 quadrature points were used.
The parameter estimates of the joint model are also displayed in Table 2. Interestingly, the dependence parameter 𝛾

was estimated as −4.941 along with a frailty variance of 0.051. The negative value of �̂� indicated that individuals with
higher rates of asexual reproduction tended to have a lower mortality risk than individuals with lower rates of asexual
reproduction. This finding that higher rates of reproduction were accompanied by longer survival stands in contrast to the
idea of a trade-off between reproduction and survival. Regarding the salinity levels, we found that the salinity experienced
by the polyps did not have a noticeable effect on the reproduction or survival of the medusae. In contrast, individuals
who were exposed to low salinity at the medusa stage were found to have both higher fertility and mortality rates than
those exposed to medium salinity. Finally, Figure 4 shows the estimates of the age-specific budding and death rates. The
budding rate peaked at about 20 days of age before gradually declining to a nonzero level at later ages. The death rates
increased markedly after about 60 days of age.
To conclude, although the results presented here are in agreement with the findings of Dańko et al. (2020), they also

provide additional insight into the association between the asexual reproduction and survival of E. dichotoma. In addition
to the biological implications of the dependence itself, due to the association between the two processes, the recurrent
event process is censored by the terminal event (death) nonindependently, which warrants the joint modeling of the
two processes.

6 DISCUSSION

We have presented a method for estimating the joint frailty model for recurrent events and death in situations in which
only individual interval counts of the recurrence process are observed. When modeling the baseline rates as piecewise
constant, the marginal likelihood can be approximated using Gaussian quadrature, and can then be maximized directly.
In addition, we have shown that the score test for the association between recurrences and death (Balan et al., 2016) is also
applicable in the setting with interval counts. The test is based on the correlation between the martingale residuals of the
terminal event and the estimates of the log-frailties, which are obtained by separately fitting a Cox proportional hazards
model to the survival data and a shared frailty model to the interval counts of recurrent events. Our simulation studies
demonstrated that both the estimation method and the score test perform well.
We also found that when applying the proposed methods to data on fertility and mortality in E. dichotoma, the rate of

asexual reproduction and the mortality risk are negatively associated. This finding is interesting from a biological point of
view, and it also demonstrates the necessity of allowing positive and negative dependence in amodel such as the relatively
complex joint frailty model (2). Moreover, the E. dichotoma example illustrates the advantages of using the piecewise
constant rate model. On the one hand, the shape of the budding rate, which is characterized by a sharp peak at younger
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ages and a gradual leveling off to a nonzero level at older ages, is hard to capture using a simple parametric model. On
the other hand, the data structure of the interval counts, in which the observation times vary across individuals, makes it
difficult to construct a purely nonparametric estimate of the baseline rate.
Implementing the estimation method in the joint frailty model involves making several choices, such as decisions

regarding the distribution of the frailties, the number of quadrature points, and the number of pieces included in the
baseline rate models. For the frailty distribution, we assumed that frailties follow a gamma distribution in both the sim-
ulation study and the application. The use of a gamma distribution is a popular choice for the distribution of frailties,
and, with respect to the score test, it has the benefit of yielding closed-form expressions for the estimated log-frailties.
However, the quadrature approach is equally able to accommodate the log-normal distribution or any frailty distribution
that has a closed-form inverse distribution function. Yet, the performance of the quadrature approach relies on the quality
of the approximation of the marginal likelihood, which, in turn, depends on the number of quadrature points. Liu and
Huang (2008) suggested using 𝑄 = 30 quadrature points for gamma frailty models, and in our experience, this number
yields reliable results. In practice, we recommend fitting the model for several increasing values of 𝑄 until the estimates
stabilize. For the piecewise constant rate models, using a moderate number of up to 10 intervals for the rates seems to
produce good results. Using a larger number of intervals for the baseline rates generates a larger number of parameters to
be estimated, which, in turn, increases computational costs, and might affect the numeric stability of the method.
One of the limitations of the approach presented here is that, in the joint frailty model, the association between recur-

rences and death is modeled via a dependence parameter acting on a shared frailty. If, however, the individuals are not
sufficiently heterogeneous, that is, if the frailty variance is not sufficiently large, the dependence parameter is not mean-
ingful, and the association cannot be assessed.
Another restriction is imposed by the piecewise constant rate models. Although these models can capture a variety of

different shapes of the baseline rates, using more flexible rates—and, in particular, smooth rates—might be desirable in
some applications. Further work is needed on how to incorporate smooth rate models with automatic smoothing param-
eter selection.
Finally, the observation times in our application are fixed by the experimental setup, even though in real-world appli-

cations, particularly in medicine, the observation times may depend on the recurrence process. For instance, patients
may visit the doctor more often when they are in worse condition. This is taken into account in a model developed by
Zhao et al. (2013), which considers interval counts of recurrent events in the presence of death and a dependent obser-
vation process. However, the authors adopted a marginal approach that left the association between the recurrences and
death unspecified.
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APPENDIX A
A.1 Computational details
We implemented our estimation approach in R (R Core Team, 2019) using function gauss.quad() from package statmod
(Smyth, 2005) to determine the quadrature points and weights, and function nlm() for numerical optimization of the
approximate marginal log-likelihood.
The Hessian of the log-likelihood can be obtained directly from the output of the function nlm(). However, in some

cases, computation of the Hessian using function hessian() from package numDeriv (Gilbert & Varadhan, 2019) yields
more stable results.
To ensure that the Hessian of the approximate log-likelihood with piecewise constant baseline rates is invertible, it

can be necessary to fit the joint frailty model with small, fixed ridge penalties on the logarithm of the baseline rates. The
standard errors are then calculated based on the Hessian of the penalized log-likelihood.

A.2 Derivation of the score test
In this section, we show that the score𝑈𝛾(𝛾, 𝜼) of the joint frailty model (2) has the same form independently of whether
exact recurrence times or only interval counts of the recurrent events are available, as long as the recurrence process is
observed up to exactly known follow-up times.
Let us start by rewriting the individual contributions (3) to the marginal likelihood for interval counts

𝐿𝑖 = ∫
∞

0

𝐽𝑖∏
𝑗=1

⎡⎢⎢⎣ 1

𝑛𝑖𝑗!
exp

{
−∫

𝐼𝑖𝑗

𝑢𝑒𝜷
′𝒛𝑖 𝜆0(𝑠) d𝑠

}(
∫
𝐼𝑖𝑗

𝑢𝑒𝜷
′𝒛𝑖 𝜆0(𝑠) d𝑠

)𝑛𝑖𝑗⎤⎥⎥⎦
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𝑛𝑖𝑗 and 𝐾𝑖(𝑢, 𝑡) as defined in (7).

The marginal log-likelihood 𝓁(𝛾, 𝜼) =
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If we now evaluate the score at (𝛾, 𝜼) = (0, �̂�0), we obtain
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which is the first line of (8).
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A.3 Likelihood with fixed observation times
In this section, we study the likelihood of the joint frailty model (2) based on individual interval counts of recurrent events
in one particular setting. Specifically, the observation times are assumed to be the same for all individuals and the baseline
rate of recurrence 𝜆0(𝑡) is modeled as a piecewise constant function.Wewill show that if the observation intervals are finer
than the intervals for the rate pieces, the score depends on the individual’s interval counts only through the sums of these
counts over each baseline rate piece.
For this purpose, suppose the observation times 𝑡𝑖𝑗 are given by 𝑡𝑖𝑗 = 𝑡𝑗 for 𝑗 = 0,… , 𝐽𝑖 − 1, and the last observation

time 𝑡𝑖𝐽𝑖 = 𝑋𝑖 is equal to the follow-up time 𝑋𝑖 . The interval counts 𝑛𝑖𝑗 , observed over the intervals 𝐼𝑖𝑗 = (𝑡𝑖𝑗−1, 𝑡𝑖𝑗], enter
the likelihood contribution 𝐿

(𝑐)
𝑖
(𝑢𝑖) of individual 𝑖 given its frailty value 𝑢𝑖 (see (3)) only through the factor
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(A.1)
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For a baseline rate of recurrence specified as a piecewise constant function on intervals 𝐼𝑅
𝑘
= (𝑡𝑅
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), 𝑘 = 1,… , 𝐾𝑅, as in (6), we have
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where |𝐼| denotes the length of the interval 𝐼. Now let 𝐾𝑖 be the index 𝑘 of the interval 𝐼𝑅𝑘 for which 𝑋𝑖 ∈ 𝐼𝑅𝐾𝑖
. We can write

the sum in the third term in (A.1) as
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)
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, (A.3)

which depends only on the individual’s follow-up time 𝑋𝑖 , but not on the other observation times 𝑡𝑖𝑗 , 𝑗 = 0,… , 𝐽𝑖 − 1.
Using (A.2), the last term in (A.1) equals
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.

Suppose nowwe choose the intervals 𝐼𝑅
𝑘
for the baseline rate of recurrence to be rougher than the observation intervals,

but such that the 𝑡𝑅
𝑘
are a subset of the 𝑡𝑗 . Then, each 𝐼𝑖𝑗 , 𝑗 = 1,… , 𝐽𝑖 , is a subset of exactly one 𝐼𝑅𝑘 , thus,

𝐽𝑖∏
𝑗=1

⎛⎜⎜⎝
𝐾𝑅∑
𝑘=1

𝜆0𝑘|𝐼𝑖𝑗 ∩ 𝐼𝑅
𝑘
|⎞⎟⎟⎠
𝑛𝑖𝑗

=

𝐽𝑖∏
𝑗=1

𝐾𝑅∏
𝑘=1

(
𝜆0𝑘|𝐼𝑖𝑗 ∩ 𝐼𝑅

𝑘
|)𝑛𝑖𝑗⋅𝟙{𝐼𝑖𝑗⊂𝐼𝑅𝑘 }

=

𝐾𝑅∏
𝑘=1

𝐽𝑖∏
𝑗=1

𝜆
𝑛𝑖𝑗⋅𝟙{𝐼𝑖𝑗⊂𝐼

𝑅
𝑘
}

0𝑘
|𝐼𝑖𝑗 ∩ 𝐼𝑅

𝑘
|𝑛𝑖𝑗⋅𝟙{𝐼𝑖𝑗⊂𝐼𝑅𝑘 }

=
⎛⎜⎜⎝
𝐾𝑅∏
𝑘=1

𝜆

∑𝐽𝑖
𝑗=1

𝑛𝑖𝑗⋅𝟙{𝐼𝑖𝑗⊂𝐼
𝑅
𝑘
}

0𝑘

⎞⎟⎟⎠
⎛⎜⎜⎝
𝐾𝑅∏
𝑘=1

𝐽𝑖∏
𝑗=1

(|𝐼𝑖𝑗 ∩ 𝐼𝑅
𝑘
|)𝑛𝑖𝑗⋅𝟙{𝐼𝑖𝑗⊂𝐼𝑅𝑘 }⎞⎟⎟⎠. (A.4)
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Note that �̃�𝑖𝑘 =
∑𝐽𝑖

𝑗=1
𝑛𝑖𝑗 ⋅ 𝟙{𝐼𝑖𝑗 ⊂ 𝐼𝑅

𝑘
} gives the number of recurrent events which individual 𝑖 experiences over the time

interval [0, 𝑋𝑖] ∩ 𝐼𝑅
𝑘
. Hence, the first factor of expression (A.4) depends on the counts 𝑛𝑖𝑗 which were observed over the

smaller intervals 𝐼𝑖𝑗 only via the counts �̃�𝑖𝑘 corresponding to the larger intervals 𝐼𝑅𝑘 .
Inserting (A.3) and (A.4) into (A.1) yields(

𝐽𝑖∏
𝑗=1

1

𝑛𝑖𝑗!

)
⋅ 𝑢

𝑛𝑖
𝑖
⋅ exp

{
−𝑢𝑖𝑒

𝜷′𝒛𝑖

(
𝐾𝑖−1∑
𝑘=1

𝜆0𝑘Δ
𝑅
𝑘
+ 𝜆0𝐾𝑖

(𝑋𝑖 − 𝑡𝑅𝐾𝑖−1
)

)}

⋅ (𝑒𝜷
′𝒛𝑖 )𝑛𝑖

𝐾𝑅∏
𝑘=1

𝜆
�̃�𝑖𝑘
0𝑘

𝐾𝑅∏
𝑘=1

𝐽𝑖∏
𝑗=1

(|𝐼𝑖𝑗 ∩ 𝐼𝑅
𝑘
|)𝑛𝑖𝑗⋅𝟙{𝐼𝑖𝑗⊂𝐼𝑅𝑘 }

∝ (𝑢𝑖 𝑒
𝜷′𝒛𝑖 )𝑛𝑖 exp

{
−𝑢𝑖𝑒

𝜷′𝒛𝑖

(
𝐾𝑖−1∑
𝑘=1

𝜆0𝑘Δ
𝑅
𝑘
+ 𝜆0𝐾𝑖

(𝑋𝑖 − 𝑡𝑅𝐾𝑖−1
)

)}⎛⎜⎜⎝
𝐾𝑅∏
𝑘=1

𝜆
�̃�𝑖𝑘
0𝑘

⎞⎟⎟⎠.
Consequently, if the observation intervals are finer than the rate intervals the likelihood is proportional to an expression

that depends only on recurrent event interval counts corresponding to the larger rate intervals.
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